
UNIVERSITY OF OSLO
Department of Informatics

Generating Synthetic
VoIP Traffic for
Analyzing Redundant
OpenBSD-Firewalls

Master Thesis

Maurice David
Woernhard

May 23, 2006

Generating Synthetic VoIP Traffic for
Analyzing Redundant OpenBSD-Firewalls

Maurice David Woernhard

May 23, 2006

Abstract

Voice over IP, short VoIP, is among the fastest growing broadband technologies
in the private and commercial sector. Compared to the Plain Old Telephone
System (POTS), Internet telephony has reduced availability, measured in uptime
guarantees per a given time period. This thesis makes a contribution towards
proper quantitative statements about network availability when using two redun-
dant, state synchronized computers, acting as firewalls between the Internet
(WAN) and the local area network (LAN).

First, methods for generating adequate VoIP traffic volumes for loading a
Gigabit Ethernet link are examined, with the goal of using a minimal set of
hardware, namely one regular desktop computer. pktgen, the Linux kernel
UDP packet generator, was chosen for generating synthetic/artificial traffic,
reflecting the common VoIP packet characteristics packet size, changing sender
and receiver address, as well as typical UDP-port usage. pktgen’s three main
parameters influencing the generation rate are fixed inter-packet delay, packet size
and total packet count. It was sought to relate these to more user-friendly val-
ues of amount of simultaneous calls, voice codec employed and call duration. The
proposed method fails to model VoIP traffic accurately, mostly due to the cur-
rently unstable nature of pktgen. However, it is suited for generating enough
packets for testing the firewalls.

Second, the traffic forwarding limit and failover behavior of the redun-
dant, state-synchronized firewalls was examined. The firewalls were running
OpenBSD 3.8 and used the Common Address Redundancy Protocol (CARP)
and the packet filter state synchronization protocol (pfsync) for achieving re-
dundancy, with one acting as master, and the other as backup. Empirical mea-
surements show that the upper limit for unidirectional traffic is at about 125,000
packets per second, independent of packet sizes typical for VoIP media packets
(less than 220 bytes). This is far below the traffic capacity of Gigabit Ethernet,
and is caused by a “receive livelock”: full system load due to non-optimized
interrupt handling. The obtained measurements allow for questioning the
suitability of a default OpenBSD installation for firewalls in high packet rate net-
works.. The network connectivity glitch in failover situations was measured at:
when turning CARP off administratively while processing circa 80,000 packets
per second, the maximum glitch was in the magnitude of 300 milliseconds.

1

2

When power-cycling the master firewall, maximum connectivity interruptions
of circa 3,000 milliseconds occurred. In all cases, series with much lower values
were measured, but may not be representative.

Keywords: Voice over IP, VoIP, pktgen, artificial, synthetic, traffic, OpenBSD,
redundant, firewall, high-availability, CARP, pfsync.

Acknowledgments

As we enjoy great advantages from inventions of others, we should
be glad of an opportunity to serve others by any invention of ours;
and this we should do freely and generously. – Benjamin Franklin

In the spirit of this dictum, I would like to express thanks to all who have
joyfully contributed to this project with their own “inventions” – be it ideas,
technical expertise or feedback, as well as by bearing over with me during this
interesting albeit intense 17 weeks.

From academia, my supervisor Dr. Hårek Haugerud deserves thanks for
both professional and practical guidance; Professor Mark Burgess for being
the spritus rector of scientific system administration at Oslo University College
and passing on a scholarly spirit to his students. The project idea originated
with doctoral candidate Kyrre Begnum, leading to FreeCode providing the
firewalls, a short technical introduction and office space during the project.
Working in the FreeCode atmosphere was very pleasant, thanks to all the out-
standing employees.

Last, I would like to mention Senior Engineer Tore Øfsdahl from Oslo Uni-
versity College, for always being ready to help when the need for replacement
hardware arose.

3

Contents

1 Introduction 11

2 Technical VoIP background 13
2.1 A paradigm change . 13
2.2 Call signaling . 14
2.3 Data Transport . 17
2.4 Conversation Quality: Codecs and QoS 19
2.5 Other issues in VoIP . 21

3 Architectural Issues and Implementation 25
3.1 Hardware and Configuration . 26
3.2 Network Topology . 28
3.3 The Concept of Redundant Firewalls 30
3.4 Traffic generation . 35

3.4.1 Real or Synthetic? . 37
3.5 Voice codec selection . 38
3.6 Modeling VoIP traffic . 39
3.7 Traffic Forwarding, Capture and Analysis 43

4 Experiments 49
4.1 Traffic generation with pktgen 49

4.1.1 Maximum packet generation 50
4.1.2 Generation time . 52

4.2 Forwarding capacity of the OpenBSD-firewalls 55
4.2.1 Blackbox . 55
4.2.2 Inside the Firewalls . 59
4.2.3 Behavior when failing over 63

5 Discussion and Conclusions 67
5.1 Future Work . 69

A pktgen 77

5

6 CONTENTS

B Configuration Files 79
B.1 pf configuration file (firewall1) 79

C Scripts 81
C.1 pktg-conf-voip.sh – modeling VoIP characteristics 81
C.2 d2h.sh – consolidate tcpdump text output 81
C.3 Huge shell-commands for experiment control and logfile analysis 83

C.3.1 Starting traffic generation 83
C.3.2 Starting traffic generation with load analysis on the fire-

walls . 83
C.3.3 Analyzing measurement frequency in the firewall logfiles 84
C.3.4 Combining the firewall’s cp-time logfiles 84

List of Figures

3.1 Testnetwork Topology . 29
3.2 The CARP/pfsync Failover Sequence 33

4.1 Max pps per codec . 51
4.2 Max packets per second and generation time 53
4.3 Smooth generation rates after removing printk and setting timer

frequency to 1,000 Hertz . 54
4.4 Firewall packet forwarding drop around 125,000 packets per

second with biggest and smallest codec. 58
4.5 OpenBSD CPU-states under increasing load 60
4.6 Measurement process starvation with increasing load 62

A.1 Dramatic drop in packet generation rate per second at 1,000 ns . 78

7

List of Tables

2.1 Traffic Delay Factors Overview 18

3.1 Voice codec candidate overview 39
3.2 Maximum packet count for one Gigabit Ethernet second per

voice packet . 41

4.1 pktgen packet sizes and effective pps for voice packets 51
4.2 Received packet count for soft-failover with 81,667 (± 0.04%)

pps and 214B packets, with network glitch in milliseconds. . . . 64
4.3 Packet receive rate for hard-failover (power-cycling) with 81,661

(± 0.04%) pps and 214B packets, with network glitch in millisec-
onds. 64

9

Chapter 1

Introduction

Voice over IP, short VoIP, is among the fastest-growing broadband technolo-
gies. According one specialist, VoIP “has moved to a level of reliability and
capability such that mainstream users are adopting it at a rapidly increas-
ing pace.”[1] This is also seen in the Norwegian Internet telephony marked,
with an increasingly varied spectrum of VoIP providers. Forerunners like Telio
that have been active for several years are facing more competition from the
broadband providers that start offering this service themselves, among them
Telenor, Nextgentel or Bluecom/Ventelo.

Motivation for VoIP adaptation or “the move from POTS [Plain Old Tele-
phone System] to PANS [Promise of Internet-based pretty amazing new ser-
vices]” [2], is multifarious[3, 4] and depends on the target segment, e.g. private
or corporate. Some motivating key factors can be identified

• reduced operating cost

• more efficient use of resources

• possibility of value-added services

• progressive deployment (instead of a one-time technology migration)

There exist important inhibiting factors. Of special interest for this thesis
are availability and security, two key elements for a professional deployment of
VoIP. Traditional telecommunication companies have a long history and there-
fore much experience with managing downtime; the VoIP community is still
working hard for achieving uptime guarantees that are somewhat comparable.
The same can be said about security – since traditional phone networks were
often owned by the state, very few people or companies had direct access to it,
limiting the exposure. This is no longer true with the Internet’s global infras-
tructure, so adequate means have to be used in order to achieve an acceptable
level of protection. While it may be up to a private consumer’s preference how

11

12 Chapter 1. Introduction

much attention these factors should receive, they are of pivotal importance for
a company. A redundant architecture for securing VoIP traffic is needed.

This thesis focuses on two aspects: first, evaluating possibilities for generat-
ing VoIP traffic, and presenting a simple method for creating synthetic/artificial
traffic with Linux’ pktgen kernel module, with the packets reflecting typical
VoIP characteristics; second, the use of two redundant state-synchronized fire-
walls running OpenBSD for internetwork-connectivity. Answers were sought
for the following questions:

• How can VoIP-traffic be generated with a moderate set of commodity
hardware? How much traffic can be generated? Which properties must
synthetic/artificial VoIP packets have in common with real ones?

• What is the measurable traffic forwarding limit of one firewall? What are
the limiting factors?

• What can be said about packet loss and it’s influence on ongoing “calls”
in failover situations, either administratively (soft-failover), or by power-
cycling (hard-failover)?

This document is structured in the following way:

Chapter 2 enlightens the reader with historical and technical background in-
formation on Voice over IP, and mentions previous work done on the
topic.

Chapter 3 explains the available hardware, the architecture of the testnetwork
and issues related to traffic generation, capture and forwarding. Also the
simple model for relating pktgen’s three main parameters (fixed inter
packet delay, packet size, total packet count) to more user-friendly values
(amount of simultaneous calls, voice codec employed, call duration) is
presented..

Chapter 4 contains the description as well as the obtained data of the experi-
ments about generating artificial VoIP traffic with pktgen, and examining
the forwarding capacity and failover behavior of the firewalls. The black-
box and inside-the-firewall perspectives are presented and used for data
interpretation.

Chapter 5 concludes with a discussion of results, and possible future research.

Chapter 2

Technical VoIP background

In order to give the reader a more complete view of the rather vast area of VoIP,
a few pages of background information are provided. The material includes
parts of a scientific literature survey,[5] written by the author himself in spring
2005. New sources have been added for reflecting recent research.

2.1 A paradigm change

The history of VoIP can roughly be divided into three stages: technology discov-
ery (1970s), pre-commercial (1980-1995), PC-centric (1995-1998) and carrier grade
(1998 onwards). The first and second stage are characterized by research ac-
tivities, and the lack of standards. During the third, PC-centric period, VoIP
underwent the change from an almost exclusively academic domain to end-
user targeting technology, but with many deficiencies (half-duplex, no pro-
gram compatibility etc.) and proprietary solutions; the question of of call sig-
naling (providing a “virtual dial- and ringtone”) was unsolved. A good end-
user experience was still miles away.

Only after 1996 did inter-operability take shape, with the ITU’s H.323 pro-
tocol suite, followed by Reston, VA’s Internet Society publishing the “Ses-
sion Initiation Protocol (SIP)” (approved proposed IETF standard in March
1999). Inter-connectivity between networks (both the PSTN1 and other VoIP-
networks) began to be heavily researched and tested. [3, 6]

Today, the VoIP telephony services fall into two basic categories: carrier and
“free”; general differentiation is possible by a simple rule of thumb, namely: if
a user gets special networking hardware, it is probably a carrier solution.

The approach of using packet-switched networks like intranets or the In-
ternet differs greatly from the traditional circuit-switched telephone networks.

