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Abstract. Structural damage identification is a scientific field that has attracted a lot of interest 

in the scientific community during the recent years. There have been many studies intending to 

find a reliable method to identify damage in structural elements both in location and extent. 

Most damage identification methods are based on the changes of dynamic characteristics and 

static responses, but the incompleteness of the test data is a great obstacle for both. In this 

paper, the performance of different modal correlation criteria in structural damage identifica-

tion is investigated. The structural damage identification problem is treated as an optimization 

problem which is solved using the differential evolution search algorithm. The objective func-

tions used in the optimization process are based on different modal correlation criteria, provid-

ing a measure of consistency and correlation between estimations of modal vectors. The 

performance of each of the objective functions is evaluated by a number of damage scenarios 

for a simply supported beam. Although the results of the various criteria on the different dam-

age scenarios vary, it is clearly shown that some modal correlation criteria exhibit excellent 

performance in detecting the structural damage even in the case of strong incompleteness of 

the modal data. 
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1. INTRODUCTION 

Structural damage identification has drawn increasing academic literature, as witnessed by the 

number of relevant journal and conference papers, during the recent years. There have been 

many studies intending to find a reliable method to identify damage in structural elements both 

in location and extent [1]. Most damage identification techniques are based on the changes of 

dynamic characteristics and static responses, but the incompleteness of the test data is a great 

obstacle for both. 

Generally speaking, the existing methods of damage identification techniques based on 

modal testing can be clarified into two major categories: direct and inverse methods. The direct 

methods utilize the change in modal measurement to instantly detect structural damage without 

the need of iterative computational procedures. In contrast, the second category of damage 

identification techniques poses the whole process as inverse problems [2-9], in which the struc-

tural damage is identified via optimizing the correlation between the theoretical and the exper-

imental modal parametric change, respectively. In order to determine the level of correlation 

between the measured and the predicted natural frequencies or mode shapes modal correlation 

criteria are used as a simple mathematical tools, providing a measure of consistency and corre-

lation between estimations of modal vectors. 

In this paper, the performance of different modal correlation criteria in structural damage 

identification is investigated. The structural damage identification problem is treated as an op-

timization problem which is solved using the differential evolution optimization algorithm. The 

objective functions used in the optimization process are based on different modal correlation 

criteria to identify the location and the extent of structural damage. The performance of each of 

the objective functions is evaluated in a number of damage scenarios for a simply supported 

beam. It is shown that the results of the different modal correlation criteria vary, while certain 

criteria exhibit excellent performance in detecting the structural damage even in the case of 

strong incompleteness of the modal data. 

2. STRUCTURAL DAMAGE IDENTIFICATION 

The problem of damage identification is classified into four levels [10]: (A) detection, (B) lo-

calization, (C) quantification, and (D) prediction of future damage (damage prognosis). At the 

level of damage detection (Level A), the existence of damage can be detected, while its location 

and severity are unknown. Information about location of the damage can be provided by local-

ization techniques at Level B. At the damage quantification level (Level C), both the location 

and severity of damage are estimated. Finally, at the prediction level (Level D), the remaining 

life of the structure is estimated based on the (identified) current damage state and future loads 

and damage propagation. This study reaches the third level of damage identification, which 

means it investigates the ability to detect, localize as well as estimate the severity of damage in 

structures.  

It is proven that changes in the dynamic characteristics of a structure are related to damage 

occurrence. Specifically changes in the modal parameters, namely natural frequencies and mode 

shapes, can provide an accurate indication of damage in a structure. Since modal parameters 

are dependent on the physical properties of the structure, i.e. stiffness and mass, the FEM may 

be used as a tool for locating and quantifying damaged elements in a structure through the 

update of modal parameters, even in large-scale structures. 
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2.1. Damage identification model 

If a structure is properly modeled using the FEM, structural damage mathematically affects its 

stiffness and physically its dynamic properties, such as natural frequencies and mode shapes 

[11]. It can be assumed that the global mass matrix remains the same in both the undamaged 

and the damaged structure. This assumption is considered quite accurate for the majority of real 

applications. The eigenvalue problem of a structure with n active degrees of freedom (DOFs) 

can be written as follows: 

   2 ( )

( ) 0, {1, 2, , }i

i i m  K      (1) 

where K is the global stiffness matrix of the structure ([n×n]), M is the global mass matrix 

([n×n]), {φ(i)} is the i-th natural mode vector of the structure ([n×1]) corresponding to the ω(i) 

natural frequency and m is the total number of natural modes to be obtained (m ≤ n). 

