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Abstract— Advances in storage capacity means that digital 
cameras can store huge collections of digital photographs. 
Typically such images are given non-descriptive filenames names 
such as a unique identifier, often an integer. Consequently it is 
time-consuming and difficult to browse and retrieve images from 
large collections especially on small consumer electronics devices. 
A strategy for classifying images into geographical regions is 
presented which allows images to be coarsely sorted into the 
continent where they were taken. The strategy employs patterns 
in the time-stamps of images to identify events such as holiday 
and individual days, and to estimate the approximate longitude 
where the photographs were taken. Experimental evaluations 
demonstrate that the continent is correctly estimated for 89 % of 
the images in arbitrary collections and that the longitude is 
estimated with a mean error of 27.5 degrees. The strategy is 
relatively straightforward to implement, also in hardware, and 
computationally inexpensive. 

Keywords— digital camera, mobile phone camera, geo-spatial 
tagging, data-mining, image browsing, image retrieval 

I.  INTRODUCTION (HEADING 1) 
Recent advances in digital camera and storage technology 

combined with falling costs has lead to an exploding increase 
in digital images and image collections. This has led to new 
challenges in terms of organizing, browsing and retrieving 
images in large image collections. One avenue of research is 
applying complex content based strategies where intelligent 
strategies are applied for determining the contents of images. 
More basic strategies simply exploit time, where images are 
classified according to named folders and presented 
chronologically. Sometimes, extra information is available [9, 
11] such as the geographical location where the image was 
taken. Such geo-spatial information is usually acquired with a 
GPS device and can lead to different and more efficient ways 
of browsing images [1, 4]. However, GPS-based geo-tagging is 
problematic for several reasons. First, few digital cameras are 
equipped with GPS receivers. Second, GPS receivers usually 
need some time to lock onto the overhead satellites. Third, the 
GPS infrastructure is reaching the end of its lifetime [7]. 

Consequently, several strategies for extracting geographical 
information without GPS have been proposed. Digital sextants 
has been implemented using digital cameras for direct sun 
elevation observations [5]. A sun sensor based on direct sun 
observations has been proposed [14]. However, problems with 
direct sun observations are that the sun needs to be visible and 
the calculation of sun position is dependent on the optics used, 

i.e., knowledge of the lens characteristics is needed. Moreover, 
the position of the sun needs to be compared to some other 
entity, usually the horizon. Efficient algorithms for horizon 
detection exist [3, 6], but it is not always feasible to detect the 
horizon.  

Moreover, direct sun observations work best when the sun 
elevation is low as very wide angle optics is needed for large 
sun elevations close to 90 degrees. To combat the problems 
with dependence on optics and large sun elevations it has been 
proposed to instead determine the sun elevation indirectly from 
the length of shadows cast by objects [13]. However, such a 
strategy would require complex image processing and no 
automatic working system has yet been demonstrated. In a 
more feasible approach the exposure level of the scene where 
images were taken has been explored as a means for 
determining the approximate geographical position of images 
with a documented accuracy of about 15 degrees [12]. One 
drawback of this strategy is that it is dependent on meta 
information collected by the digital camera and embedded in 
the images using the EXIF-format [2]. Another strategy is to 
look at the intensity of the image content itself [8, 10]. 
However, this strategy has only been demonstrated for webcam 
images taken at static location at regular intervals. This 
approach is also computationally expensive. Alternative 
approaches involves identifying the location of images from the 
contents of images such as landmarks [15]. 

This study presents a strategy for classifying images into 
the continent of its origin, hence geo-localization of images 
with quite a rough precision. However, the proposed approach 
is simple to implement, computationally efficient as it does not 
consider image contents and it can be applied to images taken 
with modest digital camera hardware. Applications of the 
approach include the automatic geo-tagging of images for 
image collection organization, browsing and retrieval 
applications. 

II. METHOD 
The strategy proposed herein assumes that the digital 

camera is equipped with an internal clock (chronograph) that is 
set with the correct date and time accurate to the nearest hour, 
and that this clock remains constant for all the images to be 
classified. Most users do not bother to set the internal clock in 
their digital cameras and many do not even know how to set the 
time. Moreover, it is also assumed that the time zone of the 
clock is known, or that the universal time (UTC) is used. The 
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subsequent sections assume that the image timestamps are 
represented in universal time. 

