
Modernization from a Maintenance Process

Perspective: Challenges and Lessons Learned

Aiko Yamashita
Department of Information Technology,

Oslo and Akershus University College of Applied Sciences, Oslo, Norway

Email: aiko.yamashita@hioa.no

Abstract—Modernization and migration initiatives are not

limited to projects where complex legacy systems need to be

phased-out. They include wider contexts, from the

replacement of obsolete middle tiers, to the migration of

algorithms from prototype-purpose platforms to

commercial platforms. As the need of modernization

continues to increase, we need to understand better what are

the challenges to be addressed in relation to modern

practices and processes. Aspects such as: decision-making

on the migration of components/sub-systems, management

of operations during the phase-out stages, critical knowledge

and business logic transfer, they all impose demands on the

development cycle and the way in which projects are

planned and carried out. This paper presents a synopsis of

challenges encountered during several modernization and

migration initiatives within different industrial domains,

across organizations spanning diverse countries. Some key

lessons learned were: (1) work planning needs to be

adjusted to handle better information uncertainty, (2)

estimation practices need to be fine- tuned, e.g., by explicitly

allocating information foraging activities prior estimation

activities, (3) documentation and traceability cannot be

neglected, (4) the phenomenon of ‘role creep’ should be

avoided, and finally (5) clear processes need to be in place

for the procurement of appropriate test data, and for

enabling test automation. 

Index Terms—IT modernization, software migration,

maintenance processes, industrial report, knowledge

management

I. INTRODUCTION

Modernization and migration (from hereon called just

modernization) initiatives are not limited to projects

where complex legacy systems need to be phased-out, but

include wider contexts, from the migration of legacy

services to the cloud, the replacement of obsolete middle

tiers, to the migration of algorithms from prototype-

purpose platforms to commercial platforms, etc.

Aside from the inherent technical challenges, these

initiatives comprise a wide range of challenges with

respect to how to best calibrate a given development or

maintenance process. Aspects such as: decision-making

on the migration of components/sub-systems,

management of operations during the phase-out stages,

critical knowledge and business logic transfer, all these

Manuscript received December 28, 2016, revised May 14, 2017.

aspects impose demands on the development cycle and

the way in which projects are planned and executed.

With the popularization of agile methods, devOps, and

continuous integration paradigms, it becomes necessary

to observe more closely, the recurrent challenges found in

modernization projects, to foresee the interplay between

those challenges and the particularities of the different

development paradigms.

While many studies have investigated modernization

challenges, they often do so on an individual case basis.

Thus, it is the position of this author that more discussion

is needed in terms of identifying and describing recurrent

patterns in modernization initiatives spanning different

contexts and domains. That would provide a more

complete picture, where the idiosyncrasies of

modernization initiatives can be incorporated to the set of

considerations for fine-tuning methodologies/processes,

or for evaluating the suitability and/or need of new

methods and tools for this particular “problem domain”.

This paper is not meant as an exhaustive account of

challenges within modernization initiatives. It is aimed at

pro- viding a synoptic account on some of the prevalent

challenges observed, which were extracted from personal

experiences while working as a software

consultant/advisor during the last 10 years. In that sense,

this work constitutes more of a times-series experience

report than an empirical study; thus its results should by

not means be equated with outcomes from formal

empirical studies.

Rather, the intention of this work is to initiate a more

active discussion within the community on process-

related challenges in modernization endeavors and

examining those under the light of current development

methodologies, such as agile. Such discussion would

promote further effort at identifying, formalizing and

verifying the interplay between the different socio-

technical variables/aspects that form part of this complex

picture that we call modernization.

The projects on which the observations are based upon,

belong to the following domains: retails, medical,

logistics, and services. The projects were performed in

diverse organizations based in USA, Japan, Sweden, and

Norway. While a formal cross-comparison of the

particular challenges across different domains is out of

the scope of this work, the summary presented includes

challenges that were observed across at least two

107
doi: 10.12720/jait.8.2.107-113

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

different projects. Based on the challenges and guidelines,

sets of possible avenues of research are discussed. The

reminder of this paper is as follows. In section 2, a short

introduction to related literature is presented. In section 3,

a brief description of the context from the projects is

provided. Section 4 presents the summary of the

perceived challenges in modernization initiatives. Section

5 discusses lessons learned and Section 6 provides

concluding remarks and future work.

