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Abstract. This study proposes a strategy for determining the approximate 

geographical location of a webcam based on a sequence of images taken at 

regular intervals. For a time-stamped image sequence spanning 24 hours the 

approximate sunrise and sunset times are determined by classifying images into 

day and nighttime images based on the image intensity. Based on the sunrise 

and sunset times both the latitude and longitude of the webcam can be 

determined. Experimental data demonstrates the effectiveness of the strategy. 
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1 Introduction 

Geographical information systems are becoming increasingly important in computer 

science. One avenue of geographical information systems relates to images. Some 

photographers attach GPS devices to their digital cameras in order to geo-tag images 

with the location where the images were taken. Geo-tagged images can simplify, 

speed up and enhance photo browsing activities – especially with very large image 

collections [1, 6]. However, there are several problems with GPS technology. First, 

current GPS devices may need several minutes to lock onto overhead satellites. This 

may be unacceptable if a photographer needs to shoot sudden scenes. Second, current 

GPS receivers consume a lot of power. Third, still few digital cameras are equipped 

with built in GPS receivers. Fourth, the GPS infrastructure is reaching the end of its 

lifetime and there is no guarantee that this service will be available in the future [9].  

Several non-GPS approaches have been attempted. For instance, landmark 

recognition has been used to identify image scene locations [23]. If one recognizes a 

known landmark in an image and knows the location of the landmark, then it follows 

where the image was photographed.     

Direct sun observations have also been used to determine the geographical location 

of the observer [7, 22]. In particular, a digital camera has been used to implement a 

digital sextant for robot navigation where the sun elevation is obtained by measuring 

the distance between the sun and the horizon. There are several problems with this 

approach. First, one requires direct sun observations, and the sun is not visible on 

cloudy days. Second, a very wide angle lens is required to measure high sun 
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elevations close to 90 degrees that occur close to the equator. Third, knowledge about 

the optical characteristics of the lens is needed to translate pixels distances into 

angular distances. Four, although several good horizon extraction algorithms exist [5, 

8], it may be difficult to accurately identify if the horizon is obstructed by objects 

such as trees, small hills and buildings.  

In order to omit some of the problems with direct sun measurements it has been 

proposed to measure the sun elevation based on the height of objects and the length of 

the shadows cast by these objects [19], although no automatic systems employing this 

approach have been demonstrated yet. 

An alternative non-content based approach that also works on cloudy days has 

been proposed where the camera exposure characteristics have been used to estimate 

the midday and sunrise or sunset in collections of related image series [18]. Most 

digital cameras embed camera exposure characteristics such as shutter speed, film 

speed and aperture [3, 4, 13-16] in images using the EXIF format [2, 12, 17]. This 

approach achieved a longitudinal accuracy of approximately 15 degrees and a 

latitudinal accuracy of approximately 30 degrees. However, this strategy relies on 

extra meta-information. 

Image contents have also been used to determine the relative geographical position 

of a network of webcams [10, 11] where images are taken at regular images with 

statically positioned webcams. 

This study proposes another image based geographical positioning system. The 

strategy assumes a geographically fixed webcam accessible via the Internet. 

Assuming that regular time stamped images can be taken using this webcam the 

proposed approach can determine the approximate location of the web-cam purely 

based on the contents of the images returned. Applications of this include the 

determination of webcam locations for unlabelled webcams, the corroboration and 

confirmation of the published location for particular webcams or self-configuring 

mobile webcams that can autonomously determine their own location.  

2 Method 

The proposed approach is based on regularly sampling a webcam for 24 hours. For 

each image the strategy determines if the image is a nighttime or daytime shot. 

Several related algorithms for this have been proposed such as indoor-outdoor 

classification strategies [20, 21]. A content based method is needed since most 

webcams do not embed EXIF exposure data in the images. For the purpose of 

webcams a very simple intensity based strategy was employed where the overall 

intensity of an image I sampled at time t measured in universal time (UTC) is 

calculated:  
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where Ix,y is the combined red, green and blue component of each pixel, namely: 
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Next, candidate sunrise and sunset times are found as follows. A sunrise image 

candidate satisfies si < smid and si+1 > smid and a sunset image candidate satisfies si > 

smid and si+1 < smid, where si is the intensity of image i and smid is the midpoint between 

the minimum and maximum intensity for the 24-hour image sequence, namely: 
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where smin and smax are the minimum and maximum intensity values for the 24-hour 

image sequence. 