Eq. (1) forms the basis of the damage identification method used in the present study. An 

inverse procedure is used, where the natural frequencies and natural modes of the damaged 

structure are measured and they are supposed to be known quantities (to a certain extent), while 

the damage of the structure is unknown and needs to be calculated through an optimization 

procedure. 

2.2. Modal correlation criteria 

We consider two structures A and B with n active degrees of freedom (DOFs) each, with ei-

genvalues λA(i) = ωA(i)
2 and λB(i) = ωB(i)

2, natural frequencies ωA(i) and ωB(i) (i = 1, 2,…, m), where 

m is the total number of natural modes obtained (m ≤ n). The corresponding mode shape vectors 

are {φ(i)} and {ψ(i)} ([n×1] each), for structures A and B, respectively. 

In order to compare two sets of values for the two structures, the use of modal correlation 

criteria is imperative. The following criteria have been used in this study, as useful mathemati-

cal tools providing a measure of consistency and correlation between estimations of modal vec-

tors: 

1. The Modal Assurance Criterion (MAC) 

2. The Modified Total Modal Assurance Criterion (MTMAC) 

3. The Co-ordinate Modal Assurance Criterion (CoMAC) 

4. The Modal Flexibility Assurance Criterion (MACFLEX) 

 

An example of two structures 

In the next sections we will show the mathematical formulation of each criterion and also pro-

vide numerical values for a given example of two structures, for better comprehension and in 

order to exhibit the different criteria used. We consider two example structures, A and B. Each 

structure has n = 9 active DOFs and up to m = 4 eigenvalues and eigenmodes are taken into 

consideration (are supposed to be known, for both structures A and B). 

Structures A and B correspond to the example which is examined in the numerical results 

section of the present study. Specifically, Structure A is the structure of the example with no 

damage, while Structure B is the same structure but in a damaged state where the damage vector 

is [0.0, 0.0, 0.0, 0.2, 0.3, 0.4, 0.6, 0.6, 0.3, 0.0], i.e. damage 20%, 30%, 40%, 60%, 60%, 30% 

at the 4th, 5th, 6th, 7th, 8th, 9th element, respectively. The eigenproperties of structures A and B 

are shown in Table 1 and Table 2. Figure 1 shows the four eigenmodes of the two structures. 
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  1st Eigenmode 2nd Eigenmode 3rd Eigenmode 4th Eigenmode 

 λ = ω2 (sec-2) 3008.56 48108.77 243219.45 765859.94 

 Eigenperiod T (sec) 0.1146 0.0286 0.0127 0.0072 

N
o

d
a

l 
v

a
lu

es
 

1st DOF 0.505 -0.960 -1.321 -1.553 

2nd DOF 0.960 -1.553 -1.553 -0.960 

3rd DOF 1.322 -1.553 -0.505 0.960 

4th DOF 1.553 -0.959 0.960 1.553 

5th DOF 1.633 0.001 1.633 0.000 

6th DOF 1.553 0.960 0.960 -1.553 

7th DOF 1.321 1.553 -0.505 -0.960 

8th DOF 0.959 1.553 -1.553 0.960 

9th DOF 0.504 0.960 -1.321 1.553 

Table 1. Modal properties (eigenvalues and eigenvectors) of example structure A. 

 

  1st Eigenmode 2nd Eigenmode 3rd Eigenmode 4th Eigenmode 

 λ = ω2 (sec-2) 1762.18 32163.04 174959.58 540463.95 

 Eigenperiod T (sec) 0.1497 0.0350 0.0150 0.0085 

N
o

d
a

l 
v

a
lu

es
 

1st DOF 0.439 -0.854 -1.206 -1.438 

2nd DOF 0.849 -1.442 -1.552 -1.157 

3rd DOF 1.206 -1.585 -0.780 0.543 

4th DOF 1.476 -1.184 0.636 1.611 

5th DOF 1.627 -0.298 1.631 0.488 

6th DOF 1.629 0.787 1.269 -1.489 

7th DOF 1.441 1.576 -0.366 -1.164 

8th DOF 1.053 1.594 -1.582 1.035 

9th DOF 0.546 0.935 -1.245 1.468 

Table 2. Modal properties (eigenvalues and eigenvectors) of example structure B. 
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Figure 1. The four eigenmodes of the two example structures A and B. 