II. BACKGROUND AND RELATED WORK

According to Barbier & Recoussine [1], software

modernization is just one of the many terms that refer to

the transition from outdated systems to newer ones (other

applicable terms are: replacement, migration, renovation,

recasting, revamping). They state that software

modernization can be understood with in a variable-

geometry sense, defined by the techniques behind the

modernization, the underlying intentions, and the

scope/need of the modernization. The term “modern”

implies often that the resulting system(s) are moving

away from obsolete languages/platforms/standards/tools,

and are supported/surrounded by perennial and more

efficient ones. Previously, the term modernization and

migration have been used interchangeably, and it is the

intention in this paper to keep a rather wide interpretation,

alongside the view of Barbier & Recoussine. The work

by Seacord [2] and Ulrich [3] constitute two seminar

books when it comes to modernization of legacy systems

and architecture-driven modernization, with concrete

examples involving COBOL systems. Tilly et al. [4]

explore the challenges on the early stages of Service

Oriented Architecture (SOA), when Simple Object

Access Protocol (SOAP) was gaining popularity. More

recent research on modernization initiatives report

experiences from projects within SOA, but with the

incursion of Cloud Computing [5]–[9]. For example, Ali

Babar & Chauhan [7] discuss the challenges of cloud

computing, mostly from infrastructure and architectural

perspectives. Stavru et al., [9] in the other hand,

addresses concretely the topic of challenges for

modernization. They assert that the extraction of business

processes demand high costs whiles constituting an

essential prerequisite for the specification, business

design and implementation of services. They also

pinpoint those modernization initiatives within complex

SOA implies governance issues, unless clear frameworks

are established to identify and define roles and

responsibilities. Also, the complexity of SOA implies

also a wider dependency to external systems and third

parties, and consequently, risk mitigation becomes an

important area of concern. Whiles Stavru et al., provides

a catalogue of agile components to deal with some of

these challenges, the analysis remains at a prescriptive

level and does not include an in-depth assessment on the

degree of suitability of these techniques.

Other work [10]–[12] describes how model-driven

processes and technologies can support modernization

initiatives. One example is by Fleurey et al., [10] who

present a case on how Model-Driven Engineering (MDE)

constitutes a cost- effective alternative to out-sourced

manual re-development. They actually describe a process

followed the migration of a large-scale banking system

from a COBOL based mainframe to J2EE. They discuss

two main challenges of Model-driven migration:

commercial limitations imposed by preliminary costs and

tasks (such as business process extraction), and the cost

of testing, which represented 45% of the total migration

cost (they argue this last challenge is applicable to any

software migration in general). They add that the

underlying reason of these high costs is because test tasks

were mostly handled manually.

Teppe [13] reports on a migration project of a flight

booking system written in SPL
1
 to C++. Teppe echoes the

findings of Fleurey et al., by reporting that testing played

an important role and consumed a significant part of the

resources. Two major reasons were: the difficulty of

establishing repeatable, realistic test scenarios, given the

complexity of the states and conflicting modes (e.g.,

booking a seat on an airplane cannot be repeated with the

same seat, as it would appear occupied the second time),

and the comparison of results, due to the non-

deterministic sequences in which sub-tasks would be

processed (e.g., the order of the incoming messages).

This last aspect would demand occasionally manual

evaluation. Coordination was an aspect deemed

important, given the high complexity in terms of involved

stakeholders. On those respects, a central point of

coordination and decision-making was deemed vital to

ensure an adequate prioritization of tasks and resource

allocation. This last point was deemed as a major risk,

given that projects with more immediate benefits would

often overthrow the migration initiative. Teppe asserts

that this leads to “resource conflicts and excessive

implementation times and is a major reason why long

running migration projects are abandoned.”

Teppe also discussed the importance of knowledge

transfer. The staff working with the mainframe

environment needed to be “migrated” and retrained in the

new platforms/technologies. This was done in order to

integrate them to the new teams/projects, as they held the

key to the application and production know-how, which

constitutes a major asset to the company. According to

Teppe, “process knowledge is more important to a user

organization than technical knowledge, e.g. the command

of a particular programming language or operating

system.” From the cited related work, is possible to

observe that the focus on technical challenges and

suggestions for methodologies/tools is the most prevalent;

and the actual challenges from a maintenance/evolution

process perspective need to be distilled individually from

the set of industrial case studies. Moreover, the interplay

between methodological aspects of modern development

methods (e.g., agile, continuous development) and the

concrete challenges within migration initiatives from a

process perspective has not yet been investigated in detail.

