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Abstract 

This paper demonstrates a novel strategy for inferring approximate geographical 

information from the exposure information and temporal patterns of outdoor images in 

image collections. Image exposure is reliant on light and most photographs are therefore 

taken during daylight which again depends on the position of the sun. Clearly, the sun 

results in different lighting conditions at different geographical location at different 

times of the day and hence the observed intensity patterns can be used to deduce the 

approximate location of the photographer at the time the photographs were taken. 

Images taken inside or at night are temporally connected to the daylight images and the 

geographical information can therefore be transferred to related “dark” photographs. 

The strategy is efficient as it only considers meta information and not image contents. 

Large databases can therefore be indexed efficiently. Experimental results demonstrate 

that the current approach yields a longitudinal error of 15.7 degree and a latitudinal 

error of 30.5 degrees for authentic image collections comprising a mixture of outdoor 

and indoor images. The strategy determined the correct hemisphere in all the tests. 

Although not as accurate as GPS receiver, the geographical information is sufficiently 

detailed to be useful. Applications include improved image retrieval, image browsing and 

automatic image tagging. The strategy does not require a GPS receiver and the strategy 

can be applied to existing digital image collections. 

 

1 Introduction 

Current digital cameras provide high quality images at a low cost compared to just a decade ago. 

Advances in storage technology allow amateur photographers to take thousands of photographs 

without having to consider the cost of developing film and printing and physical storage space. 

Consequently, personal image collections are growing at an exploding rate. Most people neither have 

the time to carefully sort images into suitable categories, nor manually annotate images with textual 

information to help future retrieval. GPS technology allows images to be tagged with the 

geographical coordinates where an image is taken. This is very useful when taking many photographs 

in different parts of the world. The geo-spatial tagged images are therefore much easier to manage, 

store, retrieve and browse as images can be classified according to location and time [1, 2]. 
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However, the GPS approach to image tagging is problematic for several reasons. First, very few low-

cost digital cameras are equipped with GPS technology. Second, GPS devices typically need several 

minutes to lock onto overhead navigation satellites. Third, the GPS navigation infrastructure is 

reaching the end of its lifetime and one has no guarantee that there will be a publically available 

navigation infrastructure in the future [3]. Fourth, most existing digital image collections are not 

tagged with geo-spatial information. 

This paper presents a different approach to geo-spatial image tagging which is not reliant on GPS 

technology or similar geographical information systems. Moreover, the strategy can be applied to 

existing digital image collections without geo-spatial information. The strategy is based on analysing 

the temporal camera usage dynamics and exposure values embedded in image files. 

 

2. Background 

Prior to GPS technology seafarers navigated according the celestial bodies such as the sun, the moon 

and the stars. For instance, the compass can be used to obtain the orientation, or azimuth, of the sun, 

the sextant is typically used to obtain the elevation of the sun above the horizon and a chronograph 

is used to get an accurate reading of the current time. The idea of celestial navigation has also been 

attempted in modern times for robot navigation using a digital camera as a digital sextant [4] and 

absolute sun orientation measurements [5]. Related research has also used image contents to 

determine relative camera locations [6] and camera orientation [7] in camera networks. A camera 

network is a collection of webcams located at various geographical locations. Unlike a photographer, 

webcams can take continuous sequences of photographs at regular intervals at fixed locations.  

Life is organised around the celestial motion of the sun. Humans are physiologically linked to daylight 

in a cyclic pattern. We get up in the morning when the sun rises and we typically go to bed at 

midnight to get approximately eight hours of sleep until the sun is re-emerging in the horizon. When 

on holiday we typically go on sightseeing during the day so that we are able to see sights in bright 

daylight. Moreover, photographs are also taken during daylight as good images require sufficient 

lighting. Based on this one can assume that photography correlates with the presence of the sun, i.e., 

that one takes more pictures during the day than during the night. Obviously, images taken during 

the day are taken at brighter conditions than images taken indoors or at night.  

Most digital cameras are equipped with an internal clock that is usually set according to the local 

time-zone once the camera is first purchased. When travelling to different time-zones, most users do 
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not bother to set the cameras clock to the local time-zone1. All images taken with the camera are 

tagged with the time and date of the camera clock, often using the EXIF-format [1, 8, 9]. 