 

2.2.1. The Modal Assurance Criterion (MAC)  

The Modal Assurance Criterion (MAC) [12, 13] is one of the most popular tools for the quan-

titative comparison of modal vectors. The purpose of this criterion is to indicate the correlation 

between two sets of natural modes. Considering two mode shapes vectors {φ(i)} ([n×1]) and 

{ψ(j)} ([n×1]), for structures A and B, respectively, the term MACij of the MAC matrix ([m×m]) 

is given by: 

 
 

  

2
( ) ( )

( ) ( ) ( ) ( )

{ } { }
, , {1, 2, , }

{ } { } { } { }

i T j

ij i T i j T j
MAC i j m

 

   
     (2) 

or 

   

2

( ) ( )

1

2 2
( ) ( )

1 1

, , {1, 2, , }

n
i j

k k

k

ij n n
i j

k k

k k

MAC i j m

 

 



 

 
 
  

   
      



 
   (3) 

MACij takes values from zero, representing no consistent correspondence, to one, represent-

ing a consistent correspondence between the two mode shapes vectors. In this manner, if the 

modal vectors under consideration, {φ(i)} and {ψ(j)}, truly exhibit a consistent relationship, the 

modal assurance criterion element MACij approaches unity. By calculating MACij for all i, j = 

{1, 2,…, m} we obtain the MAC matrix. In our example, considering all four eigenmodes, we 

obtain: 
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1 0 0 0

0 1 0 0
(A,A) (B,B)

0 0 1 0

0 0 0 1

 
 
  
 
 
 

MAC MAC  (4) 

 

0.9950 0.0049 0.0001 0.0000

0.0049 0.9853 0.0077 0.0018

0.0000 0.0082 0.9765 0.0107

0.0001 0.0009 0.0121

(A,B) (B

0.9609

,A)T

 
 
  
 
 
 

MAC MAC  (5) 

If we consider a lower number of eigenmodes m, then the size of the MAC matrix decreases 

accordingly but in any case, it corresponds to the upper left part of the above full matrix (which 

corresponds to 4 eigenmodes). In other words, the above matrix contains (as sub-matrices) the 

[1×1], [2×2], [3×3] MAC matrices that would have been calculated for a lower number of 

known eigenmodes (1, 2 or 3, respectively).  

ˆMAC  ([1×m]) is a vector holding the diagonal terms of MAC matrix and it can be easily 

calculated by setting i = j in Eq. (2) or Eq. (3). ˆMAC  is a vector with as many values as the 

number of known eigenmodes (m). In our example, considering all four eigenmodes, we obtain: 

  ˆ ˆ(A,A) (B,B) 1 1 1 1 MAC MAC  (6) 

  ˆ ˆ 0.9950 0(A,B) .9853(B,A) 0.9765 0.9609 MAC MAC  (7) 

By multiplying the m individual values of the ˆMACvector, we obtain the final MAC scalar 

value as follows: 

 
1

ˆMAC
m

i

i

MAC


  (8) 

The table below shows the values of MAC for various values of the number of known 

eigenmodes, for our example. 

 

No of known modes 1 2 3 4 

MAC(A, B) 0.9950 0.9803 0.9573 0.9199 

Table 3. MAC values for 1, 2, 3 or 4 known eigenmodes. 

 

2.2.2. The modified total modal assurance criterion (MTMAC)  

One limitation of the MAC criterion is that it does not take into account the eigenvalues of the 

different mode shapes of the structures. It takes into account only the eigenvectors, but not the 

eigenvalues. This means that in case of uniform damage, the MAC criterion will not be able to 

detect any change, as in this case, the structure becomes more flexible (the eigenperiod in-

creases), but there is no difference in the eigenvectors which remain the same as before. The 

natural frequencies provide global information of the structure and they can be accurately iden-

tified through dynamic measurements. 
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Another criterion, the modified total modal assurance criterion (MTMAC) [14], is based on 

the MAC criterion but it takes also the eigenvalues into account. The MTMAC vector 

ˆMTMAC  ([1×m]) is defined as follows: 