Next, the images are grouped into daily chunks, i.e., all 
images in the range from 0:00 to 23:59 on a given date are 
considered one day. Next, groups of consecutive days are 
combined into events as such images are likely to be 
contextually related. 

Images rely on light and most sightseeing photographs are 
therefore taken during daylight, or during the time of the day 
when the photographer is awake. Most people follow such 
daily rhythms were we sleep at night when it is dark and stay 
awake during the day when it is light. 

 
Figure 1.  Time stamp histograms plotted as a function of day. 

Fig. 1 shows an example of the 24-hour histogram for the 
first events of the data used in this study. In this plot the 
horizontal axis represent histogram hour and the vertical axis 
represent day number. There are clear regions, or blobs, 
surrounding certain peaks. Clearly, at day 4 there is a peak 
around 2:00 UTC suggesting a Asia-Pacific set of images, at 
day 14 there is a peak running from around 7:00-9:00, and at 
day 17 a peak running from 9:00-10:00 UTC, both suggesting 
two sets of photographs taken in Europe or Africa, while, at 
day 23 there is a peak at 23:00 UTC suggesting a collection of 
photographs taken in the Americas. 

A 24-bin histogram h with one bin for each hour of the day 
is constructed for each day where the number of photographs 
taken during each hour is counted. This histogram is shifted 
such that the mode, or the maximum bin is centered at the 12th, 
or middle bin, i.e., h’i = h12 - mod e for all i’s. The mean 
photograph time is then calculated as follows: 

ehit
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i mod
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+⋅=�

=
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The mean photograph universal time is a rough estimate of 
midday where the sun is at its maximum. Alternatively, the 
mode or the median could be used. Midday will therefore occur 
at the given universal time. The longitude of this location is 
therefore: 

)12(
24
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Where negative values signals degrees east and positive 
values signals degrees west. 

In addition to an approximate longitudinal estimate a 
linguistic classification can also be computed. For this purpose 
the continent membership function c(t) is introduced which 
gives the probability of the image taken at a particular time 
being in that continent. Fig. 2 shows the continent member 
functions for Antarctica, North America, South America, 
Africa, Europe, Asia and the Pacific. These were obtained by 
summing the proportion of land belonging to the continents for 
10 degree longitudinal slices. Antarctica is omitted since it 
overlaps with all the other membership functions and very few 
people have a chance to visit this place. Moreover, North and 
South America are combined in the Americas, Africa and 
Europe into Europe-Africa and finally Asia and the Pacific are 
combined into one Asia-Pacific membership function because 
of the large overlaps. 

 
Figure 2.  The continent membership functions for the seven continents. 

Probability of continent membership is a function of longitude in universal 
time (UTC) measured in hours. 

The continent membership functions for the seven 
continents. Probability of continent membership is a function 
of longitude in universal time (UTC) measured in hours. 
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and the vote function Vcontinent(t) is given by 
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After the score is computed for each continent, namely 
SAmericas, SEurope-Africa and SAsia-Pacific the one with largest score is 
the winner. 

For an event comprising multiple days one may compute 
the scores for each day and sum the wins for each continent. 
The one with overall most wins for the events is the winner. If 
there is a tie between continents the days are classified 
according to their daily classification. 

The strategy presented herein is computationally efficient 
as no image analysis is performed. First, the N images in the 
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collection must be scanned and segmented, which both have 
time complexity of O(N). Next, the D days making up the 
entire collection is processed in D steps. For each step the 
histogram of that day is built, in the worst case N images giving 
time complexity of O(D·N), the median is computed which has 
constant time complexity O(1) as the histogram as 24 bins. 
Finally, voting is performed for the D days with a time 
complexity of O(D). Consequently, the strategy has a 
computational worst case complexity of O(D·N). 

III. EXPERIMENTAL EVALUATION 
The strategy presented herein was implemented in Java and 

was run on the author’s personal image collection comprising 
7,672 images taken at various locations around the world from 
the spring of 2005 to the spring of 2009 with a Sony DSC-
F828. The images were manually grouped into location and 
situation and labeled for reference. The attributes of this test 
suite comprising 22 events are listed in Table I, including 
location, longitude, start-time of the series, number of days 
spanned by each event and the number of images in each event. 