But for that to happen, a more comprehensive

1 SPL is a procedural programming language to support system level
programming under the operating system BS2000 [13].

108

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

compendium of modernization challenges from both

process and technical perspectives need to be in place.

III. CONTEXT AND TECHNOLOGIES

Due to space limitations and disclosure restrictions, is

not possible to provide in-depth details of the contexts the

observations have been drawn from. However, this author

hopes that the information given in this section would

give enough detail to judge the relevancy and

representativeness of the projects. As mentioned

previously, the domain areas consist of retails (ranging

from books to consumer electronics), medical (i.e.,

medical devices), logistics (maritime and land based), and

services (i.e. purchase and tracking of services, as

opposed to goods). The companies involved comprised a

rather diverse set: USA, Japan, Sweden and Norway. The

source technologies involved were also diverse, ranging

from COBOL, VisualBasic, ASP, and PHP programming

languages, to obsolete frameworks such as Java Swing

[14], and prototype programming languages such as

LabView
2
. The target technologies involved J2EE, JPA

3
,

Jersey
4
, .NET C#, and JavaScript (including different

JavaScript frameworks) amongst others. The final

solution implemented by the target technology displayed

different architectural styles such as: micro services

architecture, microkernel architecture and a mix of event-

based and layered architectures. The size of the systems

(both source and target) differed substantially across

projects, ranging from 5∼10 KLOC to thousands of

KLOC. The great majority of the projects used some

form of agile method (mostly Scrum), and deliverables

were made in an iterative fashion.

HALLENGES OBSERVED

The catalogue of challenges described in this chapter

encompass four main areas: (a) Reworking of solution, (b)

Drivers for defects, (c) Time consuming (manual) tasks,

and (d) Work planning.

A. Reworking of Solution

This challenge relates to reworks/reimplementation

that is often performed during a project.

Miscommunication and lack of a complete overview on

the requirements, of- ten led to this problem. For instance,

misinformation often leads to the introduction of

incorrect data structures, which can be considered in a

way as a ‘Technical debt’, leading to continuous

refactoring/restructuring that could have been avoided.

This challenge reflects that high volatility of code due to

uncertainties on the requirements and business logic can

lead to sub-optimal designs, in a self-reinforcing problem.

Many times, although the business-flow at a high level

or requirement level is more or less clear, the technical

details of a specific platform obscured the business logic.

Often in projects developers who were experts in the

legacy platform or the source platform were not involved

2 http://www.ni.com/labview
3 http://tinyurl.com/cpkwyef
4 https://jersey.java.net

or not available. This compromised the accuracy and/or

correctness of the assumptions, which played an

important role in the early solution design stages and

work planning. In later stages of some projects, new

information was often uncovered or made available (e.g.,

a COBOL developer dropped by and found that the Java

developer had completely misunderstood a logical flow).

This situation is also reflected by Teppe [13] who asserts

that experts in the legacy technology are often the

‘domain experts’, and as such, they should be closely

involved in the initial stages of a modernization project.

B. Drivers for Defects

This challenge is associated to the perceived root-cause

for faults, failures and wrong implementation that is

experienced in a project. This includes: a) wrong or

missing information (requirements, business logic, etc), b)

ripple effects or side effects after changes (due to for

example, system complexity), and c) difficulties by

developers to assess the potential implications of the

changes (i.e., concept location, impact analysis).

In many cases, drivers responded to an underlying

pressure to focus on ‘functionality’ rather than for

instance, keeping the documentation updated, which lead

to more misinformation and wrong assumptions. This last

problematic is also reported by Teppe [13] who discuss

the internal struggles for delivering ‘useful functionality’

rather than focusing on internal proper- ties or artifacts

that are important for migration purposes.

An example of wrong or missing information is when

developers when moving from one platform to another

make wrong assumptions. For the medical system, the

use of incorrect casting operations (e.g., truncating

decimals instead of rounding) leads to costly defect fixes.

It was found after that conversion in LabView is

implicitly managed, in contrast of C#, since the latter

requires a specific conversion method. In the same way,

misinterpretations of algorithmic elements specified in

prototype languages (e.g., declaration of global variables

and static values interpreted as local and dynamic

variables) manifested in accuracy-related defects.