If there are several sunrise or sunset candidates then the ones that result in the 

largest day and night sequences are chosen. Finally, to obtain a more accurate 

sunrise/sunset estimate linear interpolation is employed by finding the time tsunrise/sunset 

where the line that passes through (ti, si) and (ti+1, si+1) has a height of smid, namely: 
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An alternative strategy is to identify sunrise and sunset points where the intensity 

timeline passes a threshold relative to the maximum value. A sunrise point is detected 

at time ti if si < smax T and si+1 > smax T. Similarly, a sunset is detected at time ti if si > 

smax T and si+1 < smax T, where T is the threshold and smax is the maximum intensity 

value in the 24-hour image sequence. In this study the threshold was set to 0.8 which 

was found through experimentation. 

Having established the sunrise time tsunrise and sunset time tsunset, then midday is 

simply calculated as occurring at 
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The angular sunrise time is then 
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And the angular sunset time is 

sunrisesunset
aa   (9) 

The angular sunset can be used to determine the latitude using the classic sunrise 

equation with solar disk correction, namely 
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which is numerically solved for latitude φ. Here the declination of the sun can be 

approximated by 
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where M is the current day number of the year. Next, the longitude is simply 
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2.1  Accuracy 

Sample rate is the major factors affecting the accuracy of the location estimates 

although there also are other factors. Imagine that a webcam is observed at a rate of s 

images a day (24 hours) then the longitudinal accuracy is given by 

s
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and the latitudinal accuracy is 
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Fig. 1. The test-suite used in this study were taken from four webcams. Both daytime and 

nighttime images are shown. 
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3 Experimental evaluation 

The approach presented herein was assessed using a test-suite of images taken from 

the AMOS Archive of Many Outdoor Scenes [10] (see Fig. 1). The subset of images 

used comprised data obtained from four webcams during 2-7 June 2006 recorded in 

Central Time (UTC-5 or UTC-6). One of the webcams is located in New York 

overlooking the statue of liberty. 

Table 1 shows the results obtained with the proposed strategy for the four 

webcams. Both the results obtained for the individual days (June 2-6) and mean for all 

the five days are listed. Webcam 15 is the only one which is known (New York City). 

The true latitude and longitude for New York City are 40.7 degrees north and 74.0 

degrees west, respectively. The true sunrise and sunset times for June 2, 2006 is 4.43 

and 19.35, respectively, or 4:26 and 19:21 in hour:minute format. These values were 

corroborated using two online sunrise-sunset calculators. Note that this is local time 

which is at UTC+5. 

The results show that the mean sunrise is 8 minutes early and the sunset is 6 

minutes late yielding a day length error of 14 minutes. The standard deviation for the 

sunrise and sunset estimates are 9 and 11, respectively. 

Next, the estimated latitude and longitudes for webcam 15 is 42.6 degrees north 

and 73.1 degrees west, respectively. This yields a latitudinal error of 1.9 degrees, and 

longitudinal error of 0.9 degrees. The coordinates found points to Cheshire, 

Massachusetts, US. The achieved results are more than ten times more accurate than 

what has been achieved with arbitrary image collections [18] which achieved 

latitudinal and longitudinal errors of 30 and 15 degrees, respectively. Note also that 

the latitudinal error is nearly twice that of the longitudinal error, which is consistent 

with previous research.  

The results for the remaining three cameras with unknown location are equally 

consistent and the standard deviations for these measurements, especially webcam 

190, are smaller. This suggests that these results may be even more accurate than the 

one for the New York City webcam. 

When plotting the coordinates obtained using Google maps it is found that webcam 

190 at (47.4°, -88.1°) is at Eagle Hauk, Michigan, US, webcam 4 at (40.8°, -90.2°) is 

at Maquon, Illinois, US and webcam 82 at (41.4°, -116.3°) is at Humboldt National 

Forrest, Nevada, US. 

3.1  Effects of threshold 

Fig. 2 shows how the threshold T affects the results as the obtained latitude and 

longitude are plotted against threshold. The plot shows that both the latitude and 

longitude is closest to the actual latitude and longitude with a threshold of 0.8. Then 

the threshold exceeds 0.85 the accuracy decays rapidly.  
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Table 1. Geographical results obtained for the four web-cams. 

webcam day sunrise sunset lat. Long. 