 
2 2

( ) ( )

2 2

( ) ( )

, {1, 2
ˆM

,
ACˆM , }

1

TMAC i
i

A i B i

A i B i

i m
 

 

 





   (9) 

It should be noted that the MTMAC can be easily defined also as a matrix ([m×m]), whose 

diagonal is again the ˆMTMAC  vector, as was the case with MAC. ˆMTMAC  is a row vector 

with as many values as the number of natural modes considered (m). In our example, consider-

ing all four eigenmodes: 

  ˆ ˆ(A,A) (B,B) 1 1 1 1 MTMAC MTMAC  (10) 

  ˆ ˆ 0.7(A,B) (B,A 889 0.8220 0.8395 0) .8195 MTMAC MTMAC  (11) 

By multiplying the m individual values of the ˆMTMAC  vector, we obtain the MTMAC sca-

lar value as follows: 

 
1

ˆMTMAC
m

i

i

MTMAC


  (12) 

The table below shows the values of MTMAC for various values of the number of known 

eigenmodes, for our example. 

 

No of known modes 1 2 3 4 

MTMAC(A, B) 0.7889 0.6484 0.5444 0.4461 

Table 4. MTMAC values for 1, 2, 3 or 4 known eigenmodes. 

 

2.2.3. The co-ordinate modal assurance criterion (CoMAC)  

In the comparison of two sets of modal vectors, one of the issues of interest is the influence of 

individual DOFs on the vector resemblance. The spatial dependence of the MAC correlation 

criterion can be misleading. The co-ordinate modal assurance criterion (CoMAC) [15] is an 

extension of the modal assurance criterion which is used to detect differences between two 

modal vectors at the DOF level. It is basically a row-wise correlation of two sets of compatible 

vectors, while in MAC this is done column-wise. 

Although we can also define a COMAC matrix ([n×n]), in the same way as we defined 

MAC earlier, this time we will go straight to the definition of the ˆCOMAC  vector ([1×n]) 

which is most relevant and important. The off-diagonal terms of MAC were the ones giving 

the relationship between different mode shape vectors of the two structures, for example the 

element (2, 1) of MAC is the one which gives the relationship between the 2nd eigenmode of 

structure A and the 1st eigenmode of structure B. In the case of COMAC, in a similar manner, 

the off-diagonal terms are the ones giving the relationship between different DOFs of the two 

structures. For example the element (2, 1) of COMAC is the one which gives the relationship 
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between the 2nd DOF of structure A and the 1st DOF of structure B, for the various eigenvectors 

considered. 

Hence, the ˆCOMAC  for the k-th DOF of the structure (k = 1, 2,…, n) is defined as follows: 

 

   

2

( ) ( )

1

2 2
( ) ( )

1 1

ˆCOMA , {1, 2C , , }

m
i i

k k

i

k m m
i i

k k

i i

k n

 

 



 

 
 
  

   
      



 
   (13) 

Unlike the MAC, the COMAC can compare modes that are close in frequency by detecting 

local differences between two sets of modal vectors. It does not identify modeling errors, be-

cause their location can be different from the areas where their consequences are felt. Another 

limitation is the fact that COMAC weights all DOFs equally, irrespective of their magnitude in 

the modal vector.  

By calculating ˆCOMACk  for all k = {1, 2,…, n} we obtain the ˆCOMAC  vector ([1×n]). In 

case of full consistency between {φ(i)} and {ψ(i)} ({φ(i)}={ψ(i)} for all i = {1, 2,…, m}), all 

elements of the ˆCOMAC  vector will be equal to 1. By multiplying the n individual values of 

the ˆCOMAC  vector, we obtain the COMAC scalar value as follows: 

 
1

ˆCOMAC
n

i

i

COMAC


  (14) 

In our example: 

  (A,A) (B,B) 1 1 1 1 1 1 1 1 1ˆ ˆ T
 COMAC COMAC  (15) 

The table below shows the values of the various elements of ˆCOMAC  vector together with 

the corresponding values of COMAC scalar, for various values of the number of known 

eigenmodes, for our example. 