Although these two examples lean more towards

technical issues, they also respond to the inability or the

challenge to foresee potential conflicts across platforms,

versions or system modules, and this often responds to

the lack of a complete overview on the system. Also,

complete overview cannot be achieved when technical

knowledge (related to the old and new platform) and the

domain knowledge are fragmented. In situations when

only few people within the team or an organization count

with this overview, they are often ‘overloaded’ with

questions from their peers, making it difficult for them to

perform their own tasks, in addition to the difficulties

faced by those who do not have adequate knowledge to

complete the tasks.

Side effects are natural in evolving systems (both at

soft- ware and hardware levels). However, achieving

adequate test data coverage to identify these side-effects

constitutes a great challenge in modernization initiatives,

in particular if the product is rapidly evolving, or if the

development pace is very fast (as many times advocated

109

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

IV. C

by agile). Often this was very difficult in transactional

systems interacting with multiple external and third party

systems, because in order to recreate an entire test

scenario, it was required to ‘reset’ the values/states in

those external systems as well. In many situations,

combinatorial explosion of possible system states and the

lack of understanding from the organization w.r.t. “where

do we stand” in terms of test data coverage and adequacy

constituted two critical drivers for ‘unexpected surprises’.

This situation also relates to the case described by

Stavru et al., [9] who states that the inherent complexity

(in terms of third-party and external systems) in SOA

represents a critical issue in migrations. Finally, impact

analysis is extremely challenging because of the

abovementioned complexity, which obscures the details

on the implementation or logic of the system as a whole.

The correctness criteria then becomes also difficult to

assess, as also mentioned by Teppe [13], and also highly

related to the previous discussion with regards to the

lacking an adequate overview of the system.

C. Time Consuming Tasks

This challenge relates mainly to activities or tasks

(mostly manually performed) that require a lot of time, or

are deemed as very inefficient/difficult. Tasks involving

technical details that are obscure, or tasks requiring

developers to use un- known technologies are often time

consuming. The lack of appropriate development

infrastructure (e.g., servers take too long to deploy/update

changes, inadequate debugging tools for JavaScript code)

is also factors that lead to time-consuming situations.

In large organizations, developers often needed to

navigate across the organization to for example, identify

and clarify the correctness criteria that could enable them

to implement and test a given functionality. This

‘foraging’ of details in order to complete a task can be

often very time consuming. This situation manifested as

well at the testers level, where the lack of clarity in

descriptions of both functionality and defect reports made

defect reproduction a time-consuming task.

Another challenge is to ‘cut loose’ from inefficient or

sub- optimal designs rooted in the legacy systems that the

new systems need to interact with. This task is not easy

due to the dependencies between the new system and

some of legacy modules that were yet not planned for

migration. Often developers and architects are ‘arm-

bended’ when sub- optimal solutions were forced upon

them, later on causing different problems and time

consuming restructurings. Finally, brittle task scheduling

can also considered a driver for time- consuming tasks, as

often developers/testers require longer time to re-learn the

context (after not working on a given task/goal for a

while) to complete the tasks.

D. Work Planning

Work Planning has to do with the sequence on which

different tasks/implementation are conducted and the

usage of different resources in the project at different

points in time. Work Planning can be closely intertwined

with delays in the project and time consuming tasks, and

in some projects, this work planning was not optimal.

There appears to be a minimum set of information that is

needed before each sprint/iteration planning that would

allow making better technical decisions when designing a

solution. In those respects, the consolidation of the

required information constitutes an essential part of this

challenge. Such consolidation encompasses identifying

information needs, identifying the key stakeholders, or

sources of information; and should ideally be considered

as a separate item in a project plan. Work planning in

terms of allocation of resources constitutes an equally

important aspect. In one particular project, it was possible

to observe how the Project Manager, who was already

overloaded with multiple roles, should have designated a

‘functionality expert’ with a technical background to

‘forage’ for critical information prior sprint/iteration

planning meetings.

V. LESSONS LEARNED

Some lessons can be extracted from the observations

dis- cussed in the previous section. These are: (1) work

planning needs to be adjusted to handle better

information uncertainty, (2) estimation practices need to

be fine-tuned, e.g., by explicitly allocating information

foraging activities prior planning activities, (3)

documentation and traceability cannot be neglected, (4)

the phenomenon of ‘role creep’ should be avoided, and

finally (5) clear processes need to be in place for the

procurement of appropriate test data, and for enabling test

automation.