More advanced cameras capture additional information, especially the optical camera settings for 

the photograph such as the focal length of the lens (if adjustable), the exposure time, aperture and 

whether flash is used or not. Combined, the camera exposure time, aperture, film speed and flash 

information can be used as features to deduce information about the lighting level of the scene in 

the image without actually having to assess the actual image contents. 

Time and geo-spatial attributes make it easier to organise, retrieve and browse large image 

collections [2, 10] and this is especially important as digital image collections are growing at an 

exploding rate. 

 

3 Method 

Given an image collection C with N images denoted Ii where },..,2,1{ Ni represents the temporally 

ordered images and a function t(Ii) that gives the time image Ii was taken, then the exposure value 

EV(Ii) of image Ii is defined as [11-14]: 
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where aperture(Ii) is the aperture of image Ii, represented as an f-number, i.e., f/2.8, f/4, f/5.6, f/8, 

f/11, f/16, etc, shutter(Ii) is the shutter speed of image Ii measured in seconds, i.e., 1/1000 s, 1/500 s, 

1/250 s, 1/125 s, 1/60 s, 1/30 s, 1/15 s, etc and iso(Ii) is the iso value (film speed) for image Ii, typically 

100 or 200. These are all obtained from the EXIF meta information recorded in the image file by the 

digital camera.  

The exposure value can be used to make intelligent guesses about the scene contents and a 

summary of how the exposure value can be interpreted is provided in Table 1. For example, a sunny 

day is characterised by an exposure value in the range of 14-16, while cloudy days are represented by 

exposure values of 12-14. Sunsets are often represented by exposure values of 12. Night scenes have 

an exposure value of less than 11. Similarly, indoor images often have an exposure value of less than 

                                                           

1
 One reviewer insisted that he always set the clock of all his devices once he arrives in a new country. The 

Reviewer probably represents a small minority of very tech-savvy users. 
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12. Well lit places such as galleries may have an exposure value of 11, while a typical home may have 

an exposure value in the range of 5 to 7. One may subtract 2 from the exposure value if the scene is 

in the shadows. 

Direct camera settings provide a more efficient and objective means of determining lighting 

conditions compared to content based strategies proposed in the literature. Firstly, images are the 

result of applying optical camera settings, and valuable information about the original scene may be 

lost. Moreover, computational effort is required to process each image. Such contents based 

strategies have typically been used for classifying outdoor and indoor images, using colour space 

histograms [15] and support vector machines [16], or for extracting information from the skies [17]. 

 

Table 1. Interpretation of scenes according to the exposure value (EV) of images. The data originates 

from [18, 19]. 

EV Interpretation 

16 Bright Sunlight distinct shadows 
15 Sunlight distinct shadows 
14 Before sunset, Hazy sunlight soft shadows 
13 Before sunset, Cloudy day soft shadows 
12 At sunset, Shady scene in sunlight 
11 Just after sunset 
10 Just after sunset, night neon signs, indoor bright room 
9 Just after sunset, night arena sports, indoor sport event 
8 Bright street, Indoor offices 
7 Indoor home 
6 Indoor home 
5 Indoor home 
4 Outdoors at night 

 

The strategy presented herein assumes that all the date and time is set once correctly according to 

the owners’ locale for the image collection. This is a realistic assumption as most users will only set 

the time and date once they purchase the camera and use it for the first time. Most people do not 

bother to subsequently alter it, or may not even know how to set the time. Moreover, most digital 

cameras contain a separate secondary internal battery which sole purpose is to power the internal 

clock. Such batteries may power the clock for many years irrespective of the state of the main 

camera battery, which may remain discharged for long periods when the camera is not in use.  

The first step is to translate the timestamps of the images into universal time (UTC) using: 
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where Z is the camera time zone measured in hours before or after universal time or it is zero if the 

clock is set according to UTC. Then images are temporally clustered using the log-difference between 

consecutive images: 

 )/)(log)( 110  ii ItItid
         (3)

 

The log-difference d(i) gives an indication of the temporal separation between images and an 

interpretation is given in Table 2 based on t measured in milliseconds. 