1Public Switched Telephone Network

13

14 Chapter 2. Technical VoIP background

[7, 4] With traditional telephony, “voice as an analog signal [is sent] through
a system of wires and cables connected to incredibly smart central computers,
called switches. At those switches, the voice signals are digitized and routed
to other switches, which then ultimately route them to quite stupid devices,
old-fashioned analog telephones.” [7] VoIP does the exact opposite: voice is
turned into data packets by smart devices and then sent through a relatively
dumb network - the Internet. The receivers are also smart devices: comput-
ers, PDAs, IP phones. Therefore, the paradigms are diametrically opposed; an
“qualitative comparison” of differences is given in ACM’s VoIP-paper.[3, table
1, page 90]

Cable telephone companies take pride in being able to deliver a high avail-
ability, high quality service. Availability is often measured in “9’s”: “five 9’s”
means 99.999 availability, or “three 9’s” stands for 99.9, signifying 5 minutes,
or 8 hours, respectively, downtime per year - “six nines” (99.9999) correspond
to 31 seconds a year! Serious conventional carriers strive for “six nines”[8];
most VoIP companies, big or small, do not dare to promise even three nines,
since VoIP is at the mercy of the weakest link in a possibly very long chain of
dependencies. Technically especially challenging is the conversation quality -
a traditional phone call sounds so good because a devoted full-duplex 64 kilo-
bit channel is allocated for each call.2 With VoIP, the available bandwidth may
be more than 64 kb/s (with roughly 14 Kbps needed), but congestion can arise
anytime and bring the data rate temporarily down to almost zero. Such hiccups
are unavoidable and exist even in conventional telephone networks.

As pointed out by several pivotal technology overviews [9, 3, 10], VoIP
is technically complex and involves several difficult engineering decisions,
namely the choice and deployment of speech codec, packetization strategy,
efficient data transport and dealing with transport difficulties (delay/latency,
jitter and packet loss), but also the choice of the call setup and signaling proto-
col.

2.2 Call signaling

Call signaling includes many functionalities essential to VoIP: establishing calls,
providing call control (manage different types of media transmitted at the
same time), call termination, user registration (authentication), locating users
(directory services), feature invocation (transferring, conferencing, hold, mes-
sage waiting) and interoperability between different architectures.[3, 4, 11]

The two most widespread signaling protocols are H.323 and SIP[12, 11],

2The expression “switched network” for the traditional telephone network may be mis-
leading today, but historically speaking the telephone operators flipped physical switches to
open dedicated electrical circuits between two phones.

2.2. Call signaling 15

with IAX2 (Asterisk’s native protocol) gaining much popularity. A short over-
view follows.

ITU-T H.323 is the foundation protocol suite for audio/video over IP based
networks, and moved the industry away from the initial proprietary solutions
during the mid-1990’s. A default H.323 network consists of 4 basic entities.
The terminal is the end-user device, also called H.323 client. It provides real-
time two-way media communication with another H.323 client. The gatekeeper
is responsible for address translation, bandwidth management and call control
services, while the gateway provides inter-network connectivity, both to the
PSTN or to other networks (like ISDN, ATM). A Multipoint Control Unit (MCU)
supports multi-conferencing between several terminals or gateways.

H.323 relies on many other protocols. “H.323 uses a number of proto-
cols for call control and singnaling: H.225.0 Call Signaling Messages, which
is based on Q.931, for call setup; H.245 for exchanging terminal capabilities
and creation of media channels; RAS for registration and admission control;
RTP/RTCP for sequencing audio and video packets; G.711/712 for codec spec-
ification. T.120 may also be used for data conferencing althought it is not an
integral part of the protocol.”[11]

The call signaling processes work like this: “First . . . an H.323 terminal reg-
isters with a H.323 gatekeeper using an registration request message. After re-
ceiving a registration confirm message from the H.323 gatekeeper, the H.323 ter-
minal queries a H.323 gatekeeper for the address of another terminal using
an admission request message. The terminal then establishes a session with the
other terminal using H.225.0 Call Signaling Messages setup message, possi-
bly routed via the H.323 gatekeeper. The other terminal obtains admission
from H.323 gatekeeper using an admission request message. Once the session
is established, the two terminals will negotiate the available features of each
terminal using .245 as specified in the H.323 document. Finally, the two termi-
nals can exchange media data with the RTP/RTCP channels that were created
during negotiation.” In short and less technical language, the steps are registra-
tion, confirmation, admission request, session establishing, feature negotiation, media
exchange, teardown.
For the taste of many [13, 14, 12, 6, 11], H.323 is too complex to encourage
migration to VoIP. In 1999, a new proposed standard was approved:

Session Initiation Protocol (SIP), which was developed by the IETF, and has
two components: User Agents and SIP servers (including SIP proxies, SIP reg-
istrars, and SIP redirect servers). A user agent is a logical entity that acts as
both a client and a server. A user agent client initiates a SIP transaction with
a request. A user agent server responds to a SIP request by accepting, rejecting
or redirecting the request. A SIP server is a server that accepts requests and

16 Chapter 2. Technical VoIP background

sends responses back to those requests. [11] SIP is a request-response proto-
col that closely resembles HTTP. A SIP request and the appropriate response
are grouped into a SIP transactions, as defined in RFC 3261 (INVITE, ACK,
OPTIONS, BYE, CANCEL, REGISTER) and RFC 3311 (UPDATE). (This rather
high-level description was inspired by Ahuja/Ensor [15, box ’What is SIP?’,
page 52].)
SIP is gaining momentum and is not only used in VoIP applications, but also
in instant messaging programs and game consoles. Big efforts are made to
ensure the interworking between these protocols3; since both H.323 and SIP
use RTP for transferring the data, no media translation needs to be done (as
long as the same codec is chosen).

IAX(2) is a rather new addition.[16] It is a binary protocol and uses therefore
the bandwidth efficient for voice, yet may not be as efficient for other media
stream types (like video). It uses a single well-known port (4569) and sends
both the signaling and media packets in the same channel. This has the big
advantage of being Network Address Translation (NAT) friendly, and causing
only few firewall problems.

In IAX2 lingo, packets are called “frames”. A full frame has a 12-byte-header
and is mostly related to connection control (NEW – ACCEPT – RINGING –
ANSWER – HANGUP packets). Full frames require a receiver confirmation;
every frame contain a 15-bit “call number” that allows an end station to multi-
plex connections; it also contains a 32-bit timestamp that expresses how many
milliseconds have elapsed since the conversation started.4 Mini-frames have a
shorter header (4 bytes), and contain only a the lower 16 bits of the conversa-
tion timestamp. When this counter wraps, a full frame is used to synchronize
the short timestamp.

Connections can be trunked, meaning that packets belonging to multiple
connections are sent in one meta trunk frame with 8 header bytes and 4 bytes
header per call/packet. Again, this makes the protocol even more efficient,
since the input-output overhead is very notable for small voice packets.

Many other protocols have been suggested, among those Megaco (ITU H.248),
IETF’s Media Gateway Control Protocol (MGCP), and Distributed Open Sig-
naling Architecture[14, 9]. They are not discussed further in this thesis.

3see the IETF’s draft-agrawal-sip-h323-interworking-reqs-07.txt
4http://unleashnetworks.com/articles/asterisk-call-analyzer-for-iax2.

html

2.3. Data Transport 17

2.3 Data Transport

Packet transport behavior is highly complex and dynamic. [17, Understanding
Internet Traffic Dynamics] explains how by generating tightly controlled test
traffic streams, a detailed analysis of delay and loss patterns can be made. The
method succeeds in providing high resolution packet departure timestamps
and excludes timing errors attributed to complex variations in clock rates. In
[18], the authors present the results of RTP/RTCP measurements, and come
to the conclusion that the Internet is capable of carrying voice with acceptable
delay and quality. Some concern remained about possible difficulties regard-
ing asymmetric paths. Kampicher and Goeschka [19] introduce a performance
measuring method (and tool) for assessing the “VoIP-readiness” of a LAN
by generating and observing imitated VoIP-traffic. The proposed procedure
consists in sending sequences of UDP-packets to uncommon high destination
numbers (higher than 30,000), assuming an ICMP port unreachable an-
swer will be generated; they further assume the ICMP handling runs at a high
priority on the host. The port numbers are implicitly used as sequence num-
ber, enabling the detection of lost packages. The packet round-trip delay can
be calculated, based on a pair of sent/received timestamps A sophisticated
model aims at ensuring that errors and uncertainties are kept within specified
boundaries. They recognize the further potential of this method and develop
a client-server application, eliminating the dependency on ICMP.

For transporting voice data in IP networks, the User Datagram Protocol
(UPD) is used. On top of UDP, the Real Time Protocol (RTP) provides packet
sequence information so endpoints can determine arrival order. RTCP (Real
Time Control Protocol), RTP’s companion, sends feedback about the quality of
the stream. RTSP (Real Time Streaming Protocol) is used for streaming pre-
recorded data, a possible application in VoIP is a user listening to his voice
messages or sending prerecorded conference calls. RTSP is the only proto-
col that can use a large buffer since this is a one-way stream; bi-directional
communications are not buffered, unless for balancing out jitter (using a small
“dejitter buffer”[20]).

Time- and sequence-critical data like audio or video depend to a larger de-
gree than other data streams on a minimal service quality for the end-user to be
satisfied. Quality of Service stands for the effort to ensure defined quality levels;
the term is the ’sum’ of factors like availability of the network, throughput (ef-
fective data transfer) and packet loss (congestion) rate, latency (total time from
source to destination) and jitter (variation of time between arriving packets).
[7, 8, 21, 22] Some delays are hard to predict, like processing or re-ordering
packets the packets at a router, since they depend on the vendor-specific im-
plementation and traffic at a given moment. Below follows a tabular overview
of the VoIP delay factors, taken from [3, table 2, page 91]:

Transport problems can be tackled differently, since possible sources vary.[7,

18 Chapter 2. Technical VoIP background

Cause of Delay Length of Delay
processing at a switch/router 5-10msec per packet
time to put packets online packet size divided by line speed
propagation delay proportional to segment length
jitter (reordering, buffering) variable
speech encoding 5-10msec

Table 2.1: Traffic Delay Factors Overview

19, 3] Points of application include making routing decisions based on overlay
network info like in MPLS (Multi Protocol Layer Switching), where a “packet
label” is the key to faster routing decisions. Other approaches are Integrated
Service (IntServ), where the Resource Reservation Protocol (RSVP) tries to en-
sure before call setup that all devices along the network path have the needed
resources; or DiffServ (Differentiated Service), where each packet gets tagged
as belonging to a certain service class. In pure IPv6 networks, traffic prioriti-
zation is supported natively. A carrier may also use overprovisioning, a tech-
nique where the available bandwidth is bigger than the required one in order
to have a safety margin for congestions. The concept of having VoIP systems
test different route(r)s before sending the packets does not always yield good
results, since the weak link in the chain can exists at a later stage.

An interesting question raised was wether if extensive QoS-provisions are
needed at all, since end-to-end delays overseas where within the 150 ms range;
[23] or for quoting Goode [9]: “Essentially, the debate is over when excess
network capacity [. . .] is less expensive than QoS implementation.”

Security Since security is one of the decisive factors for new technologies in
enterprise environments (and also climbs the charts of private users), it has to
measure up to at least the current PSTN standard.

Traditional security aspects are confidentiality, integrity, authentication, au-
thorization and availability.[24] “VoIP is not easy to secure”, state Sicker and
Lookabough, referring to the combination of PSTN-interconnection and com-
plex networking functions. “Privacy and confidentiality are aided by the dif-
ficulty in physically accessing wires in order to tap them”; a better solution
would be encryption, which is feasible and deployed for the signaling chan-
nel. H.323 offers specific hooks for each of these security features, and SIP
uses IPsec and SSL/TLS for (partially) securing the signaling channel (not
the whole request can be encrypted, since some fields need to be visible to
proxies).[9] It is to remember that using encryption enhances security, but cre-
ates additional traffic overhead, as well as requiring more computing power
for en- and decrypting. Therefore, the voice data itself is not encrypted, unless

2.4. Conversation Quality: Codecs and QoS 19

IETF’s SRTP (secure RTP) is used.
Firewalls are an essential part of a network defense system, being often the

primary traffic security access checkpoint. Firewall policies have the tendency
to be rather strict (and as a consequence, static). It is inconceivable to jeopar-
dize a current security status by deploying VoIP. Due the still prevalent lack of
public IPv4 addresses, many companies and Internet providers use Network
Address Translations (NAT) in different flavors. This challenges the interoper-
ability, since call signaling requires the caller to be able to contact the desired
recipient (callee).