A. Reworking of Solution

Lesson A.1 – Early overview. Effort should be focused

on having a better idea on early stages of the project or

even before the project starts what should be

implemented, what are the dependencies, which are the

main key players; identify the major obstacles, challenges,

and risks. By identifying the dependencies timely, it is

possible to agree and allocate resources accordingly. In

several projects, the agile mantra of ‘embracing the

change’ can lead to unnecessary fixes later in the project,

and unwanted delays. Legacy technology experts are

needed from day 1, whenever making decisions on the

technical solution of the system. ‘Active’ assessments of

the uncertainties and risks are definitively needed on top

of the normal agile practices.

Lesson A.2 – Let the right people in. The right/relevant

people should be involved in each sprint/iteration in a

development cycle so that they could provide feedback

on how to implement the solution/how to do the work.

They should be involved before the sprint planning

meeting to identify the concerns and aspects to be taken

into account and to identify the risks. This largely reflects

the particular needs or conditions imposed by

modernization projects where information does not lay

within the team, and external, obscure dependencies are

imposed over the new systems.

Lesson A.3 – Prepare enough well before each

sprint/iteration planning. A good idea in modernization

initiatives is that an extra workshop/meeting before each

sprint/iteration planning meeting was important, to invite

110

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

the relevant players (business and technical domain

experts), to identify the challenges, responsibility areas,

and risks of the upcoming sprint. An ‘extra-step’ within a

sprint/iteration should be put in place, in order to assess

the uncertainty and devise a plan to reduce and manage

uncertainties and risks stemming from those.

B. Estimation Practices

Lesson B.1 – What to do before estimation? Under the

context of modernization projects, there is need of better

preparation before performing the estimation (make sure

there is enough information from technical/business

perspectives to make realistic estimates). For instance,

tasks need to be better specified before the meeting as

well as the breakdown of the user stories (or use cases).

As mentioned previously, more focus is needed on

identifying unknowns (data, components), and hidden

cost drivers (e.g., extra activities). For instance, if

technical debt is identified timely, this can help to

identify risks during the estimation, and improve

accuracy on the effort estimates for the sprint/iteration.

Also, impact analysis should be incorporated for better

estimations. Models/diagrams de- scribing the

dependencies between the different components involved

can facilitate understanding the implications/effects of the

changes and to identify risks.

Lesson B.2 – What to do during estimation?

Estimation sessions across different projects varied, some

were long and inefficient, and somewhere fast and

effective. The difference between the effective ones and

the ineffective ones laid on the fact that the team

members already understood the problem and required

tasks fairly enough before the estimation meeting,

therefore the task laid ahead constituted on achieving a

group understanding and consensus on the effort required

for each of the tasks. Beyond group consensus, the

rationale for the estimation should also be somehow

registered, as it could help to convey the top management

the risks and unknowns beforehand. In that way, if delays

occur, they would not be caught by surprise.

Lesson B.3 – What to do after estimation? Teams

being self-reflective about their own estimates are very

rare, and this situation is often related to inaccurate

estimates, in particular when large or unclear

functionality was implemented. Consequently, more

focus should be placed on improving the actual estimates

by evaluating the estimation accuracy after iterations,

(e.g., has it been accurate and why yes/no?) and by

identifying which kind of tasks are harder to estimate or

more prone to inaccurate estimates.

C. Documentation and Traceability is Critical

Lesson C.1 – Just talking to each other is not enough.

In situations where developers needed to ‘forage’ for

information to perform their tasks, there was often no

formal processes established for knowledge accumulation.

Thus, things that were found during the project by one

person were ‘lost’ or unknown for the rest of the team. In

other situations, technical decisions may have been done

during the implementation of a change, but they would

not be documented properly in any common knowledge

repository. If technical decisions remain undocumented,

developers who later take over a given module would

wonder on the rationale of the implementation choices.

The lack of a protocol for knowledge consolidation, and

complexity in terms of system and team size, as well as

lack of code ownership could lead to fragmented

knowledge across a migration initiative. On those terms, I

will allow myself to quote a revelatory comment by a

former colleague: “We communicated well, the problem

is that we did not always document what we discussed”.

This phenomenon has been reported partially by

Ghobadi and Mathiassen [15], who describe ‘Project

setting barriers’ as one of the context-related obstacles to

knowledge sharing in agile projects. It is the opinion of

the author of the present paper, that documentation and

the knowledge management process needed to be

examined and improved within migration initiatives, in

particular those involving agile methods. For instance, if

a task required updating some logic data, the

corresponding change should be updated in Wiki, and

there should be ‘mechanisms’ or routines in place for

ensuring that. Similarly, technical decisions and choices

taken on the implementation should be documented once

the decision is made. This implies that a team would have

to agree upon which guidelines to use, what a

documentation should contain, and who is the responsible

for the quality of the artifacts, etc.