Table 2. Temporal clustering of images (in milliseconds) 

d(i) Temporal image separation Interpretation 

1-2 milliseconds Multishot of single scene 
3-4 seconds Same scene 
5-6 minutes Same event 
7 hours Same day 
8 days Same journey 
9 weeks Unrelated 
10 months Unrelated 
11 years Unrelated 
12 decades Unlikely 

 

Figure 1 demonstrates how the log time differences are used to temporally interpret a collection of 

37,625 amateur images. The number of occurrences for each difference category is also plotted using 

a log scale as the various categories differ greatly. The graph shows that there are just over 100 

differences that are 9 or larger suggesting that the image collection comprises about 111 clusters of 

related images. About 10,000 images are taken with only millisecond pauses and represent multi 

shots.  Moreover, about 20,000 images are taken with a few seconds apart signaling that they 

represent different images taken of the same scene. Next, about 6,000 images are taken a few 

minutes apart suggesting that these belong to similar events. Finally about 300 images are separated 

by a few hours suggesting that these belong to the same day. 
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Figure 1. A log-log plot of time differences between consecutive images for a collection of 37,625 

amateur images. The horizontal axis shows the log time differences and the vertical axis shows the 

log-frequency of occurrence. 

 

Next, a cluster is split into days representing a window of 24 hours centered on midday universal 

time, i.e., centered around 12:00 UTC. The images in the 24 hour chunk is divided into hourly bins, 

i.e., the images taken the first hour are placed into one bin, the images taken the second hour are 

placed in the second bin, and so forth. 

For each bin j the image with the maximum exposure value is denoted EVmax,j taken at time tj is 

determined. If the image has an exposure value greater than 15 (a direct shot of the sun) then the 

next largest exposure value is used instead. Next, all exposure values below 10 are discarded as 

images with such exposure values usually are indoor or night images. Moreover, all maximum 

exposure values that are more than one exposure value units smaller their adjacent values are 

discarded, i.e., EVmax,j is discarded if EVmax,j+1 - EVmax,j > 1 or EVmax,j-1 - EVmax,j >1. 

The remaining time and exposure value pairs are used to fit a sinusoidal to represent the suns 

motion across the skies of the form 

DCBxAtf  )sin()(          (4) 

Clearly, the period of the sinusoidal is 24 hours representing one rotation of the Earth and B is 

therefore given by 
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The remaining coefficients A, C and D are found by least squares fitting using: 
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where the following constraints are set: 2 < A < 8, 0 < C < π/12 and 0 < D < 14. 

The C coefficient signals the time of the maximum sun elevation, i.e., midday occurs when: 
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That is, midday occurs at 
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Then, the longitude is: 
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measured in radians where positive values represent degrees west and negative values represent 

degrees east. 

Once the longitude is estimated the approximate latitude of the observer can be estimated. The 

number of hour degrees of the sunset is given by: 
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Note that the sunset exposure value is set to 10 according to the ANSI exposure value interpretations 

[18, 19]. Knowing the local time of sunset in radians then the classic sun equation can be used to 

estimate the latitude as follows 
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where t’sunset is in degree angles relative to midday, namely 

sunsetmiddaysunset ttt 
12
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and the declination of the sun (in degrees) is approximated by 
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and M is the day in the year the pictures were taken. The estimation process is illustrated in Figures 2 

and 3. Note that usually one refers to latitude and longitude in that particular order. However, in this 

study we refer to longitude first as longitude is a primary measure and latitude is a secondary 

measure. 
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Figure 2. Determining the approximate sun elevation path from temporal exposure values for Tokyo, 

Japan – 24 hour view. Midday is estimated at 0.56 UTC and sunset at 6.73 UTC. 

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8

Time (hour)

E
V

indoor

outdoor

sinusoidal

observation

day threshold

 



 9 

Figure 3. Determining the approximate sun elevation path from temporal exposure values for Tokyo, 

Japan – 8 hour detail.  

 

4 Experimental evaluation 

The strategy was applied to the author’s personal image collection which at the time of writing 

comprises 37,625 8-megapixel images which are all taken with the same digital camera - a Sony FSC 

Sony DSC-F828. The collection has been manually clustered into events with a brief explanation of 

where and under what circumstances the pictures where taken. Next, all events involving indoor 

images such as conferences and laboratory photographs were omitted. Moreover, very small 

collections comprising outdoor images taken during very narrow time intervals were also discarded. 