 

No of known modes 1 2 3 4 

1st DOF 1.0000 0.9999 0.9997 0.9997 

2nd DOF 1.0000 0.9995 0.9979 0.9905 

3rd DOF 1.0000 0.9970 0.9804 0.9509 

4th DOF 1.0000 0.9850 0.9623 0.9754 

5th DOF 1.0000 0.9678 0.9837 0.9421 

6th DOF 1.0000 0.9892 0.9760 0.9814 

7th DOF 1.0000 0.9987 0.9934 0.9906 

8th DOF 1.0000 0.9991 0.9993 0.9992 

9th DOF 1.0000 0.9980 0.9983 0.9990 

COMAC 1.0000 0.9356 0.8955 0.8395 

Table 5. ˆCOMAC (A, B) and corresponding COMAC scalar value  

for 1, 2, 3 or 4 known eigenmodes. 
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2.2.4. The modal flexibility assurance criterion (MACFLEX) 

It is well known that damage affects the stiffness matrix of the structure and more specifically 

it reduces the stiffness of the individual damaged elements. A reduction in stiffness is equivalent 

to an increase in the structural flexibility.  

 

Flexibility matrix 

In structural health monitoring it is advantageous to use changes in flexibility as an indicator of 

damage rather than using stiffness perturbations. This is due to the following reasons [16]: 

1. The flexibility matrix is dominated by the lower modes and so good approximations can 

be obtained even when only a few lower modes are employed. 

2. The flexibility matrices are directly attainable through the modes and mode shapes, de-

termined by the system identification process. 

3. Iterative algorithms usually converge the fastest to high eigenvalues. 

4. In flexibility-based methods, these eigenvalues correspond to the dominant low-fre-

quency components in structural vibrations. 

 

Therefore, the dynamically measured flexibility matrix which is calculated from the iden-

tified modal parameters, can be used as a damage identification measure [7]. The flexibility 

matrix FA ([n×n]) for structure A is given by 

 
1 

   F Φ Λ Φ  (16) 

where Φ is a matrix ([n×m]) containing all the m mode shape vectors {φ(i)} ([n×1] each) and 

ΛA is a diagonal matrix ([m×m]) which holds the eigenvalues λA(i) = ωA(i)
2 (i = 1, 2,…, m) on 

its diagonal. The individual elements of matrix FA can also be obtained separately using the 

following formula: 

 ( ) ( )

, 2
1 ( )

1m
i j

A ij k k

k k

F  


  (17) 

The two figures below, show graphical representations of the flexibility matrices FA and FB 

of the two structures of our example, for 1 and for 4 known eigenmodes, respectively. 

 

 

Figure 2. Flexibility matrices for structure A (left) and B (right), for one known eigenmode. 

5634



Manolis Georgioudakis and Vagelis Plevris 

 

Figure 3. Flexibility matrices for structure A (left) and B (right), for 4 known eigenmodes. 

Each column of the flexibility matrix represents the displacement pattern of a structure asso-

ciated with a unit force applied to the associated degree of freedom. As shown in Eq. (17), as 

the value of frequency decreases (i.e. the eigenperiod increases) the modal contribution to the 

flexibility matrix increases also. As a result, a good estimate of the flexibility matrix can be 

calculated with a small number of the first low-frequency modes, which is also evidenced in 

the two figures above. 

 

The MACFLEX criterion definition 

In order to compare the values of the flexibility matrix of the two structures A and B, the modal 

flexibility assurance criterion (MACFLEX) is applied. The individual elements of the 

ˆMACFLEX vector ([1×n]) can be calculated as follows: 

 
 

  

2
( ) ( )

A B

( ) ( ) ( ) ( )

A A B B

ˆ ˆ

ˆ ˆ
ˆMACFLE

ˆ
X

ˆ

i T i

i i T i i T i


F F

F F F F
 (18) 

where 
( )

A
ˆ i
F  and 

( )

B
ˆ i
F  are the i-th column vectors ([n×1]) of the flexibility matrices AF  and BF , 

for structures A and B, respectively. ˆMACFLEX  is a vector with as many values as the num-

ber of columns in the flexibility matrices. Again, we could consider a full MACFLEX matrix 

by taking different vectors into account, instead of the i-th vector for both structures, but there 

is no point in that as again the diagonal terms of the MACFLEX matrix are the important ones. 