The issues related to availability can be broken down into four areas: dy-
namic port allocation, embedding port addresses in the packet payload, private IP
end-user addresses and session initialization from public IP to private network be-
hind NAT. In [25], Stukas and Sicker provide an overview of existing solutions:
MIDCOM, STUN, Sen, FANTOM, STEM, with the recommendation of MID-
COM. MIDCOM’s solution moves the application intelligence off the firewall
and into trusted external MIDCOM agents; these agents control the “middle-
box” (the firewall or NAT), using a standard control protocol and thus al-
lowing signaling and media streams to pass through the firewall according
to strict, secure policies. This solution removes the burden of performing ap-
plication specific processing by the firewall and NAT as well as removing the
vendor-dependency for support of H.323 or SIP. The security of the link be-
tween the agent and the middlebox is critical. Bur Goode[9] mentions two
other solution types: (1) a proxy placed at the border between two domains
that handles the VoIP-related traffic, and (2) a firewall that understands the ap-
plication logic. The MIDCOM solution type seems to gain momentum; the
IETF has a Midcom Working Group.

In this thesis, the firewalls are looked at as independent from the remaining
firewall architecture. More comments on this decision will be offered in the
“Methodology” chapter.

2.4 Conversation Quality: Codecs and QoS

Voice can be transmitted uncompressed, but this tends to be rather ineffec-
tive since it contains much redundancy; transmission facilities are expensive
in some parts of the world and merit therefore more efficiency. Most codecs
perform voice activity detection, silence suppression and comfort noise cre-
ation during each silence period. Many good codecs exist, and have been
compared.[9, 23] When it comes to the codec choice, a balance must be found
between codec complexity, payload efficiency and packetization delay. Voice
encoding/compression may shorten the transmission time (“putting the data
on the wire”), but increase total end-to-end time due to the computing delay.

The process of en- and decoding, estimated with 5-10 ms per packet, was

20 Chapter 2. Technical VoIP background

empirically examined in [23]. µ-law compression (G.711) was compared to
Adaptive Differential Pulse-Code Modulation (ADPCM, G.729), cutting the
128 kbit/s bandwidth needed for uncompressed voice (PCM) to 64 kbit/s and
32 kbit/s. The study concluded that uncompressed voice could be used in
intranets, but recommended ADPCM for Internet usage. Impact of variation
in packet size was linear, therefore negligible.

Seen on a high level, the goal of any implementation is to deliver good con-
versation quality. Some of the technical details mentioned before have a direct
influence on the voice quality. Delay provokes two problems: echo (quote:
“signal reflections of the speaker’s voice from the far end telephone equip-
ment back into the speaker’s ear”) and talker overlap (“one talker stepping on
the other talker’s speech”). Echo is very disturbing and must be addressed
by some form of echo cancellation; overlap is problematic if the round trip
delay (the time between emission and reception of the data) becomes greater
than 250ms. The International Telecommunication Union (ITU) recommends a
limit of the round-trip-delay for telephone traffic to 300ms[26] - yielding 150ms
as maximum one-way delay. Opinions have changed little over time, a value
of 150 - 200 ms is still a valid threshold.[4, 23, 27, 9, 1]. ACM’s VoIP paper
[3] mentions an interesting historical anecdote about the 1980s tests with voice
over geosynchronous satellites where users deemed 270 ms latency as unac-
ceptable, and the tolerable maximum was set to 200.

Jitter is the “inconsistent time spacing between each packet at the receiving
host”; since normal voice sources generate a constant stream, jitter can make
a conversation sound unnatural. A study performed at the Ghent University
[20] states “delay jitter has a devastating influence on the perceived quality . . .
if the received signal is dejittered, the degradation due to jitter is similar to
the one caused by packet loss”. A jitter-buffer damps the variability of arrival
rates, but adds to the total latency - a balancing act between performance and
reliability is needed.

Packet loss effect depends on two parameters: frequency (how often) and
contiguity (how many successive). How much packet loss a codec can handle
depends on bitrate and codec design; the percentage lies between 1 and 10
percent [14, 20, 1]. It can be handled better if the lost packets are randomly
distributed, and don’t occur in bursts.

Bandwidth, the throughput of the network, needs to be large enough to ac-
commodate the full data traffic.

The “subjective experienced quality” stands at the center of the end-
user perception. For tests, the user pronounces his (subjective) judgment after
listening to or engaging in a conversation. The ITU has given guidelines on how
to perform listenings. [28, 29]

Several often combined methods have been used to investigate this, among

2.5. Other issues in VoIP 21

those Mean Opinion Score (MOS), Perceptual Speech Quality Measurements
(PSQM, KPN Research, now ITU-T P.862[30]), Perceptual Analysis Measure-
ment System (PAMS, British Telecom) and Perceptual Evaluation of Speech
Quality (PESQ).

A short explanation: PSQM assesses the voice quality by comparing the
original voice signal with the voice signal that is delivered to the end-user
after transmission over the network. It scores the voice quality on a scale of 0
(excellent) to 6.5 (bad). PAMS conducts quality evaluation using an automated
auditory model. It also assigns MOS scores based upon the quality detected.
PESQ combines PAMS and PSQM techniques to generate voice quality scores
on a scale of 0.5 (bad) to 4.5 (excellent).[23, 27] MOS testers judge the quality
of voice on a scale of 1 (bad) to 5 (excellent); the scores are averaged to a mean
value. MOS seems to be the most extensively used method. Since MOS scores
are averaged and therefore somewhat test-dependent, MOS tests need to be
long or abundant in number to give reliable and concrete measures. “It is par-
ticularly ill-suited for long-term measurement, such as making measurements
every 5 minutes for an entire week.”[27, page 63].

Empirical numeric measurements do not focus on subjective user op-
tions, but measures numerically precise data, like the delay in milliseconds, or
the amount of lost packets. Such measurements haven been done in different
granularities, with pure user-perspective (“microphone” in - “speakers” out)
[23] or differentiating between underlying reasons [19, 31, 20, 18, 32]. When
doing such measurements, the processing power of the device, memory avail-
ability at a given moment, efficiency of the protocol and driver and general OS
design need to be considered when interpreting the data.

The conversation quality has reached acceptable levels, but the goal has not
been fully reached yet. Especially jitter handling still seems to be an ongoing
issue.

2.5 Other issues in VoIP

There exist some semi-technical issues that only relatively recently have reached
an awareness-level that fostered an organized solution discussion. These top-
ics are included for completeness, but will not be dealt with further in this
thesis.

Handling of emergency calls According to [33, 7, 1], a big technological chal-
lenge lies in the the 911 problem - routing calls to a “public safety answering
point (PSAP)” in order to be able to provide local emergency assistance. With
traditional PSTN, finding the nearest PSAP is very easy since the terminal de-

22 Chapter 2. Technical VoIP background

vices (telephones) are fixed and at known, hardwired locations. Even mobile
phones offer a good tracking method, due to the registration mechanism of
the active cell (area). With VoIP-terminals, it can be very difficult to determine
where the call is coming from - if a “school district has five or six buildings,
where are the paramedics going to show up?”

Several possible solutions are proposed: (a) the user defines his geographic
location beforehand, (b) automatic routing of 911 calls to a regular PSTN-line,
and (c) the PBX maintains and provides location information about the IP de-
vice.

All these solutions have (dis)advantages - (a) is very straightforward, but
provides only a limited quality since the location information is invalid if the
phone is used by somebody in a different location. (b) implies the subscriber
still needs to maintain a PSTN connection, which is highly unlikely in the case
of an individual, and an overhead in case of a company. (c) raises questions
about privacy and possible abuse, but would be the most accurate solution.

Spit - spam over internet telephony The problem of email spam has been
discussed widely. For a summary, see the 2004 “Spam” Research Survey [34]
Spit, spam over internet telephony,[35] will get much attention soon since spam-
mers and telemarketers are about to discover this new, promising market. No
extensive analysis has been made on current status or countermeasures, but
this is only a question of time since analogous developments as seen in email
threaten to eliminate the technology’s benefits.[24]

P2P (peer-to-peer) approach Skype announced in late 2003 a peer-to-peer
(P2P) application for internet telephony; its success has given internet tele-
phony in general much attention [36, 37]. Dan Sweeney’s article in America’s
Network [38] targets clearly telecom executives, and asks some poignant ques-
tions. Is there a good business case behind this hype? Does it scale (due to the
diluted P2P paradigm) and meet increasing demands? Will this technology
strengthen the position of the big telephone companies while the small ones
go bankrupt, leading to an oligopoly?

The economic impact of this new flavor of VoIP is also in the center of rel-
atively few (semi)academic articles having examined it. [7, VoIP Myths] links
the myth “VoIP is free” to the publicity of this software - this is a common
misunderstanding, since calls are only free computer-to-computer. For calling
regular phones (“SkypeOut”), the user is charged a fee. Additionally, there are
implicit costs like the broadband internet connection itself.

In MIT’s Technology Review [39, Skype beyond the hype], Khamsi points
to technical specialties of VoIP with P2P: the search for a unique hit (read the
callee), opposed to the multiple existence of shared files in a regular P2P-network.
A “global index” - complete current directory of online users - is maintained

2.5. Other issues in VoIP 23

by “supernodes”. Skype uses proprietary solutions (codec, signaling, routing)
and claims their solutions obliviate the need for quality of service, a fact con-
tested by some specialists like Mark Kaish of Bell South.

This precondition made Skype a technically more complex software than
Kazaa, and re-introduced he master-list-concept (dubbed “Global Index”), thus
moving away from “true completely-distributed P2P”. This index is main-
tained by supernodes, randomly chosen powerful computers that are connected
to the network; these special nodes exchange updates to the index and thereby
have collectively seen a complete current directory of online users. The com-
pany does not need to provide any infrastructure itself (this statement is only
valid for inter-skype calls, not connectivity with traditional PSTNs).

It is assumed that corporate users will hesitate to switch to this kind of
implementation, since P2P networks lack service-quality guarantees and – due
to the lack of control of the network – efficient support possibilities. Dennis
Bergström [40] concludes that it cannot be recommended for corporate users to
switch since (a) traffic cannot be confined by reason of supernodes being out-
side the company’s influence, (b) controlling Skype traffic is extremely hard
because of varying ports and protocols, (c) no content scanning is possible
on account of encryption, (d) the “end user license agreement” (EULA) raises
concerns, especially the section that specifies that no action may be taken to
technically analyze Skype traffic, (e) known “bad” people – “famous” for em-
bedding spyware in Kazaa - are behind Skype, and finally (f) there is complete
lack of information about used encryption schemes, meaning the content may
or may not be readable by Skype Inc., representing a possible danger of informa-
tion disclosure.

So far, no scientific study comparing classical VoIP with P2P VoIP has been
undertaken, covering the broad range of topics related to VoIP.

Chapter 3

Architectural Issues and
Implementation

One of the motivating factors for this thesis was the possibility to work on a
“real-world” scenario. FreeCode1 is a Norwegian company that creates, im-
plements and supports Open Source (OSS) products. Since OpenBSD has an
outstanding positive record for being security-aware and -conscious,2 the idea
was born to analyze redundant OpenBSD-firewalls for VoIP .