Finally, only one set from each city was used to ensure a geographical spread as a majority of the 

photographs in the author’s collection were taken in Taiwan. The result comprised 3,046 unique 

images taken over a period of four years at various locations around the world. Table 3 lists 

attributes of the image collection including the city, country and continent of the where the images 

were taken, the official longitude and latitude for these cities, the number of images in each 

collection, the number of days spanned by each event and the date the images were taken (start-

date). 

The geographical classifier was implemented in java and was run on a Dell personal computer with 

an AMD Athlon Dual core processor and 4 Gb RAM running Windows Vista Personal edition. Drew 

Noakes’ freely available (EXIF) metadata-extractor library (available at http://drewnoakes.com/) was 

used for extracting EXIF information from the images.  It took 2 minutes and 25 seconds to traverse 

the image collection and extract the EXIF information. The geographical clustering step took 20 

seconds. This yields a processing delay of 0.05 seconds per image. Note that the Java code was not 

optimized. Significant time savings could be achieved by simply removing console output and 

employing a more efficient least-squares optimization engine. 
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Table 3. The image collection used for the experiments, comprising 3,046 images taken during a four 

year period. 

City Country Continent Longitude Latitude No. images days Start date 

Brisbane Australia Oceana 153° East 27° South 198 2 8 Jul 2009 

Cape Town South Africa Africa 18° East 35° South 641 6 21 Feb 2009 

Indiana USA Americas 79° West 40° North 99 1 8 Oct 2007 

Kaohsuing Taiwan Asia 121° East 25° North 136 1 5 Feb 2008 

Oregon USA Americas 122° West 45° North 98 1 10 Oct 2007 

Oslo Norway Europe 10° East 59° North 387 3 23 Jun 2008 

Paris France Europe 2° East 48° North 290 4 10 Aug 2008 

San Juan Puerto Rico Americas 66° West 18° North 780 8 21 Jul 2006 

Seoul South Korea Asia 127° East 37° North 197 2 27 Apr 2007 

Tokyo Japan Asia 139° East 35° North 220 2 16 Apr 2006 

Wuhan China Asia 108° East 30° North 358 5 1 Sep 2007 

 

Table 4. Experimental results 

 Estimated location Error 

 Longitude Latitude Longitude Latitude Overall 

Brisbane 134° East 35° South 19° 8° 21° 

Cape Town 16° East 77° South 2° 42° 42° 

Indiana 66° West 71° North 13° 31° 34° 

Kaohsuing 100° East 52° North 21° 27° 34° 

Oregon 108° West 79° North 14° 34° 37° 

Oslo 34° West 51° North 44° 8° 45° 

Paris 8° West 74° North 10° 26° 28° 

San Juan 76° West 67° North 10° 49° 50° 

Seoul 106° East 63° North 21° 26° 33° 

Tokyo 124° East 68° North 15° 33° 36° 

Wuhan 104° East 82° North 4° 52° 52° 

        

    Mean 15,7° 30,5° 37,4° 

    SD 11,3° 14,2° 9,3° 

 

The classifier successfully identified the events according to the temporal patterns. Table 4 

summarizes the results of the experiments, including the estimated longitudes and latitudes for the 

collections, the longitudinal and latitudinal errors as well as an overall error. Note that for simplicity 

Euclidian distance was used to compute the overall error. The results show that the mean 

longitudinal error was 15.7 degrees. Cape Town and Wuhan were determined with the highest 

longitudinal accuracy while Oslo had the lowest longitudinal accuracy.  Clearly, an error of roughly 15 

degrees means that the continent of an image can be determined with high confidence, and, in many 

instances, the country can also be determined.  In context of the longitudinal range of 360 degrees a 

longitudinal error of 15.7 degrees which equates to a relative longitudinal error of approximately 

4.6%. 
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The mean latitudinal error was 30.5 degrees, or twice that of the longitudinal error. In context of the 

latitudinal range of 180 degrees the overall latitudinal error is 16.9%. Clearly, it was harder to 

determine the latitude compared to the longitude. However, for all the tests run the approach 

resulted the correct classification of hemisphere, i.e., all locations were determined to be on the 

Northern hemisphere apart from Cape Town and Brisbane which were successfully classified as 

belonging on the Southern hemisphere. A latitudinal error of 30.5 degrees provides only a very 

coarse grained geographic accuracy. The longitude estimates are predominantly linked to the 

temporal patterns of the images. If the temporal patterns have certain traits, such as being limited to 

a narrow time window during the day, or focused on an unusual time of day, say night photographs, 

then this can significantly affect the longitudinal accuracy.  