15 June 2 4.33 19.38 42.1° 72.9° 

 

June 3 4.52 19.40 40.4° 74.4° 

 

June 4 4.30 19.22 40.5° 71.4° 

 

June 5 4.20 19.65 45.0° 73.9° 

 

June 6 4.12 19.60 45.1° 72.9° 

 
mean 4.29 19.45 42.6° 73.1° 

 
SD 0.15 0.18 2.3 1.2 

      190 June 2 5.10 20.83 47.6° 89.5° 

 

June 3 4.98 20.80 48.1° 88.4° 

 

June 4 4.93 20.72 47.6° 87.4° 

 

June 5 4.98 20.70 47.0° 87.6° 

 

June 6 5.00 20.70 46.7° 87.8° 

 
mean 5.00 20.75 47.4° 88.1° 

 
SD 0.06 0.06 0.5 0.9 

      4 June 2 5.60 20.55 41.2° 91.1° 

 

June 3 5.57 20.57 41.5° 91.0° 

 

June 4 5.67 20.45 39.2° 90.9° 

 

June 5 5.38 20.40 41.3° 88.4° 

 

June 6 5.48 20.50 41.1° 89.9° 

 
mean 5.54 20.49 40.8° 90.2° 

 
SD 0.11 0.07 0.9 1.2 

      82 June 2 7.20 22.30 42.6° 116.3° 

 

June 3 7.15 22.28 42.7° 115.8° 

 

June 4 7.30 22.23 40.7° 116.5° 

 

June 5 7.30 22.37 41.7° 117.5° 

 

June 6 7.27 22.10 39.4° 115.3° 

 
mean 7.24 22.26 41.4° 116.3° 

 
SD 0.07 0.10 1.4 0.8 

 

Longitude is least affected by the threshold. This is probably because a change in 

threshold affects the sunrise and sunset estimation times equally and since the 

longitude is based on the midpoint, the error cancels out. However, the latitude is 
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more strongly affected since it is based on the length of day. Low thresholds result in 

too long day estimates, that is, too early sunrises and too late sunsets. Consequently, 

the latitude estimates are too large. Similarly, with a too high threshold the day length 

estimates will be too short, that is, a too late sunrise and too early sunset, which again 

leads to too small latitude estimates. 
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Fig. 2. Effects of threshold on mean longitude and latitude accuracy. 

3.2  Intensity 

Fig. 3 shows intensity traces obtained for June 2, 2006 using the four webcams. The 

plots confirm that the image series fall into two distinct categories of day and 

nighttime images. Although there are some variations for each group, the groups are 

significantly different from each other. The graphs also show that there are more 

variations during the day compared to the night. This is what we would expect as 

there are more activities in the scenes at night and there are varying lighting 

conditions according to the cloud conditions, etc.  

Moreover, there were more image variations for the statue of liberty webcam 

compared to the others. An inspection of the webcam images reveals that this is 

because this webcam zooms in and out on the statue of liberty. Although the position 

and orientation is constant the scale is not. 
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Fig. 3. Intensity traces for June 2, 2006 for the four webcams. 

3.3  Effects of sample rate 

If the webcams takes S regularly spaced images during a 24 hour period, then the 

mean interval between two neighboring image is w = 24 × 60 / S minutes. In the worst 

case the sunrise-sunset points may be off by w/2 minutes. Table 2 shows this in terms 

of the measurements obtained in this study. Clearly, webcam 4 and 82 has nearly 

twice as high sample rate as webcam 15 and 190 and consequently the errors for 

webcam 4 and 82 are smaller than those for webcam 15 and 190. The potential error 

related to sample rate for the New York City measurements are a latitudinal error of 

2.1 degrees and a longitudinal error of 1.43 degrees. The true coordinates are well 

within these limits. 

4 Conclusions 

This study explored the possibility of combining content-based information with 

celestial mathematics to determine the geographical location of webcams. The 

proposed strategy is computationally effective and simple to implement and an 

accuracy of about 2 degrees was achieved.  
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Table 2. Effect of sample rate. 

set 

Images  

per day 

mean 

interval 

(min.) 

max 

midday 

error 

(min.) 

max 

sunset 

error 

(min.) 

lat. 

error 

(deg.) 

long. 

error 

(deg.) 

15 136,54 11,43 5,71 5,71 2,07 1,43 

190 141,28 11,04 5,52 5,52 1,62 1,38 

4 226,63 6,88 3,44 3,44 1,41 0,86 

82 245,35 6,36 3,18 3,18 1,32 0,79 
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