By multiplying the n individual values of the ˆMACFLEX  vector, we obtain the MACFLEX 

scalar value as follows: 

 
1

ˆ
n

i

i

MACFLEX


MACFLEX  (19) 

In our example, for any number of known modes (1, 2, 3 or 4), it is: 

  (A,A) (B,B) 1 1 1 1 1 1ˆ ˆ 1 1 1 MACFLEX MACFLEX  (20) 

However, the ˆ ( , ) MACFLEX  = ˆ ( , ) MACFLEX  vector changes depending on the 

number of the known eigenmodes, as shown in the table below (shown as the transpose, in 

column format). 
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No of known modes 1 2 3 4 

1st DOF 0.9950 0.9929 0.9932 0.9933 

2nd DOF 0.9950 0.9936 0.9939 0.9939 

3rd DOF 0.9950 0.9947 0.9948 0.9948 

4th DOF 0.9950 0.9957 0.9956 0.9956 

5th DOF 0.9950 0.9963 0.9962 0.9962 

6th DOF 0.9950 0.9965 0.9965 0.9965 

7th DOF 0.9950 0.9967 0.9967 0.9967 

8th DOF 0.9950 0.9972 0.9973 0.9973 

9th DOF 0.9950 0.9978 0.9980 0.9979 

MACFLEX 0.9557 0.9621 0.9628 0.9629 

Table 6. ˆ (A,B)T
MACFLEX  and corresponding MACFLEX scalar value 

for 1, 2, 3 or 4 known eigenmodes, for our example. 

 

Figure 4 shows the values of MTMAC and MACFLEX criteria for different number of 

known eigenmodes (1, 2, 3 or 4), for our example. 

 

Figure 4. Comparison of MACFLEX and MTMAC scalar values  

for 1, 2, 3, and 4 known eigenmodes. 
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3. DAMAGE IDENTIFICATION AS AN OPTIMIZATION PROBLEM 

3.1. Problem formulation 

Setting-up an objective function, selecting the updating parameters and using robust optimiza-

tion algorithms are three crucial steps in structural identification. They require deep physical 

insight and usually trial-and-error procedures have to be used. In our case, the damage identifi-

cation problem is considered as an unconstrained optimization problem where the design vari-

ables denote the extent of damage of every single element of the structure. In this sense, the 

number of design variables is equal to the number of elements in the structure. Single beam 

elements are used to represent the structure of the numerical example. It has been assumed that 

no alteration occurs before and after damage related to the mass, which is acceptable in most 

real applications. Therefore, the parameterization of the damage has been represented by a re-

duction factor or damage index of the element bending stiffness. This damage index, de, for a 

damaged element e represents the relative variation of the damaged element bending stiffness, 

(EI)e,d to the initial (undamaged) bending stiffness (EI)e, as follows: 

 
,( )

1
( )

e d

e

e

EI
d

EI
   (21) 

This definition of a damage index for each element of the structure allows estimating not 

only the damage extent but also the damage location since the damage identification is carried 

out at the element level. The damage index can take values between 0 (no damage) and 1 (100% 

damage, no stiffness), although for numerical stability purposes, the maximum damage has to 

be limited to a value slightly below 1 (i.e. 0.999) or the structure can become a mechanism that 

cannot be analyzed and numerical instabilities will occur. 

The objective function has to reflect the deviation between the numerical prediction and the 

real behavior of the structure. For this reason, an objective function may be formulated in terms 

of the discrepancy between FE and experimental quantities. The following four objective func-

tions have been considered in this study, corresponding to the four different modal correlation 

criteria (MAC, MTMAC, CoMAC and MACFLEX respectively) between the real damage (ac-

cording to each examined damage scenario) and the damage which is estimated by the finite 

element model: 

 F1 = 1 – MAC 

 F2 = 1 – MTMAC 

 F3 = 1 – COMAC 

 F4 = 1 – MACFLEX 

The minimum value (target value) for each objective function is zero. At this point it has to 

be noted that in real life, the dynamics properties (eigenvalues and eigenmodes) of the real 

damaged structure would have to be determined (measured) by experiment. In our case, these 

properties are also calculated numerically using a FE “real damage” model, which is perfectly 

acceptable for the purposes of the present study and does not cause any problems or limitations 

to the procedure. 