TABLE I.  EXPERIMENTAL TEST SUITE 

event location longitude start-time Day. Img.
1 Tainan 121° East 28 Feb 2005 6 615
2 Tokyo 139° East 13 Mar 2005 5 283
3 Yummy 121° East 14 Apr 2005 2 203
4 Neihu 121° East 31 May 2005 1 94
5 S. Illinois 89° West 22 Jun 2005 9 768
6 Beihai 116° East 30 Nov 2005 3 164
7 Hanoi 105° East 12 Dec 2005 2 37
8 Tokyo 139° East 16 Apr 2006 2 220
9 Tokyo 139° East 23 Apr 2006 1 3

10 San Juan 66° West 21 Jul 2006 8 780
11 Wuhan 108° East 28 Aug 2006 1 7
12 Wuhan 108° East 1 Sep 2006 5 358
13 Seoul 127° East 24 Apr 2007 4 256
14 Oslo 10° East 27 Sep 2007 1 268
15 Victoria 123° West 8 Oct 2007 6 668
16 Oslo 10° East 19 Nov 2007 2 339
17 Kaohsuing 121° East 5 Feb 2008 3 290
18 Oslo 10° East 23 Jun 2008 3 387
19 Paris 2° East 10 Aug 2008 4 290
20 Beijing 116° East 26 Oct 2008 5 803
21 Cape Town 18° East 21 Feb 2009 6 641
22 Brisbane 153° East 8 Jul 2009 2 198

 
Table II shows the results of the longitudinal estimations. 

The table lists the mean distance (error) between the estimated 
and actual longitude, the distance between the minimum 
observation and actual longitude, the distance between the 
maximum observation and actual longitude and linguistic 
classification of continent. Three regions are considered, 
namely the Americas, Asia-Pacific and Europe-Africa. 

 

TABLE II.  EXPERIMENTAL RESULTS 

Event
mean 
error 

min  
error 

max  
error 

Linguistic  
classification 

1 10° 91° 106° Asia-Pacific 
2 30° 41° 124° Asia-Pacific 
3 63° 46° 91° Asia-Pacific 
4 84° 76° 91° Europe-Africa*
5 17° 89° 16° Americas 
6 31° 49° 101° Asia-Pacific 
7 5° 15° 15° Asia-Pacific 
8 86° 41° 124° Asia-Pacific 
9 64° 64° 64° Americas* 

10 16° 6° 84° Americas 
11 53° 42° 57° Asia-Pacific 
12 3° 27° 93° Asia-Pacific 
13 9° 38° 112° Asia-Pacific 
14 1° 65° 65° Europe-Africa 
15 20° 123° 42° Americas 
16 13° 50° 125° Americas* 
17 28° 14° 106° Asia-Pacific 
18 1° 95° 80° Americas* 
19 19° 43° 88° Americas* 
20 12° 86° 116° Asia-Pacific 
21 10° 102° 87° Europe-Africa 
22 30° 12° 78° Asia-Pacific 

 

A. Discussion 
The results in Table II confirm that the proposed strategy 

successfully managed to classify the image collections into the 
correct continents for 17 of the 22 events, yielding success rate 
of 77 % in terms of events. In terms of images the success rate 
is 85.5 % since as 6.559 of the total of 7.672 images where 
classified into the correct continent. The reason the success rate 
is higher when considering individual images is that events 
with more images are more likely to be successfully classified 
than events comprising fewer images. The set of incorrectly 
classified events comprise fewer images totally. 

In the image collection investigated events 4, 9, 16, 18 and 
19 were incorrectly classified. Here, event 4, which comprised 
images taken in Neihu, Taiwan were classified as being in 
Europe. The longitudinal error was also large for this set, 
namely 84 degrees. An inspection of the image collection 
reveals the problem, namely that the images are all taken 
during a relatively short time interval of two hours during an 
evening walk around Neihu. Since these images were all taken 
at night the midday estimate was shifted and consequently 
matches that of the US, since it is midday in the US when it is 
evening in Taiwan, broadly speaking.  

Similar arguments apply for the other erroneous cases such 
as event 9 where images taken in Tokyo were classified as 
belonging in the Americas, event 16 where images taken in 
Oslo were misclassified as belonging in the Americas and 
events 18 and 19 representing images taken in Oslo and Paris 
were misclassified as being in the Americas.    
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Longitudinal estimates based on the mean, median and 
mode time of the images taken for 24 hour bins are shown in 
Fig. 3. The results show that the mean time gave the overall 
most accurate result of 27.5 degrees. The median was slightly 
worse with a longitudinal accuracy of 32.7 degrees while the 
modes gave the least accurate estimate of the three measures of 
centrality, namely 46.7 degrees.  