Combining the topic of redundant firewalls with Internet telephony yielded
a possible research area. It turned out that only few academic articles have
dealt with the issue of redundant firewalls, and none of them in the context
of VoIP.[41, 42] Yet it was acknowledged in some strategic articles that single
points of failure pose a security threat, and high-availability architectures were
recommended.[43, 44].

Integrating a firewall solution into the already existing security landscape
is not a trivial task if done in a responsible way. Most companies of a certain
size abhor the idea of exchanging such a central element, yet they may con-
sider enhancing the current architecture by splitting the traffic handling and
thus delegating a specific task to dedicated hardware. Thus, it would be of in-
terest to see if an OpenBSD-firewall is apt for handling exclusively VoIP traffic.

For live time-sensitive bidirectional VoIP network traffic, the presence of
multiple, redundant firewalls is a must in order not to loose the communica-
tion channel to the outside world in case of a firewall failure.

As mentioned in the introduction, the focus was to find answers to the
following questions:

• How can VoIP-traffic be generated with a moderate set of commodity
hardware? How much traffic can be generated? Which properties must

1http://www.freecode.no
2Many contributions from the OpenBSD-community have made their way into other oper-

ating systems, like the SSH server and client implementation, or the packet filter.

25

26 Chapter 3. Architectural Issues and Implementation

synthetic/artificial VoIP packets have in common with real ones?

• What is the measurable traffic forwarding limit of one firewall? What are
the limiting factors?

• What can be said about packet loss and it’s influence on ongoing “calls”
in failover situations, either administratively (soft-failover), or by power-
cycling (hard-failover)?

Before being able to conduct meaningful experiment for finding answers, a
reasonable framework had to be built. This chapter aims at making the architec-
tural decisions comprehensible.

3.1 Hardware and Configuration

The following list gives an overview over the available hardware for this project.
One of the issues was to find out how much hardware was needed for re-
searching this, so the exact quantity of the hardware was not carved in stone
beforehand, yet it was aimed at using the bare reasonable minimum, namely
the firewalls plus two commodity desktop computers on the network edges.

SMC Network 8648 Tiger Gigabit Ethernet Switch (provided by FreeCode)
was used to connect the firewalls and the computers together. The switch has
48 10/100/1000 capable ports, supports ISO-layer 2/3/4 switching and many
more features. The full technical datasheet is available at the SMC homepage.3

The configuration follows Cisco-IOS-standards; the switch was configured
as follows:

VLANs (a) One default administrative VLAN (ID 1) having three ports as-
signed to it - the uplink port with IP 10.0.0.30 and the two ports to the
administrative interface of the dells. (b) The WAN VLAN (ID 31) with
dell1 and the WAN-ports of firewall1 and firewall2. The network does not
exchange any data with other networks. (c) The LAN VLAN (ID 32)
with dell2 and the LAN-ports of firewall1 and firewall2. Also this network
is closed.

Ports All ports are disabled explicitly, only the active ports are opened and
configured for auto-negotiation. The negotiable operation mode set was
reduced to capabilities 1000full, allowing only gigabit speed. Set-
ting this manually did not work, even though the documentation con-
tained such an example. A bug report was filed with SMC.4

3http://www.smc.com/
4Also another bug was reported, namely the crash of the HTTPS server when entering the

IP-addresses of the NTP-servers through the web-interface.

3.1. Hardware and Configuration 27

MAC-address table The switch’s static MAC-address-table was populated with
the addresses for the dells and the firewall’s real hardware addresses.

Two Dell OptiPlex GX270 computers were provided by Høgskolen i Oslo;
their task is to generate and capture traffic.5 The machines contain an Intel
Pentium 4 2.6 GHz processor (800 MHz system clock, hyper-threading dis-
abled) on an Intel 865G chip set and are equipped with 512 MB DDR SD-RAM
(dual 333 MHz).6 The built-in Intel 82540EM Gigabit Ethernet interface was
connected to the WAN/LAN, and an additional 3Com Fast EtherLink Xl 100
MBit PCI card (revision A and B) was used for admin network connectivity.

On the 40 GB Western Digital hard disk, Ubuntu Linux release “Breezy
Badger” was installed with the “server” template. On dell1, 20 GB were set
aside for an OpenBSD-installation in order to be able to create and maintain
the images for the firewalls.7

The reader shall not be bored with a long elaboration of how these Linux
machines were configured; however, a few points deserve attention:

kernel The latest Linux-kernel 2.6.16.14 was patched with PF RING for allow-
ing fast capturing rates.8

network configuration Upon taking the network interfaces up or down, the
routing table was updated so it would reflect the status of network avail-
ability.9

serial console Since the author suspected to commit errors while writing the
packet filter ruleset, precautions were taken so that minicom can be used
to administer the firewalls. Unfortunately, the serial port on dell2 did not
work, and it was therefore only possible to access firewall1 by this means
from dell1.

5One computer was dead-on-arrival and had to be replaced with a new one immediately.
6Detailed specs see http://support.euro.dell.com/support/edocs/systems/

opgx270/en/ug/specs.htm
7To the big surprise and disappointment of the author, no other operating system supports

even reading the UFS2-filesystem used by OpenBSD which is a subtype of the fast file system
(FFS). The most current Linux kernel crashed upon mounting it, ffsdrv for Windows and BSD-
based Mac OS X did not recognize the partition at all, and FreeBSD was also unable to mount
it.

8In the context of traffic capturing, the decision to use Linux and not FreeBSD was a con-
scious one. Fabian Schneider empirically compared capturing in Gigabit environments and
concluded in 2004[45, p. 35] that Linux with the PF RING patch was best suited for a sin-
gle capturing process. Several months later (in 2005) he conducted extended experiments[46,
p.68] and found the combination FreeBSD with AMD Opteron processors was superior, yet
this hardware was unavailable.

9Example in /etc/network/interfaces: up /sbin/route add -net
10.2.0.0 netmask 255.255.0.0 gw 10.0.1.1 dev eth1 upon taking the
WAN-interface of dell1 online.

28 Chapter 3. Architectural Issues and Implementation

Hewlett-Packard Pro Liant DL140 (provided by FreeCode)10 equipped with
a Intel Xeon Pentium IV 3.6 GHz processor and 1 GB RAM. They are natively
equipped with 2 Broadcom BCM5721 Gigabit Ethernet network cards, and a
third one (Linksys EG1032) was added for being able to connect them to a third
network.

Due to their planned function as firewalls, the harddisk and CD-ROM was
removed and replaced with an PCI Reiser card that allows the system to use
a Compact Flash (CF) memory card as hard disk. On the bootable compact
flash card, a stripped-down flash-boot kernel image (with an UFS2-filesystem
inside) 11 contains OpenBSD 3.8. During the boot process, the flash is mounted
at /flash, the image is expanded in RAM, and the whole operating system
is loaded into memory. No swap partition (on the flash card) is used since it
would be the bottleneck of the system.

For allowing user-friendly configuration of the system, /etc/rc – the init-
script – copies any files found in /flash/conf to / before any services are
started. This mechanism was used to set the correct hostname, the network-
related configuration (interfaces, hosts, resolver), the timezone, the packet-
filter configuration, allowing login from the serial console, and having per-
sistent ssh-server-keys. The file rc.more is run at the end of the init-script
and contained a single command for re-mounting the flash card in read-write
mode.12

Additionally, /etc/rc also extracts /flash/*.tgz files in /. This mecha-
nism is used to make additional binaries available, for example the compiled
C-tools pf-query for querying the packet-filter state information or tod for
returning the time of the day.

3.2 Network Topology

The network topology has evolved during the project. The network was born
at Høgskolen, with dell1 running FreeBSD 6.0 and acting as gateway to the
Internet. Unfortunately this network was stillborn and died after a short time –
for troubleshooting the firewall hardware problems, it was necessary to move
the equipment up to FreeCode at Forskningsparken. There, the network was
built anew.

10During the first 8 weeks of the project, two no-name firewalls with a VIA motherboard
were used; they had to be exchanged since both OpenBSD 3.6 and 3.8 kernel-dumped when
initializing the PCI Gigabit Ethernet cards. The problem persisted with different network
cards, leading to the hypothesis that the hardware was somewhat incompatible or dying.
Many weeks have been spent on trying to find the exact error, but in vain.

11http://www.mindrot.org/flashboot.html
12In other words, the following files were in /flash/conf: hostname.{bge0 | bge1

| sk0 | carp0 | carp1 | pfsync0}, hosts, localtime, mygate, myname,
pf.conf, rc.conf, rc.more, resolf.conf, ssh/, sysctl.conf, ttys.

3.2. Network Topology 29

Figure 3.1: Testnetwork Topology

Diagram 3.1 shows the network topology. A short explanation of the se-
lected address-spaces:

WAN 10.0.1.0/24, populated with dell1 - 10.0.1.10, firewall1/WAN - 10.0.1.2
and firewall2/WAN - 10.0.1.3. The routing tables of the firewalls contain
dell1 as the gateway to a shadow WAN-network 10.1.0.0/16.

LAN 10.0.2.0/24, populated with dell2 - 10.0.2.10, firewall1/LAN - 10.0.2.2
and firewall2/LAN - 10.0.2.3. The firewalls point to dell2 as gateway for
the shadow LAN-network 10.2.0.0/16.

pfsync Since only two firewalls were in use, they were connected together
with a crossover cable. They were assigned the addresses 192.168.254.{2
| 3}.

The CARP-cloud designates the two network segments where the redundancy
element of the firewall activity lives. CARP is explained in the next sec-
tion about the concept of redundant firewalls. On the WAN side, the master
firewall responded at IP 10.0.1.1, and at 10.0.2.1 on the LAN side.

30 Chapter 3. Architectural Issues and Implementation

Admin Network (not drawn) The two dell machines were accessible from the
FreeCode network at 10.0.0.33 and .34, respectively. The ports on
the switch were put into the administrative VLAN so the switch could
be administered and queried by SNMP.

The shadow WAN- and LAN-networks were necessary for a two-folded rea-
son. First, the class C-networks (10.0.1.0/24 and 10.0.2.0/24) can only
provide addresses for 254 hosts, but traffic from more sources was to be simu-
lated. Second, if the sending/receiving hosts lived on the same network as the
respective firewall, a proxy ARP would have to be run on the dells, with the
overhead of maintaining a mini-ARP-database and flooding the network with
many ARP queries and replies. Defining the dells as gateways was the easier
solution.

3.3 The Concept of Redundant Firewalls

Firewalls sitting on the edge of the network are often given much attention,
since they are a key element in most security architectures. As elaborated in
Ryan McBride’s introduction to CARP and pfsync[47], there is often a strong
pressure to keep the network up at all times. Several factors may contribute to
such a demand; from a human standpoint, the person (e.g. manager) responsi-
ble for network issues needs to find the balance between defending legitimate
downtime and measuring up to the upper management’s expectations. It can
also be a challenge from a technical standpoint since big organizations may
not be able to map out consequences for all connected system if the network is
detached for a time period.