3.2. The differential evolution algorithm 

Choosing the proper search algorithm for solving an optimization problem is not a straightfor-

ward procedure. In the past a number of studies have been published where structural optimi-

zation are solved using the metaheuristic search algorithms and especially those based on 
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adopting Darwinian principles of evolutionary process. These algorithms achieve efficient per-

formance for a wide range of combinatorial optimization problems. Among the plethora of such 

algorithms, the differential evolution (DE) algorithm is adopted in this study to solve the opti-

mization problem of Section 3.1.  

Differential evolution (DE) is a stochastic population-based evolutionary algorithm for 

global optimization, introduced by Storn & Price [17]. It follows the standard evolutionary al-

gorithm flow with some significant differences in mutation and selection process. The simplic-

ity of DE algorithm is based on only three tunable parameters, the mutation factor [0,2]F , 

the crossover probability [0,1]CR  and the total number or particles (population size) NP. The 

fundamental idea behind DE is the use of vector differences by choosing randomly selected 

vectors, and then taking their difference as a means to perturb the parent vector with a special 

kind operator and probe the search space. Several variants of DE have been proposed so far 

[18], but this study is focused on the nominal approach (DE/rand/1/bin). According to this, each 

of the members of the population undergoes mutation and crossover. Once crossover occurs, 

the offspring is compared to the parent, and whichever fitness is better moves to the next gen-

eration (selection process). In more detail: 

We consider an optimization problem with D dimensions. First, all individuals x are initial-

ized at random positions in the search-space. After initialization each member of the population 

x undergoes mutation and a donor vector v is generated such as: 

  = ( )F  v a b c   (22) 

where a, b and c are three individuals from the population at random, which must be distinct 

from each other as well as from individual x (   x a b c ). 

In the next step the crossover operator is applied by generating the trial vector u which is 

defined either from the i-th component (vi) of v or the i-th component (xi) of x, with probability 

CR as follows: 

  
if    or  

            1,2,...,
otherwise

i i

i

i

v r CR i R
u i D

x

 
 


  (23)  

where ri is a random number with uniform distribution, [0,1]ir U , and R is a random integer 

in [1, 2, …, D] which ensures that in any case, after the crossover operation it is u x . The 

last step of the generation procedure is the implementation of the selection operator where the 

target vector x is compared to the trial vector u. If the trial vector u has a better fitness value, 

then the individual x is replaced in the population with the trial vector u as follows: 

 
if  ( ) ( )

otherwise

f f
  



u u x
x

x
  (24) 

where f is the objective function to be minimized and x΄ is the new design vector for the next 

generation. The optimization procedure finished when the maximum number of generations has 

been reached. 

4. NUMERICAL EXAMPLES 

A simply supported beam [19] is analyzed in this section to illustrate the performance of the 

proposed methodology and the different criteria. The geometry, boundary conditions and finite 

element mesh of the beam are shown in Figure 5. The beam has a total length of 6 m and it is 

discretized by 10 equal length beam elements of rectangular cross section b (width) x h (height) 
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= 0.25 m × 0.20 m. The beam is considered to have a Young’s modulus E equal to 30 GPa and 

a density ρ equal to 2500 kg/m3. 

 

 

Figure 5. The beam structure under investigation. 

The parameters of the DE optimization problem are the following: 

 D = 10 (dimension of the problem) 

 NP = 40 (population size) 

 F = 0.6 (mutation factor) 

 CR = 0.9 (crossover probability) 

 MAXGEN = 3000 (maximum numbers of generations) 

 

Four different damage scenarios are considered: (1) A single-element damage scenario 

(Figure 6a); (2) a two-element damage case (Figure 6b); (3) a three-element damage case 

(Figure 6c); and (4) a uniform damage case (Figure 6d). The finite element model of the beam 

is based on Euler–Bernoulli assumption of the planar elements with two degrees of freedom per 

node (the axial deformation is ignored). 

 

(a) Damage 1 

 

(b) Damage 2 

 

(c) Damage 3 

 

(d) Damage 4 

Figure 6. The four different damage scenarios. 

4.1. Results 

The same optimization algorithm has been applied to all damage scenarios. For each damage 

scenario, the four different modal correlation criteria have been used for the formulation of the 

objective function. For each criterion, the number of known eigenmodes varies from 1 to 4. The 

results are presented in bar charts, where the target damage (real damage) is always denoted in 

red color and the other colored bars denoted the damage estimation by the optimization proce-

dure. 