Lesson C.2 – Make it visual! Another important aspect

in migration initiatives is the use of visual aids depicting

how the new system communicates with other systems

(e.g., interface, dependency diagrams), and on complex

business rules or business logic (e.g., state machine on

the possible statuses of a product). These aids could be

particularly helpful in situations where complexity is high

from a component perspective (e.g., number of items,

components involved), but not from a cognitive

perspective (e.g., complex algorithms, calculations).

Moreover, a protocol for creating/updating re- quirements

and the adequate level of involvement of key actors in the

requirements specification process are two key aspects

that need to be focused upon.

Lesson C.3 – Agree on a light-weight documentation

protocol. Finally, a protocol that includes keeps control

over the quality of documentation over user tests, (by

including more detailed) and defect reports seems

essential in modernization initiatives. This last aspect is

critical to allow developers to do resolve defects more

independently without causing a communication

overhead with the responsible(s) for testing.

D. The ‘Role Creep’ Phenomenon and Specialized

Roles

Lesson D.1 – Do not overload a role. In several

projects, there was a general perception that the project

manager (or a person with a similar role) suffered of ‘role

creep’ syndrome, in terms of having multiple

responsibility areas besides the management of the

project. In those situations in particular, the rest of the

team would have very limited/restricted roles (e.g.,

limited to doing programming tasks). The complexity of

teams or organizations often leads to a centralized

111

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

communication schema, often being the Project Manager,

‘the central link’. This situation should not be

problematic, as long as there is not an overload on

multiple roles and responsibilities on a single person.

Lesson D.2 – Maybe specialized/dedicated roles as

‘feature manager’? This role is considered of great

importance in modernization projects, from the

perspective of knowledge management (see for instance

work by Pilat & Kaindl [16]), where there are many

unknowns stemming from the legacy applications, and

where information lays hidden across a complex

organizational structure. A feature manager should

ideally have technical background and be also in charge

of knowledge management: speaking ahead with the right

people, stating expectations on the data required to plan

the project, etc. The feature manager should ideally count

with technical savvy to generate/arrange adequate test

data to ensure that all critical cases were covered during

testing. An example of why this role is important is the

following: A developer considered that the code was well

tested due to high code (branch) coverage. However, data

coverage was very low, as the code was only tested with

a couple of different parameters. This situation occurred

because the developer lacked of an overview of the

possible data points for that particular functionality (that

would require expertise in both business and technical

domains), and lead to costly bug fixes.

Lesson D.3 – Quality Monitoring and Testing. A chain

of responsibility should be assigned with respect to the

quality of the different elements/parts involved in a

project. This does not imply that the responsible should

be fixing/correcting everything, but that he/she should

make sure that it is done. For instance, one person could

be in charge of reporting the quality of the overall system

(test coverage, technical debt, etc.) The architecture team

can for instance, keep an eye on how the system adheres

to architectural standards established by the organization.

They could provide guidance on how the solution can be

implemented, without doing the actual implementation,

and making sure that things are done properly. Also

dedicated resources for testing is vital in modernization

initiatives. Beyond unit tests, more sophisticated

mechanisms are necessary to test complex scenarios, in

particular when legacy systems and the new systems need

to interact.

E. A Dequate Testing Methods and Test Data is

Essential

Lesson E.1 – Get adequate test data and test cases.

This aspect is closely related to the challenges mentioned

in the previous section. Better processes for test data

procurement and maintaining a stable test data is

important. In situations where business logic is unclear,

the universe of the possible parameters is unknown and

potentially large. This situation is also well known in the

context of agile modernization projects [17]. This

reinforces the view on the importance of a person who

can be made responsible for ‘foraging’ the right

information in the organization, as expressed by a

colleague: “...If you have spoken to the right people, it

could have been easier to get the right data for the

test...however, the test data has gradually got better, in

particular when we started getting fresh data from

production systems, which were more realistic...” Finally,

a complete definition of test cases is critical (i.e., have we

covered all the most important cases? what should be

tested? how should be tested? what are the pre-

conditions/post-conditions? what is the correctness

criteria?).