Logically, keeping the firewalls up no matter what inhibits proper firewall
maintenance, especially patching or upgrading that requires single-user ac-
cess. Such an attitude is of course counter-productive in the long-run, since
known security issues may not be addressed duly. The problem is strongly
mitigated by using multiple firewalls. Many firewall manufacturers have un-
derstood this issue and offer solutions; the terminology used is “firewall clus-
tering”, “hot-standby firewall”, “firewall redundancy” or “firewall failover”.
Two RFCs comment on protocols used to exchange state information: RFC
3768 on Virtual Router Redundancy Protocol (VRRP, Nokia/IETF authorship and
the de-facto standard), and the older RFC 2281 Cisco Hot Standby Router Proto-
col (HSRP, Cisco/Juniper authorship). There’s more than a side note13 about
patent problems with these, so both the OpenBSD developers and the Linux
community decided to write their own protocols.14

13http://www.openbsd.org/lyrics.html#35
14The uCarp project at http://www.ucarp.org/project/ucarp and the ct sync netfil-

ter module http://people.netfilter.org/hidden/ct sync/ provide this functional-

3.3. The Concept of Redundant Firewalls 31

OpenBSD supports redundant firewalls since version 3.5. This is achieved
by combing technologies from OSI-network layers 2 and 3 (link and network
layer). The Common Address Redundancy Protocol (CARP) allows several
computers to share an IP address, and pfsync takes care of replicating the fire-
wall states and was explicitly designed for dealing with known security prob-
lems of VRRP and HSRP.15

CARP is IP protocol number 112. Said with few words, CARP allows one
virtual16 IP address to be shared by several computers, either based on avail-
ability of a master node, or round-robin. This is accomplished by periodically
sending CARP-advertisement messages to the network, saying “The IP x has
MAC-address y, valid for virtual host n.” The recipients – other network com-
ponents like switches or routers – take note and update their routing tables,
consisting of the (switchport, IP, MAC) tuple. In such a default configuration,
there is only one virtual MAC address per virtual host, but the “location” of
the host can change (moving to another port on the switch).

Several important configuration options can or must be set on any par-
ticipating firewall; this is done by appending the configuration string to the
ifconfig command, or writing it in the correct hostname.carpN file. The
following parameters can be tuned:

advbase The frequency of the ARP updates is defined on a participating fire-
wall with the advbase (“advertisement base”) parameter; possible values
are 1..255 seconds, default is 1. There is only one host advertising. Ac-
cording to McBride[47], it takes about 3 seconds for backup firewalls to
realize the master has vanished, electing a new master and finally for-
ward traffic.

advskew In order to allow the participating firewalls to elect the master, the
metric advskew – default value of 0 – can be set to a value in the range
1..255. The sender with the lowest advskew wins. The process of elect-
ing a master is only started if and only if the current master vanishes or
sends a message with an “infinite” adskew. This means that the previ-
ous master, once online again, simply participates as a backup firewall.

state The state reflects the current role the participating client has at this in-
stant: it can either be in init (finding current role or administratively

ity for Linux; this information is only included for completeness.
15Chris Russel of Infosecalliance has written Understanding Dynamic Route Protocol Vulner-

abilities in late 2001 where he explains weaknesses of routing-related protocols, among them
VRRP and HSRP (section 4, pages 7–8). The main problem is related to authentication of the
packets. The document is indexed by scholar.google.com.

16“Virtual” is used in the sense of not being (a) statically assigned to a host (for IP) or (b) the
real hardware-address of a NIC.

32 Chapter 3. Architectural Issues and Implementation

down), backup or master. If this parameter is set manually, it over-
rides the automatic election.

VHID and group password Since a physical device can participate in multi-
ple CARP groups, the CARP packets contain the virtual host ID (VHID);
this parameter is numeric. In order to ensure integrity of the packets they
are signed cryptographically with the SHA-1 HMAC and a pre-shared
group password.

arpbalance CARP supports the arpbalance feature; this feature allows multiple
hosts to share a single IP address simultaneously. When arpbalance is
used, there are multiple virtual MAC address (one per host), in contrast
to normal CARP-configuration with one “moving” virtual MAC.

The kernel needs to be configured correctly so that CARP works as ex-
pected. This is either done on the command line by calling sysctl, or making
a permanent entry in sysctl.conf.

carp.allow net.inet.carp.allow=1 has to be set for accepting CARP-updates.
It is important that the packets have a pass-rule in the packet filter ruleset,
e.g. pass quick on $phys if proto carp keep state

preemption If net.inet.carp.preempt is set to 1, then the firewall that was
master before failing will take back his role once online again. For this
to work, the process of electing a master is continuous: the hosts compare
their own advskew value with the one in the packets they receive. If their
own value is lower, they start advertising themselves, and the other host
bows out after having sent bulk pfsync-updates to the new master. In ad-
dition, this option also enables failing over all interfaces in the event that
one interface goes down. If one physical CARP-enabled interface goes
down, CARP will change advskew to 240 on all other CARP-enabled in-
terfaces, in essence, failing itself over.

arpbalance net.inet.carp.arpbalance=1 must be set.

CARP can be turned off manually with ifconfig carpN down, forcing
sending a last advertisement with advskew 255 (infinity). Thus, any present
peer takes over immediately as soon as the packet is received. This manual
failover is handy for maintenance, and it will be examined if traffic passes
through the routers more smoothly than when one firewall is power-cycled.

3.3. The Concept of Redundant Firewalls 33

Figure 3.2: The CARP/pfsync Failover Sequence

34 Chapter 3. Architectural Issues and Implementation

pfsync is IP protocol 240. This protocol takes care of communicating the
current firewall state information to the others.

By default, multicast updates are sent to the local network (224.0.0.0/4), but
this can be overridden by the syncpeer parameter, forcing unicasts to the spec-
ified peer. Since pfsync is not cryptographically secured due to speed advan-
tages, the traffic has to use a secure network link. In its simplest form, this can
be a crossover-cable; if more than two firewalls participate, they could be part
of a closed VLAN or an otherwise dedicated, secure network segment. The
pfsync-traffic amount scales linearly with the number of participating hosts.

Figure 3.2 (diagram taken from [47]) gives a visual representation of the
failover sequence, with preemption enabled; with preemption disabled, the
lower part – below “master power failure” does not apply but the the mas-
ter/backup roles are simply switched.

The packet filter is responsible for making the pass or block decision for traf-
fic. OpenBSD has a very elegant configuration language: the Berkeley Packet
Filter (BPF).17 Only a limited subset of pf ’s capabilities were used for this setup.

In this experiment setup, CARP was configured on both firewalls with adv-
base 1. Even though this is the default, explicitly stating it rules out misun-
derstandings. firewall2 was configured with an advskew 128, so it would
automatically assume the role as a backup as long as the master is present.
Preemption is turned off.

The hostname.carpN configuration file therefore looks like this:

carp0 attached to the WAN interface
inet 10.0.1.1 255.255.255.0 10.0.1.255 vhid 1 pass v0ip

carpdev bge0 advbase 1

(firewall2 contains additionally advskew 128)

carp1 on fw2 attached to the LAN interface
inet 10.0.2.1 255.255.255.0 10.0.2.255 vhid 2 pass v0ip

carpdev bge1 advbase 1

(firewall2 contains additionally advskew 128)

The hostname.pfsync0 contains the line up syncdev sk0 syncpeer

192.168.254.{2 | 3 }.

The complete pf ruleset can be found in the appendix; with normal lan-
guage, the ruleset can be described as follows:

17For an introduction and advanced topics, see http://www.openbsd.org/faq/pf/.

3.4. Traffic generation 35

• allow all traffic on the loopback-interface

• general options: set a limit of 50,000 states, block-policy return

• allow pfsync on sync-if, and carp on WAN and LAN, keeping state
information

• allow new SSH-connections from/to WAN/LAN, keeping state

• allow incoming WAN UDP traffic for ports 20,000 to 30,000 going to LAN
with a first-packet-timeout of 5, a single-direction-timeout of 15 and a
connection timeout of 15, keeping state

• allow incoming LAN UDP traffic for ports 20,000 to 30,000 with the same
timeouts and also keeping state

• allow incoming WAN UDP traffic from and to IAX2 port (4569) with a
first-packet timeout of 45, a single-direction-timeout of 15 and a connec-
tion timeout of 15, keeping state

• allow incoming LAN UDP traffic from and to IAX2 port with the same
timeouts and also keeping state

• block other traffic coming from WAN

• allow from LAN to WAN, keeping state

3.4 Traffic generation

Traffic used to load the firewalls can either be replayed or generated. The pros
and cons of these alternatives had to be pondered so that a reasonable choice
could be made.

Traffic replay implies that traffic was captured and stored previously, and
several tools could be used for this, for example tcpreplay or tcpivo. Harpoon18

or “Monkey See, Monkey Do”19 only rely incoming traffic and do not generate
any traffic themselves.

There are inherent difficulties with replayed traffic so that packet sending
times correspond to the original ones. Feng et al.[48] (authors of TCPivo, a
“High Performance Packet Replay Engine”) identify the following areas:

18http://www.spirentcom.com/documents/atp/University of
Wisconsin-Whitepaper-978.pdf

19http://www.usenix.org/publications/library/proceedings/usenix04/
tech/general/cheng.html

36 Chapter 3. Architectural Issues and Implementation

• preloading the trace file(s) for quick availability

• sending the packets with correct inter-packet-gaps, which requires an in-
kernel sending procedure

• process scheduling

Several elements important for the planned experiments were already known.
Since VoIP traffic is time-sensitive, the inter-packet-gap of “outgoing” pack-
ets needs to be correct. This does not exclude bursts. Feng was able to send
correctly packets with an inter-gap of 20 milliseconds (ms), coming from 64
MB 1 million packet traces. Two of the voice codec candidates use packet
rates of 50 packets per seconds, yielding 20 ms inter-packet-gap for one voice
call/connection. This poses a serious limitation for generating simultaneous
calls.

Additionally, if the captured traffic is ‘real’, for example from a VoIP provider
or a company, many issues need to be addressed concerning storage and main-
tenance, both on a technical level (network traffic traces with full payload grow
to huge sizes over short time), as well as on a legal level (privacy law). Due to
well-known time limitations for this project, this would have been a hindering
factor. Last, replayed traffic does not adapt to new situations, e.g. new proto-
cols, or increased network capacity. This is a significant drawback for future
research because new traffic traces would have be organized.

The biggest advantage in replayed traffic is the representative property: the
packet pattern (packet size, size distribution, packet amount, etc.) do reflect a
real-world situation.

Traffic generation The alternative is to generate the traffic. Taking this road
would make it much easier to repeat the experiments later, yet it is not without
pitfalls. The following demands must be addressed:

time needed for packet generation Generating network traffic needs process-
ing resources. Traditional userland programs need to traverse a long
generation path from user- through kernelspace until the packet is put
on the wire. The overhead of handling the packet down from user- to
kernelspace is so big that a rather impressive machine park is needed to
load a Gigabit Ethernet link. Alternatively, a much faster kernel packet
generator can be used.

packet characteristics The generated traffic - both from a single-packet per-
spective and seen as a set - must reflect the “true” characteristics. For
Internet telephony traffic, this includes varying packet sizes for different
voice codecs, changing IP and UDP information, as well as the packet
intensity.

3.4. Traffic generation 37

3.4.1 Real or Synthetic?

A natural choice would have been to use programs like Asterisk or Yate to
generate calls, since they can generate real VoIP traffic, including eventual me-
dia flow control traffic like SIP/IAX and RTCP. The voice payload is normally
created by streaming a recorded sound file; bidirectionality can be achieved by
automatically answering incoming calls and sending back the received pack-
ets. A quick test showed that the upper call generation limit for this approach
was about 400 calls per computer, when generating the media itself (encoding
the voice payload) taking most of the resources.20 The load two computers
could generate would therefore not be enough to load a Gigabit link. Since
the machine park for this thesis was to be moderate, this possibility was ex-
cluded. Not to forget that the software may or may not support new develop-
ments (meaning new control protocols), making it harder to have an extensible
framework.