Next, the calculation of latitude is closely tied to the observed length of day. If the length of day is 

inaccurate the latitude will be greatly affected. The results show that it is harder to estimate the 

length of day compared to estimating the local midday. With too few high-exposure-value 

measurements, or given measurements that are temporally too close, the days may be incorrectly 

observed as too short. Another problem occurs for events spanning several days where the 

photographer has travelled long distances. For example imagine a photographer travelling across 

USA during a week. The photographer may start up in Florida and finish in Washington State. Firstly, 

these locations are separated by multiple time-zones and Florida is in the south while Washington 

State is in the north. Locations closer to the equator has less variations in day length while the day 

length of locations further away from the equator vary significantly according to the season. If these 

days are treated as one event with one overall longitude measurement, then one may end up with 

day length observations that are too large since the difference between the overall longitude 

measurement and the day length measurements of the west-most location may be larger than that 

of a single day.  Consequently, in addition to resulting in large errors, one may erroneously estimate 

the incorrect hemisphere. This is because days are shorter on the hemisphere with winter and longer 

on the hemisphere with summer, and while there is winter on one hemisphere it is summer on the 

other, and vice versa. The confidence intervals of the estimations are illustrated in Figures 4 and 5. 
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Figure 4. An orthographic projection of the 

confidence interval for geographic estimates 

based on just temporal information. It is only 

possible to estimate the longitude. 

Figure 5. An orthographic projection of the 

confidence interval for geographic estimates 

based on both temporal and exposure 

information. Both longitude and latitude 

estimates can be made. The longitudinal 

estimates are more accurate. 

 

A consequence of these problems is that estimates should be based on observations taken over a 

daily window to avoid the problems of long travels within a multiple day journey. Moreover, for each 

day one has to assess the validity of the measurements. If the measurements comprise a low ratio of 

images with high exposure values the observations for that particular day need to be discarded and 

the measurements of neighboring days should be used instead. 

This is illustrated in Table 5 which shows the details for a 9-day car journey around the Midwest, USA, 

during July, 2005, involving sightseeing and indoor meetings with representatives from universities. 

The table lists the estimated longitude, latitude, the number of images for each day and the ratio of 

outside images, that is, images with an exposure value greater than 10. The table reveals that the 

hemisphere predictions for days 2, 4, 5, 6 and 9 are correct, while the hemisphere predictions for day 

1, 3, 7 and 8 are incorrect. Moreover, when comparing these with the ratio of outside images it is 

clear that days 3, 7 and 8 have the lowest ratio of outside images of 1 %, 5 % and 13 %, respectively. 

Similarly, the days with correct hemisphere predictions all have high ratios of outside images ranging 

from 21-43 %. The only exception is the first day, which has a high ratio of outside images. The 
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reason why this day is different may be due to other factors such as jetlag after arriving into the USA 

on a flight. Clearly, using the ratio of outside images one can assess the validity of the hemisphere 

predictions. Finally, any disagreement, such as the first day, can be resolved through a majority vote, 

where the predictions for each day count as a vote. In this example day 3, 7 and 8 would lose their 

vote because of low outside ratio, and North would receive a majority vote for North of 5:1. In this 

example the majority vote of 5:4 would also give the correct hemisphere prediction without 

considering the ratio of outside photographs. 

Table 5. Detailed for a 9-day car journey around the Midwest, USA, during July, 2005. 

Day city Longitude Latitude No. images Outside ratio 

1 Ann Arbour 155° West 51° South 37 27 % 

2 Ann Arbour 129° West 11° North 67 28 % 

3 South Bend 153° West 35° South 91 1 % 

4 Chicago 96° West 50° North 96 45 % 

5 Chicago 164° West 65° North 60 33 % 

6 Southern Illonois 75° West 57° North 91 21 % 

7 Southern Illonois 71° West 47° South 85 5 % 

8 Iowa 147° West 5° South 123 13 % 

9 Chicago 107° West 52° North 110 43 % 

 

Table 6. Test suite collected from photograph collections shared via Picasa web album. 