Lesson E.2 – Focus on better test infrastructure,

explicit test protocol and test automation. A better

infrastructure for unit testing should be in place for

modernization initiatives to test the behavior, and to make

test code independent from implementation code (this, to

avoid for instance test code refactoring after changes are

made in the code).

Lesson E.3 – Closer integration between

testers/developers. In many projects there was often a

disassociation between developers and testers. People

fulfilling the role of tester should be an integral part of

the team, as there is a need of more feedback from testing

to developers, and often testers understand well (or at

least they should, in theory) the requirements to be tested.

VI. CONCLUSION AND FUTURE WORK

Most of the projects used as basis for this synopsis
used agile methods to a bigger or lesser extent. What was
prevalent in all the projects was that intrinsically different
working cultures with different knowledge or background
had to interact. A primary lesson is that the requirements
and knowledge management processes followed by agile
teams did not always cope well with the level of
uncertainty and continuous changes. Often in
modernization projects, knowledge appears overly
fragmented, constituting a challenge for both IT and
business segments. In these situations, development
processes (and maybe in particular agile methods) need to
be properly adjusted to meet those challenges.

In particular, it seems, as the agile mantra of ‘focusing
on personal interaction and embracing the change’ is
rather difficult to embrace in projects focusing on legacy
systems. A conjecture is that these mantras operate under
the assumption that the team is compact (with a
manageable size), that people know where the
information lays within the organization, and that
volatility is only latent at the requirements level

5
. When

these assumptions are not applicable, the benefits of agile
methods may not be fully reaped. Another assumption of
agile is that the product owner is heavily involved in the
process. This could be difficult in modernization projects,
where multiple stakeholders are involved in the decision-
making or when the resources allocated to the project are
shared with the rest of the organization. Uncertainties
(e.g., information missing), can lead to additional costs
such as rework, introduction of defects, and delays. While
these problems are not uncommon for other types of
projects, the narrative on this work attempts to reflect that
a naive/simplistic interpretation of agile principles i.e.,
high degree of flexibility towards change and lack of

5 ‘Requirements volatility’ in contraposition to ‘Fact volatility’, where
new pieces of information keep coming, changing the overall

understanding of how different systems should interact.

112

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

focus on more formal processes (e.g., knowledge
management, test data procurement) can potentially lead
to, or aggravate these kind of issues.

Finally, Work planning was a recurrent challenge in
the different projects, and mostly came intertwined with
the issue of knowledge management. This activity is
heavily dependent on the availability of correct and
complete information, which is not always easy to
achieve in modernization projects. The lessons learned
from the observations reported can be summarized as:

 Focus on achieving an adequate understanding (and

overview) of both the business rules and the most

appropriate technical solution(s).

 Adequate technological frameworks and a common,

agreed protocol to consolidate knowledge need to be

in place.

 Identify uncertainties, dependencies and potential

risks, to enable the allocation of resources at

appropriate times in the project.

 Specify roles to avoid the phenomenon of ‘role or

responsibility creep’.

 Appoint a ‘Feature Manager’, i.e. a person with

technical background, who could also build expertise

and make explicit the business rules of the product or

organization (e.g., by documenting the rules).

 Improve the identification of cost drivers and

estimation inaccuracies in projects with high degrees

of uncertainty.

A final observation of the author is that that within

agile projects, there may be a latent ‘fear’ for relatively

more formal or structured processes (perhaps stemming

from the current mainstream understanding of agile,

where formal processes are perceived as cumbersome and

slow). Extremes of this fear could potentially hinder

successful usage of agile in modernization projects.

Hence, agile teams need to strive for an adequate balance

between the degree of flexibility and formalism, as two

sides of the same coin.
Future work consists of building a consolidated list of

process-related software modernization challenges by
means of literature screening (in particular focusing on
requirements engineering and testing), validating those
via surveys involving different constituent groups of
software practitioners, and suggesting more concrete
guidelines on how particular practices (e.g., SCRUM,
Kanban, EVO, etc) could be calibrated in order to cope
better with those challenges.

ACKNOWLEDGMENT

The author thanks all the anonymous colleagues and

managers, with whom she could collaborate and discuss

in the different projects, and who shared their

impressions/insights. Their insightful discussions helped

in a great extent to distill the present work.

REFERENCES

[1] F. Barbier and J. L. Recoussine, Software Modernization:
Technical Environment, Hoboken, NJ, USA: John Wiley & Sons,

Inc., Jan. 2015.
[2] R. C. Seacord, D. Plakosh, and G. A. Lewis, Modernizing Legacy

Systems: Software Technologies, Engineering Process and

Business Practices, Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2003.