The focus was turned toward generating “dummy” VoIP traffic that has
enough “true” characteristics. Generating such synthetic traffic could be done
in kernel level, so generation would be much faster. This is only possible since
the “call voice” is almost exclusively wrapped in UDP or RTP traffic; the more
complex TCP protocol has a much larger overhead and is harder to handle
in-kernel.

Since most firewalls (and specifically the OpenBSD-firewalls in question)
look at the IP/UDP protocol information and do not examine the payload it-
self, having non-voice payload does not pose a problem - the idea was born to
use “pktgen the linux packet generator” (capitalizing by Robert Olsson, author
of pktgen)[49]:

interface /proc/net/pktgen/ is the interface to the kernel module.

parameters A full overview of all parameters is available online.21 Of piv-
otal interest were the parameters count, delay, pkt size, udp src min/max,
udp dst min/max, dst min/max (IP) and src min/max (IP).

packet size distribution In order to model traffic realistically, Schneider has
extended pktgen for his engineering thesis in 2005.[46]. His version al-
lows packet size to be selected according to a statistical distribution, in-
stead of either having a fixed size, increasing monotonically or just have a
random size in the range a..b. Since Olsson did a major rework of pktgen

20Programs exist for only generating VoIP control protocol traffic, both Open-Source and
Commercial: SIPptester, HCL SIP Conformance Tester, sipsak any many others. Other soft-
ware can be used for generating payload, like rtptools, or both control and payload traffic
(Asterisk, Yate, Candelatech’s LANforge FIRE).

21ftp://robur.slu.se/pub/Linux/net-development/pktgen-testing/
pktgen-HOWTO.txt

38 Chapter 3. Architectural Issues and Implementation

for kernel 2.6.11, Schneider’s distribution enhancement is not available
yet.

Schneider, again, [45, p. 30] explains that he was able to fully load Giga-
bit Ethernet with a single computer running pktgen, sending 1,500 byte pack-
ets. With 180,000 packets per second (pps), rates of approximately 915 Mb/s
were reached, corresponding to an almost fully utilized Gigabit link. pktgen
reached its upper sending limit at an inter-packet-pause of 3,000 nanoseconds.

At a later stage of the project, it was discovered that there exists an alterna-
tive to pktgen: KUTE (Kernel-based UDP Traffic Engine).[50] . KUTE has the
following features pktgen is missing or has implemented in a different way:

link layer independence KUTE can run on any link layer and not just Ether-
net; this is possible since the level-2 header is set by the kernel’s output
function and not by KUTE itself.

additional adjustable parameters KUTE’s configuration options include the
packet payload (cannot be controlled in pktgen), time-to-live (TTL) and
type-of-service (TOS) as well as flags for turning on/off UDP checksum
and IP identification fields.

receiver module KUTE includes a receiver kernel module; it creates a inter-
arrival histogram that can be accessed through the /proc file system (the
number of histogram bins and their size in microseconds is configurable).
Upon unloading the module, the mean and and standard deviation are
calculated and written to /var/log/messages. The receiver can filter
the traffic based on source IP and UDP port number, or it can simply
measure all incoming UDP traffic. For best performance, the Linux ker-
nel must be patched. For inter-arrival time measurement, KUTE uses the
timestamps present in the socket kernel buffer (skb).

The biggest incentive for using KUTE would have been the availability of
the receiver module. Since KUTE in its current version 1.3 only runs on old
kernels (either 2.6.4 or 2.6.11.10) which are problematic with Deri’s PF RING
patch, KUTE was not used.22

3.5 Voice codec selection

As mentioned in the VoIP background chapter, many different voice codecs are
deployed, but only a few have gained widespread acceptance among non-tele-
communication-companies and private parties. With the advent and spread of

22Sebastian Zander as one of the authors of KUTE was so kind to send me the KUTE 1.4
prerelease, but kernel support had only arrived at 2.6.11.12.

3.6. Modeling VoIP traffic 39

codec payload (bytes) pps
G.711 160 50
G.726 (ADPCM32) 80 50
GSM (slow mode) 66 25
GSM (fast mode) 33 50

Table 3.1: Voice codec candidate overview

open-source telephony software like Asterisk23 or Yate24, two main issues for
selecting the speech codec became apparent:

Processing intensity Since the vast majority of these “VoIP switchboards” run
on commodity hardware, the en- and decoding intensity should be mod-
erate. Eventually - if interconnectivity with another VoIP switchboard is
desired - transcoding (converting from one codec to another) has to be
done; example transcoding delays when using Asterisk on a Pentium III
300 MHz can be found in [51, table p. 194]. The delays vary greatly. G.711
with its two dialects a-law and µ-law turned out to be the codec of choice
for many since it has a low processing intensity, with Speex (an variable
bitrate codec licensed inder the Xiph.org variant of the BSD license[52, p.
147]) gaining popularity.

Licensing issues Releasing software open-source touches on licensing issues.
Many possible codecs are patent-encumbered in one way or the other
(G.723, G.279, iLBC). Therefore G.711, G.726 (ADPCM) and GSM (fast
and slow mode) are unproblematic and therefore most used.

Out of the plethora of possibilities, the three community favorites G.711,
G.726 and GSM (slow) were selected as candidates.[52, p. 144] Table 3.1 lists
their data payload size and the default25 pps (packet-per-second) rate.

3.6 Modeling VoIP traffic

Since pktgen as a “dumb” UDP-packet-generator only allows few parameters
to be tuned in order to mimic more sophisticated traffic patterns, a simple
model for imitating VoIP traffic had to be devised. The following enumeration

23http://www.asterisk.org
24http://yate.null.ro
25Some codecs allow for choosing the amount of milliseconds that is encoded and put in

one packet. Increasing this amount leads to bigger payload/packets while decreasing the pps,
and vice versa. For keeping the possible combinations at a concise level, only the default was
chosen.

40 Chapter 3. Architectural Issues and Implementation

lists typical properties of VoIP traffic, and how these parameters were man-
aged with pktgen.

IP header A regular IP-header with no special parameters set consists of 20
bytes. In this header, the source and destination address is contained;
these can be set at runtime in pktgen. Since type-of-service (TOS) field is
not used consistently as criteria for routing or firewalling on the Internet,
and pktgen does not expose an interface for modifying this parameter, it
was not taken into consideration.

UDP header The normal UDP-header is of length 8 bytes, and contains the
source and destination port. Also these parameters can be set in pktgen.
It is important to note that IAX2 only uses one well-known 4569 port in
both directions, whereas RTP uses one port combination per stream and
direction.

RTP (real-time protocol) and IAX2-headers The headers for the specific me-
dia stream can be already considered “payload” and are not taken into
consideration when passing through a firewall. Therefore, only the size
of the headers are important: 12 bytes for the RTP-header and 4 bytes for
the header of a IAX2-mini-frame. The length of the header was used for
calculating the total packet size.

Voice payload Different codecs have varying payload sizes; again, this be-
longs to the packet payload and influences only the total packet size.
The payload sizes listed in table 3.1 were used for calculating the total
packet size.

packets per second With the exception of GSM in slow mode, all codec candi-
dates have a packets-per-second rate of 50. The packet rate can be mod-
eled by setting the appropriate inter-packet-gap (or delay) in pktgen.

Table 3.2 gives an overview of the packet sizes used for modeling the pos-
sible codec and media stream type combinations. pktgen’s documentation states
that the network card will add 4 bytes for the Ethernet checksum (CRC) to the
configured packet size.

While IAX2 supports “trunking”, this could not be included in this model
since it would involve a distribution of different packet-size, not all meta-
frames being of the same size. Using Schneider’s distribution enhancement
for pktgen, the model could be enhanced in the future.

Of course, VoIP traffic consist of more than voice packets, yet it was de-
cided not to take into account the signaling and control traffic. For IAX2, once
the connection is established, control traffic consists of “full frames” having
a bigger header (12 bytes), and occurs according to [16] only when 16 bit

3.6. Modeling VoIP traffic 41

codec mediatype pkt size (bytes) max packets calls
G.711 RTP 214 615,677 12,313
G.711 IAX2 206 639,132 12,782
G.726 RTP 134 972,592 19,451
G.726 IAX2 126 1,032,444 20,648
GSM slow RTP 120 1,082,401 43,296
GSM slow IAX2 112 1,157,049 46,281
GSM fast RTP 87 1,474,920 29,498
GSM fast IAX2 79 1,617,081 32,341

Table 3.2: Maximum packet count for one Gigabit Ethernet second per voice
packet

timestamp in the “mini-frame” wraps. This happens every 65,535th mil-
lisecond, or roughly once a minute. Compared to the much higher media
packet rates, it was felt that this control traffic could be neglected. The IAX2-
documention does not explain how feedback about the media stream is ex-
changed between the peers. The frequency of signaling traffic, using full frames
for call setup (NEW - ACCEPT - ACK / RINGING - ACK / ANSWER - ACK)
and teardown (HANGUP - ACK), is also much lower than the media packet
rates, and was not taken into account either. For modeling a real-world sce-
nario with many simultaneous VoIP users initiating or ending conversations,
this traffic would have to be incorporated.

The same thought about the huge frequency difference between signaling
and media traffic was applied to SIP, and therefore no SIP packets were mod-
eled. When it comes to the real-time control protocol (RTCP), RFC 3550 says:
“It is RECOMMENDED that the fraction of the session bandwidth added for
RTCP be fixed at 5%.” With default settings, a RTCP packet is 128 bytes long,
and therefore in a similar range as a VoIP packet. For simplicity reasons, no
special accounting for RTCP was implemented; for calculating the relation
generated packets per second -> calls, these 5% RTCP-overhead could be sub-
tracted.

The CARP-advertisement packet is sent once per second, and since only the
master of one network segment advertises, this single packet was assumed to
be neglectable as well.

The exchange of packet filter states was done through a separate network
and did not affect the VoIP-network.

In order to make pktgen more user-friendly for simulating traffic, a corre-
lation was sought between the parameters delay and count (total packets to send)
and more intuitive parameters for VoIP, namely (simultaneous) calls and call du-
ration. The delay parameter of pktgen is nanoseconds, which in reality is much

42 Chapter 3. Architectural Issues and Implementation

too fine-grained, since most kernels do not have such a precise timer.
There are 109 nanoseconds per second, so for finding the correct packet

frequency the following formula was used:

packet intergap =
1, 000, 000, 000

call count× packets per secondcodec

(3.1)

For example, simulating 1 call for 1 second with a codec using 50 pps yields
a packet intergap of 20,000,000 (1,000,000,000 / 1 x 50) and a total packet count
of 50. Since [45] managed to almost load a Gigabit Ethernet link with a single
computer, it was assumed that pktgen was able to generate packets at Gigabit
“wire speed”26; the following calculation was used to find the correct packet
size value (all sizes in bytes):

packet sizecodec = (Ethernet + IP + UDP + RTP/IAX2) header + payloadcodec

max packet countcodec = floor

(
134, 217, 728 [GB Ethernet capacity]

packet sizecodec

)
For finding the approximation on how many calls this means:

max callscodec =
sent packets per second

packets per secondcodec

(3.2)

Table 3.2 contains the “max packet count” and “calls” values for the chosen
VoIP codecs and media types. For getting the the correct duration, the count
was set to

calls× packets per secondcodec × duration in seconds

The accuracy of this approach is commented in the “Experiments” section.
In oder to test the firewall’s packet filter, the sender and destination in-

formation – IP addresses and UDP ports – was dynamic. pktgen offers two
possibilities for this: either to monotonically increasing the addresses or ports
in range, or to randomize the fields. For every fields, a randomization flag can
be turned on or off. Since randomizing any of the fields would have invali-
dated the allowed IP/UDP permutations – once the “conversation” is started,
per-direction-socket will not change (same sender-IP/UDP receiver-IP/UDP
combination for the whole call) – this option was not used.