Location Source (owner) Camera 
Time-
zone 

No. 
images Days Start date 

Brishbane manoharpala Olympus FE3010 X895 5 91 2 9 Jan 2010 

Cape Town aga.moodley Nikon D60 -1 774 6 13 Dec 2008 

Indiana anne.raker Cannon SD790 5 102 1 14 Sep 2009 

Kaohsiung michael.alling Sony W300 -8 307 1 18 Jul 2009 

Oregon nevdaw Cannon SD750 5 154 7 4 Oct 2009 

Oslo kOKSak Cannon EOS 400D -2 236 2 17 Sep 2007 

Paris haaann Panasonic DMC-L27 -7 204 2 17 Apr 2008 

San Juan ravisharma Canon EOS REBEL Xti 3 113 3 30 Aug 2008 

Seoul Theos766 Nikon S520 6 115 1 23 Dec 2009 

Wuhan mahmoodkhan77 Sony DSC P73 3 68 1 15 Jun 2004 

 

Finally, to verify the generality of the approach a collection of photographs taken by people unknown 

to the author were collected from the Picasa web album (http://picasaweb.google.com/). This is a 

service that allows users to share photographs. Moreover, images can be easily downloaded in bulk 

from the searchable database. The 2,164 image test suite were acquired using the place names listed 

in Table 3 as search keywords and visually inspecting whether these collections were representative 

of the respective locations. Table 6 lists collection details including the Picasa web-album account 

http://picasaweb.google.com/
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name of the photographer, the size of each collection and as the estimated relative timezone of the 

camera. The selected collections were used without any manual intervention. The relative timezones 

where estimated in three ways. For most of the collections sunset photographs were selected and 

the time of these photographs were compared to the sunset times obtained using a sunset calculator 

(http://www.timeanddate.com/) with the location and day of year as parameters. In the Seoul 

collection an obvious daytime photograph and nighttime photograph closely spaced in time were 

used to measure the sunset time and the result aligned with the actual sunset time. The Kaohsiung 

and Oslo Collections were easily aligned with the camera time as they contained images of clocks. 

The Kaohsiung collection contained a nighttime image of a train station with a huge LED-style neon 

digital clock while the Oslo collection contained several photographs of the city hall in Oslo with the 

analogue clock tower face clearly visible on several of the images. It is natural to assume that these 

public clocks represent accurate local times. Next, these collections are obtained with several 

different models of cameras from different vendors including an Olympus FE3010, Nikon D60, 

Panasonic DMC-L27, Cannon EOS 400D, Sony Cybershot DSC-W300, Cannon Powershot SD750, 

Canon EOS REBEL Xti, Panasonic DMC-L27 and Nikon COOLPIX S520. This variation gives support to 

the claim that the proposed strategy is camera independent. It is assumed that the date settings in 

the collections obtained are correct.  

Table 7. Results obtained with the test suite from the Picasa web-album. 

 estimated location  error 

location longitude latitude   longitudinal latitudinal overall 

Brisbane 142 East 60 South  11 33 35 

Cape Town 3 West 65 South  21 30 37 

Indiana 86 West 85 North  7 45 46 

Kaohsiung 161 East 29 Norh  40 4 40 

Oregon 125 West 80 South  3 125 125 

Oslo 16 West 88 North  26 29 39 

Paris 38 West 72 South  40 120 126 

San Juan 89 West 67 North  23 49 54 

Seoul 89 East 31 North  38 6 38 

Wuhan 110 East 58 North  2 28 28 

 

 

Table 7 lists the obtained results. The results are less accurate than those obtained using the authors 

own collection as the mean longitudinal error is 21 degrees and the mean latitudinal error is 46 

degrees. However, no longitude estimate deviates by more than 40 degrees and the most accurate is 

http://www.timeanddate.com/
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within 2 degrees of the true longitude. In terms of latitude then the correct hemisphere is correctly 

determined in 8 of 10 cases, indicating that the estimates are much better than random guesses. 

Only Oregon and Paris are assigned the incorrect hemisphere and hence greatly affect the mean 

error. When omitting these latitude estimates the mean latitudinal error is just 28 degrees, which is 

close to what was obtained with the author’s own images. One explanation for the false hemisphere 

classifications could be that the date settings of the camera used were incorrect as the incorrect day 

of year will result in an erroneous length of day estimate. Little is known about the process with 

which the images were taken and there could also be other sources of errors. On the positive side, 

the latitudes of Kaohsiung and Seoul are within 4 and 6 degrees of the true latitude, respectively. 