[3] W. M. Ulrich and P. H. Newcomb, Information Systems

Transformation Architecture-Driven Modernization Case Studies,
ser, The MK/OMG Press, W. M. Ulrich and P. H. Newcomb, Eds.

Boston: Morgan Kaufmann, 2010.
[4] S. Tilley, J. Gerdes, T. Hamilton, S. Huang, H. Muller, and K.

Wong, “Adoption challenges in migrating to web services,” in

Proc. Fourth International Workshop on Web Site Evolution.
IEEE Comput. 2002, pp. 21–29.

[5] A. Erradi, S. Anand, and N. Kulkarni, “Evaluation of strategies for
integrating legacy applications as services in a service oriented

architecture,” in Proc. 2006 IEEE International Conference on

Services Computing, IEEE, Sep. 2006, pp. 257–260.
[6] P. Mohagheghi and T. Sæther, “Software engineering challenges

for migration to the service cloud paradigm: Ongoing work in the
REMICS Project,” in Proc. 2011 IEEE World Congress on

Services. IEEE, July 2011, pp. 507–514.

[7] M. A. Babar and M. A. Chauhan, “A tale of migration to cloud
computing for sharing experiences and observations,” in Proc. the

2nd international workshop on Software engineering for cloud
computing - SECLOUD ’11. New York, New York, USA: ACM

Press, 2011, pp. 50-56.

[8] J. Alonso, L. Orue-Echevarria, M. Escalante, J. Gorronogoitia, and
D. Presenza, “Cloud modernization assessment framework:

Analyzing the impact of a potential migration to Cloud,” in Proc.
2013 IEEE 7th International Symposium on the Maintenance and

Evolution of Service-Oriented and Cloud-Based Systems,

MESOCA 2013, 2013, pp. 64–73.
[9] S. Stavru, I. Krasteva, and S. Ilieva, “Challenges for migrating to

the service cloud paradigm: An agile perspective,” Lecture Notes
in Computer Science, vol. 7652, pp. 77–91, 2013.

[10] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J. M. Jezequel,

“Model-Driven engineering for software migration in a large
industrial context,” Model Driven Engineering Languages and

Systems, vol. 4735, pp. 482–497, 2007.
[11] M. F. Wendland, M. Kranz, C. Hein, T. Ritter, and A. Garcıa

Flaquer, “Model-based testing in legacy software modernization:

an experience report,” in Proc. the 2013 International Workshop
on Joining AcadeMiA and Industry Contributions to testing

Automation - JAMAICA 2013, New York, 2013, pp. 35-40.
[12] O. S. Ramon, J. S. Cuadrado, and J. G. Molina, “Model-driven

reverse engineering of legacy graphical user interfaces,”

Automated Software Engineering, vol. 21, no. 2, pp. 147–186, Apr.
2014.

[13] W. Teppe, “The ARNO project: Challenges and experiences in a
large-scale industrial software migration project,” in Proc. 2009

13th European Conference on Software Maintenance and

Reengineering. IEEE, 2009, pp. 149–158.
[14] D. M. Geary. Graphic Java 2: Swing, ser. Graphic Java 1.2. Sun

Microsystems Press. 1999. [Online]. Available:
https://books.google.no/books?id=4N1MGOsu1jEC

[15] S. Ghobadi and L. Mathiassen, “Perceived barriers to effective

knowledge sharing in agile software teams,” Information Systems
Journal, vol. 26, no. 2, pp. 95-125, 2016.

[16] L. Pilat and H. Kaindl, “A knowledge management perspective of
requirements engineering,” in Proc. Fifth International

Conference on Research Challenges in Information Science, IEEE,

May 2011, pp. 1–12.
[17] B. Boehm and R. Turner, “Management challenges to

implementing agile processes in traditional development
organizations,” pp. 30–39, 2005.

Aiko Yamashita holds an Associate

Professorship at Oslo and Akershus University
College of Applied Sciences. She has worked in

Costa Rica, USA, Sweden and Norway in diverse

organizations during the last 10 years. Her
research interests include empirical software

engineering, software quality, IT sustainability,

and processes for high-tech transfer and

innovation initiatives.

113

Journal of Advances in Information Technology Vol. 8, No. 2, May 2017

© 2017 J. Adv. Inf. Technol.