Based on this information, the pktg-config-voip.sh Bash-script was
written that configures all the necessary pktgen parameters. The idea is to
shield the user from having to know many internals of pktgen. The script’s
usage:

26Gigabit capacity = 1 GBit/s = 1,024 MBit/s = 1,048,576 KBit/s = 1,073,741,824 Bit/s =
134,217,728 Byte/s

3.7. Traffic Forwarding, Capture and Analysis 43

USAGE: pktg-config-voip.sh
-mediatype (rtp | iax2)
-codec (g711 | g726 | gsms | gsmf)
-calls n (integer)
[-singlehost]
[-nocarp -fw(1 | 2)]
-direction (W2L | L2W)
-duration s (seconds)
[-clone_skb n (packets)]
[-softirq n (packets)]
[-debug]

Most options and their effect are self-explanatory; nonetheless some com-
ments may be useful:

-mediatype Mediatype rtp uses different UDP ports for simulating the media
streams; iax2 employs only the well-known port 4569.

-calls The amount of calls determines directly how big the inter-packet-gap is,
as well as how many different IP-addresses and UDP-ports are used. IP-
addresses start at 10.{1|2}.0.1, UDP-ports (for mediatype RTP) start
at 20,000 and end at 30,000.

-singlehost If only one IP address should be used, this option can be given.
Combining this with -mediatype iax2 allows to send all traffic with
one IP address and one UDP port.

-nocarp with -fwN (must be given before -direction!) pktgen needs to know
the Layer-2-address of the recipient; this is normally set to the virtual
CARP MAC based on the -direction option. If this is not desired, it
can manually be set with this option.

-direction can either be WAN-to-LAN (W2L) or LAN-to-WAN (L2W).

-clone skb and -softirq These two settings have only effect when initializing
pktgen. -clone skb sets how many identical copies with packet-payload
should be sent; when not specified, it equals the calculated total packet
count. -softirq sets the interval on after how many packets pktgen
should “simulate” an irq.

3.7 Traffic Forwarding, Capture and Analysis

As discussed in several scientific papers,[53, 54, 55, 56], software-based traffic
handling often suffers from the general-purpose architecture of many drivers;

44 Chapter 3. Architectural Issues and Implementation

this is especially valid for *NIX-platforms. The problem is called “receive live-
lock” and denotes system overload due to lots of interrupt request. Techniques
like memory-mapping27 or using a ring-buffer28 lessen input-output overhead.
Interrupt mitigation allows combining multiple interrupts into one single one,
preferably with the operating system polling the device and not vice versa.
Interrupt handling is a major issue for high-speed network cards and the in-
ability to deal with it can lead to process starvation since all CPU resources
go into handling interrupts. Newer PCI and PCI-X specifications also reflect
ongoing efforts to address these issues.

A few academic papers gave insight on other researcher’s activities in this
area. A Korean Gigabit-packet-header capture framework [57] can collect 100%
of 385-byte-packets while “existing software-based systems can collect less
than 50% in spite of using more than twice of CPU resources”. This is achieved
by modifying the firmware in the network interface card and let it transfer the
packet header data into RAM using Direct Memory Access (DMA). Addition-
ally, the data can be encapsulated in a UDP packet and sent to other comput-
ers, opening the possibility for load-balancing. Fairly Fast Packet Filters [58]
presents the approach to “minimize both packet copying and context switch-
ing, pushing processing to the lowest levels, and executing computationally
expensive functions as native code”, with the focus being more on the filter-
ing part of traffic capture. Finally, [59] mentions that it’s hard to monitor and
analyze traffic with a single general purpose system, and propose a distributed
capturing architecture.

Armed with this information, the decision was made to patch both Linux
machines with Deri’s PF RING and setting the bucket len (snaplen) to 68
bytes, and the num slots (ring size) set to 16,384 bytes, as well as increasing
Linux’ receive buffer default and maximum values29 to 128 MB (134,217,728
bytes), as recommended in [45]. This ensured having reasonable traffic captur-
ing rate. In order to keep the capturing processing overhead small, no pcap-
filter was passed to tcpdump; if only the number of received packets was of
interest, tcpdump was called with the command-line parameters tcpdump -w

/dev/null -v. The causes tcpdump not do do any lookups, no information is
written to the harddisk, and no output is shown on screen but the total count
of received packets so far, updated every 10 seconds.

One important side-effect of interrupt mitigation(device polling) must be
mentioned: if it is the operating system to timestamp the incoming packets

27When using memory-mapping, the kernel does not copy the received network data to a
new location but allows the userspace program to access the same memory, thereby saving
one copy operation.

28A ring-buffer does not allocate constantly new memory but overwrites old entries after
some time.

29The entries in the /proc/sys/net/core/ are rmem max and rmem default.

3.7. Traffic Forwarding, Capture and Analysis 45

(and not the NIC), then these timestamps will not be accurate since the packets
are processed in a batch.

“Receive livelock” is also a problem when forwarding traffic, and may af-
fect the OpenBSD-firewalls. In contrast to FreeBSD which has excellent device
polling (and is therefore often considered the best platform for capturing traf-
fic), no such kernel enhancements seem to exists for OpenBSD. The problem
is not unknown, of course – OpenBSD 3.8 uses the bge ethernet driver for the
Broadcom gigabit Ethernet cards and according to a message on kerneltrap30,
the “idle loop fix” should have made OpenBSD more resilient. Yet discussions
in the OpenBSD-community show two distinct different opinions:

• either the network card driver is assumed to handle the problem, and
therefore all network cards from the same manufacturer should be on
the same irq

• or irq-sharing is bad and creates additional load; a kernel compiled for
multi-processor-support be used instead, for taking advantage of the I/O
Advanced Programmable Interrupt Controller (IOAPIC) on the chipset.
No solid reasons were given for this rather unusual recommendation.

dmesg on reveals that all Broadcom NIC’s and the Linksys Gigabit card
share irq 5, on both firewalls.

bge0 at pci2 dev 0 function 0 "Broadcom BCM5721"
irq 5 address 00:15:60:ed:da:06
brgphy0 at bge0 phy 1: BCM5750 10/100/1000baseT PHY
bge1 at pci3 dev 0 function 0 "Broadcom BCM5721"
irq 5 address 00:15:60:ed:da:07
brgphy1 at bge1 phy 1: BCM5750 10/100/1000baseT PHY
skc0 at pci5 dev 1 function 0 "Linksys EG1032": irq 5
skc0: Marvell Yukon (0x1)
sk0 at skc0 port A: address 00:12:17:54:f2:96
eephy0 at sk0 phy 0: Marvell 88E1011 Gigabit PHY, rev. 3

Available information was insufficient for deciding that this standard con-
figuration should be changed, and was left untouched.

Analyzing the live or captured traffic is a further step; “analysis” can stand
for anything from a simple bandwidth check to sophisticated in-depth break-
down. On a high-level, VoIP makes network traffic increase considerably; if
not enough resources are available, this is very problematic because “voice is

30http://kerneltrap.org/node/5169

46 Chapter 3. Architectural Issues and Implementation

more sensitive to network slowdowns and glitches than data (. . .) Utilization
should be monitored over a period of time”, as Emily Hollis[60] states in an
Certification Magazine article from 2005. She gives an overview of companies
and their products that can be used for analyzing VoIP traffic.31

Luca Deri [61] has extended ntop in order to be able to identify and analyze
VoIP traffic. ntop allows extracting predefined metrics, covering both the SIP
controlling protocol and the RTP media stream; for media streams, the metrics
are available per direction. A quick glance shows that RTP IN JITTER and
RTP IN PKT LOST are interesting candidates. [62] mentions the same metrics
for VoIP traffic, yet on a protocol-independent level: packet loss, delay, and
delay variation (jitter).

Since using ntop would have increased the need for more computers (run-
ning contrary to the project goal of minimizing hardware) and introduced an
external dependency for the analysis process, it was decided to look for other
possibilities.

KUTE 1.3 has a receiver module which would have facilitated creating his-
tograms of inter-arrival times; yet as mentioned previously, it is not working
with a recent kernel and could therefore not be used.

One viable alternative when only counting received packets was to use
Deri’s example PF RING program pcount. It was felt the handling was some-
what clumsy, tcpdump remained the tool of choice.

Plab[63], a “Traffic capture and analysis architecture” from the University
of of Naples, Italy, was evaluated since it seemed to have interesting properties
for analyzing flows of traffic, e.g. groups of packets with common criteria. The
publicly available version (2.2) was only able to identify TCP steams on port
80; Alberto Dainotti sent me a more recent development version, which sadly
did not work either. Quoting his own words: “we are currently working on
an improved version of Plab with many new features to make it more flexible.
It will take a while though” – unfortunately, time constraints prevented more
testing. Plab could become an interesting candidate in the future for extended
analysis.

After some more research focusing on how to be able to measure packet
loss with the eventual possibility of correlating them to an ongoing call, it was
decided to use the information provided in the pktgen header itself, as defined
in pktgen.c:

31Acterna PVA-1000 VoIP Network Analysis Suite with a field tester unit (HST-3000) sup-
porting call storage and later analysis in PVA-1000); Agilent’s Telephony Network Analyzer;
Brix Network offers a free online service at http://testyourvoip.com, but also advanced
tools; Finisair’s Surveyor Network Monitoring and Analyisis Console; NetIQ’s VoIP Manage-
ment Solution; Analyser Sales Sniffer Voice (add-on for Sniffer Portable, Distributed, and Ne-
tasyst); Viola Networks’ NetAlley VoIP; WildPackets EtherPeek VX; AppareNet; Avaya; Empirix;
Iaxia and Unleash Networks’ Ruby-based Unsniff Network Analzyer (having even a new IAX2-
addon).

3.7. Traffic Forwarding, Capture and Analysis 47

322 struct pktgen_hdr {
323 __u32 pgh_magic;
324 __u32 seq_num;
325 __u32 tv_sec;
326 __u32 tv_usec;
327 };

The first 16 bytes of every pktgen packet consist therefore four 4-byte-fields:
1. a magic number (0xbe9be955), identifying the packet as coming from pkt-
gen, 2. a sequence number, 3. the “second”-part of the the gettimeofday
system call, and 4. the “microsecond”-part of gettimeofday. If all traffic can
be captured at the receiver end, these fields together with the packet-capture
timestamps (from pcap) would provide enough material to look for packet
loss, delay and jitter.

A Bash-shell script was written (d2t.sh32) that processes the very verbose
text output of tcpdump -ttNnXr file.pcap. The -X switch produces all of
the captured packet payload to be printed. The script reads the input line per
line, checks the magic number, and then compacts the information into one
single line with the following fields:

• pcapsec - the “second” part of the pcap timestamp

• pcapusec - the “microsecond” part of the pcap timestamp

• fromsocket - the IP/UDP information of the sender

• tosocke - the IP/UDP information of the receiver

• seq - the pktgen sequence number of the packet

• sec - the “second” part of pktgen’s timestamp

• usec - the “microsecond” part of pktgen’s timestamp

While designing and testing the script, two important observations were
made. The first concerns network byte order. Attention needs to be given if the
bytes are in big- or small-endian. A program reading the packets directly from
the network needs to convert to the byte order of the local architecture. When
using libpcap, the problem is delegated to that library and tcpdump passed the
string in correct byteorder. The second is about performance: some important
operations, especially cutting the fields and converting the pktgen payload
strings from hex into decimal, are done by proxy in a subshell, the speed is very
slow. It took about 1 hour to process a dump file containing 280,000 packets
- which does not correspond to a very long experiment run under high load.
For future work, this analysis-script has to written in C, preferably also using
libpcap.