 
Figure 3.  Centrality measure of longitude. 

B. Improving accuracy with voting 
Table III shows an example of how the linguistic continent 

classification was improved with voting. The event represents 
images taken during a one-week visit to South Africa during 
the last week of February, 2009. The example shows that the 
first, third and sixth days were successfully classified as being 
in Europe-Africa, while the second day was misclassified as 
being in the Americas and fourth and fifth day were 
misclassified as being in Asia-Pacific. However, Europe-Africa 
won by the number of day-based voted for the event and the 
entire event was then successfully classified as images from 
Europe-Africa. 

TABLE III.  VOTING FOR IMPROVING LINGUISTIC CLASSIFICATION 

Day mean longitude no images Americas 
Europe 
-Africa 

Asia 
-Pacific

1 12° West, 144 54 58 8
2 7° East, 211 114 28 77
3 29° East, 67 8 46 13
4 5° East, 84 5 23 24
5 73° East, 19 0 2 19
6 9° East, 111 3 67 20

       
   wins 1 3 2

 
This strategy is robust to events comprising days with 

images taken at nighttime. The number of nighttime images 
does not affect the results because the voting is day-based. If 
one considers the entire event then single days with many 
nighttime photographs may strongly bias the results negatively. 

 
Figure 4.  Improving success rate with voting. 

 
The effectiveness of the voting scheme is illustrated in Fig. 

4. This illustration shows the success rate obtained with 
linguistic continent classification, the success rate obtained 
classifying according to single days and day-based majority 
vote for the entire event. Clearly, the majority vote yielded the 
highest success rate of 88.1 % while the event based strategy 
only achieved 85.5 %. Simply, considering individual days 
yielded a success rate of just 79.3 %. 

Note that the proposed voting scheme may result in ties 
such as the one illustrated in Table IV. This example shows 
images taken in Paris, France during the second week of 
August, 2008. Clearly, the first and the last days are 
successfully classified as Europe-Africa, while the two middle 
days are incorrectly classified as America. If one had 
considered this as one event then the result would have been an 
overall misclassification of the Americas. Instead, the result is a 
tie between the Americas and Europe-Africa which is more 
correct. Note also that the numbers in each row of Tables III 
and IV do not tally – this is because images have membership 
in several continents due to the overlap in the membership 
function. 

TABLE IV.  TIES ARE BETTER THAN MISCLASSIFICATION 

day Mean longitude no. Images Americas 
Europe
-Africa 

Asia 
-Pacific

1 5° West, 65 13 36 0
2 34° West, 133 74 49 1
3 20° West, 78 52 25 0
4 26° East, 11 0 11 0
       
   Wins 2 2 0

 

IV. LIMITATIONS 
The strategy presented herein is based on three key 

assumptions. First, the images are time-stamped. This is a 
realistic assumption with most current day digital cameras that 
are equipped with an internal clock and calendar. Second, the 
time must be relatively correct and the relative offset from 
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UTC must be known. This is also a reasonable assumption as 
most camera owners set their camera to their home time-zone 
once they purchase the camera and never bother to change the 
time and date settings later. The strategy will thus not work for 
photographers who tamper with the date and time settings of 
their cameras. Third, the strategy assumes that the images are 
taken during daytime or spread throughout the day. This 
assumption is based on the fact that photography relies on light 
and the conditions for good photography at night is not as 
good. Clearly, there are many exceptions to this. As confirmed 
by the results herein, the proposed strategy does not work with 
images taken at narrow time-intervals at night. Moreover, this 
study does not address the problem of image collections 
comprising images taken with multiple cameras.  

V. CONCLUSIONS 
A simple strategy for effectively determining where digital 

images were taken was proposed. Time was used to estimate 
the approximate local midday for photographic events in image 
collections. The local midday then directly translates into 
longitude. A simple voting scheme was employed to realize a 
robust continent classifier. The experimental results 
demonstrate that the continent classifier achieves a success rate 
of 88.1%. Moreover, the longitude estimates based on 24-hour 
time means yield a longitudinal accuracy of 27 degrees. The 
proposed approach is computationally efficient and simple. It 
does not rely on image contents or complex meta-information 
as it only relies on consistently time-stamped images. It can for 
instance be easily integrated in low-cost digital cameras for 
unsupervised approximate geo-tagging as most such cameras 
already have an internal clock and calendar.  
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