Future work will focus on reducing the latitudinal error by improving the sunrise/sunset estimation. 

In order to achieve this it may be necessary to also exploit image contents. Rough estimates have 

shown that analysis of shadows in images can result in geographic estimates with a high accuracy 

[20].  

 

5 Limitations of this study and future work 

The approach presented in this study depends on the availability of EXIF meta-information and the 

approach will consequently only work with photographs taken with digital cameras that provide such 

information. Very low-cost cameras and older digital cameras may not have these facilities such as 

web-cams. However, most digital cameras on sale today provide detailed EXIF information, even 

camera enabled mobile phones. A minimum requirement for obtaining geo-spatial information is 

that the images are time stamped. Rough longitudinal estimates can be obtained based on solely the 

time-stamps. However, to obtain latitudinal estimates images without EXIF meta-information would 

have to be analyzed based on image contents. Future research will therefore focus on combining the 

proposed approach with content based strategies to both obtain latitudinal estimates from images 

without EXIF information and to improve the geo-spatial estimation precision of images with EXIF 

meta-information. One obvious approach is to automatically analyze the lighting conditions in the 

contents of the images by particularly focusing on the sky. 

Moreover, the proposed method will not work if the meta-information is compromised through 

editing, automatic distortion or camera clock disruptions. However, most people have too many 

photographs and have no time to modify or alter the meta-information. This is in fact one of the 

fundamental problems of large image collections, i.e., there is no time to manually label or tag the 

data. Second, digital cameras are fashion accessories and most people have relatively updated 
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cameras. Most cameras, and even quite old digital cameras, have a separate internal battery for the 

camera clock that draw little power and can last for many years. Third, most photo editing software 

will leave the meta-information intact apart from parameters that are directly affected by the editing 

operation such as reduced pixel resolution after a down-sampling operation. 

Next, the proposed method relies on collections of photographs taken with temporal spread, i.e., 

photographs taken throughout a significant portion of the day. The method will not work well if 

there are too few images or the images are taken during a very narrow time-interval. However, in 

many realistic holiday situations the photographer is active throughout the day and the temporal 

spread thus emerges quite naturally. 

Finally, the method requires a portion of the photographs to be taken outdoors, but not all. In the 

absence of photographs without sun related exposure values it is not possible to make day-length 

observations and consequently no latitude estimates. However, it is possible to make rough 

longitude estimates based on the time-stamps alone for collections of indoor-only photographs.  

Future work includes improving the accuracy and precision of the strategy by utilizing the contents of 

the images. For instance, by analyzing the colors and the intensity of the sky in the images a more 

accurate determination of the sunset times can be obtained. 

Although the precision of the current approach is low it may be combined with other approach such 

as geo-tagging based on landmark recognition [21] where the current approach can be used to 

determine the approximate location and limit the search conducted using landmark recognition. 

 

6 Conclusions 

A strategy for estimating the geographic origin of photograph collections based on temporal patterns 

and image exposure values was presented. Temporal exposure information is recorded by most 

digital cameras. The strategy assumes that the images are taken with one camera and that the 

settings of the internal clock remain unaltered for the duration the photographs were taken. The 

temporal information is used to group images into days and the exposure values are used to 

estimate the time midday (sun peak) and sunrise/sunset. Having obtained these, the longitude and 

latitude is determined using classic celestial equations. Dark images, i.e., images without sufficiently 

large exposure values are also successfully classified due to their temporal similarity to images with 

sufficiently high exposure values. Experiments involving real-world amateur image collections 

revealed that the strategy resulted in longitudinal and latitudinal errors of 15.7 and 30.5 degrees, 
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respectively. The current strategy is an alternative to GPS image tagging and can be used to classify 

existing images, retrospectively. The proposed strategy is computationally inexpensive as only image 

attributes are used and no time-consuming image content analysis is performed. On average it took 

approximately 50 milliseconds to successfully classify each image with modest hardware and an 

inefficient implementation. Moreover, the statistical nature of the approach means that the results 

are robust to variations in photographing behaviour. Future work involves reducing the errors and 

increasing the accuracy by combining the meta information with information extracted from the 

image contents. One drawback of the proposed approach is that it is unable to classify collections 

exclusively comprising indoor images. 
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