5639



Manolis Georgioudakis and Vagelis Plevris 

4.1.1. Damage 1 scenario (single-element damage) 

Figure 7 shows the performance of the four different criteria for the first damage scenario. We 

see that the MTMAC criterion shows very good performance, since it manages to identify the 

damage almost 100% in the cases where 3 or 4 eigenmodes are known, while a good perfor-

mance is also recorded for the difficult cases of 2 or even only 1 known eigenmode. The MAC 

criterion shows also good performance, but again it cannot be compared to the performance of 

the MTMAC criterion. 

 

 

(a) MAC 

 

(b) MTMAC 

 

(c) CoMAC 

 

(d) MACFLEX 

Figure 7. Performance of the four different criteria for the  

single-element damage scenario (Damage 1). 
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4.1.2. Damage 2 scenario (two-element damage) 

Figure 8 shows the performance of the four different criteria for the second damage scenario. 

This damage scenario appears to be more difficult than the first one. Again, we see that the 

MTMAC criterion shows exceptional performance in the cases where 3 or 4 eigenmodes are 

known. The other criteria appear not to exhibit a very good performance, even in the cases 

where 4 eigenmodes are known. 

 

 

(a) MAC 

 

(b) MTMAC 

 

(c) CoMAC 

 

(d) MACFLEX 

Figure 8. Performance of the four different criteria for the  

two-element damage scenario (Damage 2). 
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4.1.3. Damage 3 scenario (three-element damage) 

Figure 9 shows the performance of the four different criteria for the third damage scenario. 

Again the trend is the same. Only the MTMAC shows excellent performance, especially in the 

cases of 3 or 4 known eigenmodes, while the other criteria fail to identify the location and extent 

of damage adequately, even in the cases where 4 eigenmodes are known. 

 

 

(a) MAC 

 

(b) MTMAC 

 

(c) CoMAC 

 

(d) MACFLEX 

Figure 9. Performance of the four different criteria for the  

three-element damage scenario (Damage 3). 
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4.1.4. Damage 4 scenario (uniform damage) 

Figure 10 shows the performance of the four different criteria for the last damage scenario. The 

uniform damage appears to be the most difficult scenario. With the exception of MTMAC, the 

three other criteria completely fail to identify the location or extent of damage and they seem 

to just not be working at all. On the other hand, MTMAC shows very good performance when 

4 eigenmodes are known, while its performance in the case where 3 eigenmodes are known can 

be still considered as acceptable. The overall performance of MTMAC is good but it is not as 

good as in the three other damage scenarios. 

 

(a) MAC 

 

(b) MTMAC 

 

(c) CoMAC 

 

(d) MACFLEX 

Figure 10. Performance of the four different criteria for the  

uniform damage scenario (Damage 4). 

The reason that the other three criteria (MAC, CoMAC and MACFLEX) fail completely is 

that only the MTMAC criterion contains also information about the eigenvalues (or eigenperi-

ods) of the structure. The other criteria take into account only information about the eigenmodes. 

It is known that in the special case of uniform damage, the eigenmodes of the structure them-

selves do not change and the only property that changes is the eigenperiod which becomes 

larger (the structure becomes more flexible). As a result, only the MTMAC criterion manages 

to identify this special kind of damage and can be trustworthy for such damage cases. 
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5. CONCLUSIONS 

 In this paper, the performance of different modal correlation criteria in structural damage 

identification was investigated. The structural damage identification problem was treated as 

an optimization problem which was solved using the differential evolution optimization al-

gorithm. 

 The DE algorithm proved to be very efficient and robust in all cases, while the four correla-

tion criteria exhibited different performances for each damage case. 

 In general, the MTMAC criterion showed excellent performance, managing to identify al-

most 100% the location and extent of damage for all damage cases, when 3 or 4 eigenmodes 

were known. In the cases were limited data were available (1 or 2 known eigenmodes), this 

criterion showed also an acceptable performance which was the best among the different 

criteria.  

 The other criteria showed good performance only in some individual damage cases, but their 

general performance was not reliable, especially when a smaller number of eigenmodes were 

considered (1, 2 or 3). 

 Some damage scenarios were more difficult than others. The most difficult was the uniform 

damage (4th) scenario. Only the MTMAC criterion managed to give a good estimation for 

this damage case and again, the quality of the solution was not perfect, even in the case of 4 

known eigenmodes. 
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