32see listing in the appendix

Chapter 4

Experiments

After the rather long and tedious process of getting an overview of involved
technical issues, selecting options, organizing working hardware and writing the
script framework for being able to run tests, the focus was finally turned to the
experiments themselves. Three areas were targeted: the suitableness of pktgen
for generating synthetic VoIP traffic, the traffic forwarding limits of the firewalls,
and observations when firewall failover occurs.

4.1 Traffic generation with pktgen

This section describes the experiments that were aimed at getting an empiric
understanding of pktgen’s traffic generation properties and capabilities.

Ruling out clone skb and randomization overhead

A base value had to be established in order to understand how many pack-
ets could be generated. At the same time, it was necessary to find out if the
following factors influence the speed:

clone skb pktgen allows for creating a new payload every n packets. This is
necessary for simulating Denial-of-Service (DOS) attacks[49, p. 5].

IP- and UDP-randomization Both the source- and destination-addresses can
be randomized, as well as the UDP source- and destination ports. If this
randomization is not turned on, the addresses/ports are increased mono-
tonically.

pktgen exposes the packet-per-second (pps) rate after the generation pro-
cess is done; a series of 14 2-million-packet sets with an IP/UDP range of

49

50 Chapter 4. Experiments

10,000 each were generated and the pps rates were recorded, with all possi-
ble variations of dells and firewalls. The test was done with the above men-
tioned parameters turned off (no new payload, no address/port randomiza-
tion) and turned on (new payload per packet, IP and UDP randomization), for
the biggest and smallest packet size (214 and 79 bytes, see table 4.1). It was
expected that the effect would be more notable the smaller the packets were,
more packets need to be generated per second.

The results allow for the conclusion that there is no notable effect. The stan-
dard deviation of single measurements per batch is well below half a percent
(one exception with 1.5% exists), and the difference of the averaged values is
between 0.58 and 0.76 percent for the bigger packet and between 3 and 6 per-
cent for the smaller one. Translated into “calls”: a reduction of less than 0.01
percent, for both packet sizes. As assumed, the measurable change was bigger
for the smaller packet.

Randomization will not be used in the firewall-tests since this would make
the state tables of the firewalls explode (due the the immense large possible
amount of host/port combinations), thereby partially invalidating the tests.

4.1.1 Maximum packet generation

As elaborated on in chapter 3, it was assumed that pktgen would be able to
saturate a Gigabit Ethernet link since it was understood that [46] succeeded
in doing that. This assumption proved quickly to to be wrong. Measuring
the packets per second rate as reported by pktgen with delay 0 yielded the
results recorded in table 4.1. The last column, “percent”, expresses the effective
rate in percent of the theoretical Gigabit Ethernet packet limit for the given
packet size.

The maximum packet generation average for the biggest packet (G.711/RPT
packet of 214 Bytes) turned out to be around 277,000 (corresponding to 5,500
calls), and for the smallest (GSM fast/IAX2 packet of 79 Bytes) around 400,000
(8,260 calls). These values are assumed to be the “upper bound” of pktgen for
this type of traffic.

Rereading closely Schneider’s report,[45, 46] it was discovered that he had
a dual-processor and used much larger packet-sizes, up to 1500 bytes. Since the
overhead of constructing the header and payload, and putting the packet on
the wire occurs for every packet, the I/O overhead in this experiments here is
bigger by magnitudes. This becomes more visible the smaller the generated
packets are, with the load percent decreasing.

As a practical consequence, the packet intergap calculation (equation 3.1, page
42) is wrong, and off by 50 to 75 percent. A new approach was needed.

4.1. Traffic generation with pktgen 51

 260000

 280000

 300000

 320000

 340000

 360000

 380000

 400000

 420000

 79 87 112 120 126 134 206 214

pa
ck

et
s

pe
r s

ec
on

d

codec packet size (in pairs of RTP/IAX2)
 GSMf - GSMs - G726 - G711

averaged values with standard deviation

max pktgen pps per relevant packet size

Figure 4.1: Max pps per codec

codec type pkt size theoretical pps effective pps percent
G.711 RTP 214 615,677 277,448 45.1
G.711 IAX2 206 639,132 284,485 44.5
G.726 RTP 134 972,592 335,690 34.5
G.726 IAX2 126 1,032,444 348,528 33.8
GSM slow RTP 120 1,082,401 351,440 32.5
GSM slow IAX2 112 1,157,049 359,219 31.0
GSM fast RTP 87 1,474,920 391,365 26.5
GSM fast IAX2 79 1,617,081 400,360 24.8

Table 4.1: pktgen packet sizes and effective pps for voice packets

52 Chapter 4. Experiments

4.1.2 Generation time

The next idea for making pktgen more user-friendly by approximating some
functionf(calls, duration) = (delay, totalpacketcount) was to measure the time
needed for generating a packet of a given size with delay 0 and use this value
as some kind of “time0” or generation time.

generation timecodec =
1, 000, 000, 000 [ns]

max packet countcodec

(4.1)

Once a stable “time0” value was obtained, the delay can be calculated as
follows:

calculated packet count = calls× packets per secondcodec (4.2)

and

delaypacket =
1, 000, 000, 000

calculated packet countcodec

− generation timecodec (4.3)

.
While experimenting with generation time, a problem was discovered: the

packet generation rate fell dramatically by 90% when the delay value passed
from 900 to 1,000 nanoseconds. The very low packet generation rate stayed
constant until about 40,000 nanoseconds. This made it impossible to increase
the network load smoothly. (Figure A.1 in the appendix visualizes this.)

Since most tests so far were conducted with either delay 0 or delays >
25,000, the problem had not become visible yet. A counter-check was done
with the old version of pktgen (1.6, pre-2.6.11-kernel)1; NSPT (no such phe-
nomenon there).

After investigating with the author, Robert Olsson,2 he suggested com-
menting out “debug line” 1,660 in pktgen.c and setting the timer frequency
to 1,000 Hertz.3 New tests showed that pktgen was now generating traffic
smoothly, depicted in figure 4.3.4

With a working pktgen, the “generation time” was researched in the area
from 0 to 250 bytes, results shown in diagram 4.2. Noteworthy is the fact that
packets up to size 60 bytes have a constant generation time and accordingly

1All scripts interacting with /proc/net/pktgen/ had to be extended since the genera-
tion process/thread management had been reworked substantially; also some variables were
renamed (ipg became delay, dstmac became dst mac).

2See appendix for details.
3Kernel-parameters CONFIG HZ=1000 and CONFIG HZ 1000=y, found in section Pro-

cessor type and features.
4The numbers reported as maximum packets per seconds are not identical with the ones

indicated in table 4.1, probably due to the changed timer frequency.

4.1. Traffic generation with pktgen 53

 240000

 260000

 280000

 300000

 320000

 340000

 360000

 380000

 400000

 420000

 440000

 0 50 100 150 200 250
 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

pa
ck

et
s

pe
r s

ec
on

d
(a

s
re

po
rte

d
by

 p
kt

ge
n,

 a
ve

ra
ge

 d
el

l1
/d

el
l2

)

ge
ne

ra
tio

n
tim

e
(n

s,
 a

ve
ra

ge
 d

el
l1

/d
el

l2
)

packet size (bytes)

max pps and effective generation time
kernel 2.6.16.14 (with ring3 and pktgen 2.63 patch)

max pps generation time

Figure 4.2: Max packets per second and generation time
.

54 Chapter 4. Experiments

 0

 50000

 100000

 150000

 200000

 250000

 4395 6395 9728 16395 36395 196395

pa
ck

et
s

pe
r s

ec
on

d

log10 scaled delay in ns (hard inter-packet-gap)
 delays correspond to 100-500-1000-1500-2000-2500 calls

kernel 2.6.16.14-ring3 with timer freq 1000 Hz
patched pktgen v2.63

averaged values with standard deviation for packet size of 214 bytes

(upper) real
(lower) model

Figure 4.3: Smooth generation rates after removing printk and setting timer
frequency to 1,000 Hertz

also a stable max packet per second rate. Once over this threshold, the gener-
ation time drops to circa 2,350 ns and increases linearly.

Unfortunately, new measurements with the fixed pktgen showed that also
the second model using “generation time” for correlating pktgen’s delay and
count (total packets to send) with the more user-friendly calls and duration was
far from accurate. As it can be seen in figure 4.3., the real packet per second
rate is almost the double of the calculated one.

Since the antecedent mentioned hardware problems had delayed the project
considerably, no more resources could be used to improve the model further.5.
Yet, the inaccuracy of the model had to be addressed: since pktg-conf-voip.sh

5A probably more precise approach would be to analyze pktgen’s “active” and “idle” time
counters, since the problem seems to be the sleep-behavior. According to Olsson, optimizing
sleeping behavior is work-in-progress.

4.2. Forwarding capacity of the OpenBSD-firewalls 55

underestimates the real packet per second rate by almost 50% when using
short delays, the value of the configuration shell script’s duration parame-
ter was increased from 7 to 14 seconds. This should ensure a sane close-to-
expected packet rate with the desired expected minimal delay.

4.2 Forwarding capacity of the OpenBSD-firewalls

After having looked at pktgen’s properties, the attention was directed toward
the actual object of interest for FreeCode: the capabilities and behavior of the
OpenBSD-firewalls, starting with unidirectional traffic. The packet filter was
enabled and configured with the previously mentioned simple ruleset. If the
bottleneck of the system turned out to be the packet filtering, then it was con-
sidered to optimize the ruleset.

There are several different perspectives one can assume for analyzing the
behavior. One perspective is the “black box”, where the the internals of the
firewalls are not looked at, but instead the amount of traffic sent/received is
compared. In our case, the switch was queried for seen IPv4 unicast packets
on the interfaces in question.

This perspective is adopted for some experiments in order to be able to
make a statement about the probable “end-user” experience. Yet, this per-
spective falls short of giving a complete understanding: there may be multiple
factors that can only be discerned if the firewalls themselves are monitored
from the inside. As usual it’s important to keep in mind: measuring on live
hosts uses resources, so this uncertainty needs to be addressed.

4.2.1 Blackbox

The steps for conducting this experiment are as follows:

1. Run the configuration script: this step erases old configuration values and
sets the new ones.

2. Run the experiment: every experiment was run 7 times in order to make a
statistically sane assertion about the outcome. The experiment-independent
variables were source (dell1 or dell2) and gateway (firewall1 or firewall2).
This yields 4 possible combinations per other variable that were sup-
posed to be conducted.6

3. Verify: verify that the output generated corresponds roughly to the ex-
pectation (e.g. file size, number magnitude).

6Unfortunately, hardware problems forcing a repetition of all previous experiments did not
allow for testing all possible voice codec / media type permutations; instead, the smallest and
biggest voice codec (GSM-fast and G.711) were tested.

56 Chapter 4. Experiments

In order to measure the forwarding capacity, the switch was queried by
SNMP for the number of seen IPv4-packets on a given interface for a given
direction. The number was queried using a script:

./qif-smc.sh (-fw1 | -fw2) -direction (W2L | L2W)

The numbers had to be read twice, once for getting the starting value and
at the end for getting the end value per interface. Internally, the switch uses
32-bit counters which wrap at 4,294,967,295; this was taken into account when
calculating the difference.

Since the interaction with pktgen is done easily through the shell, the whole
command sequence was written as one long concatenation of shell-commands.
They are listed in the appendix, section C.3.1; for better understanding, they
are reproduced here in pseudo-code:

set variables: source, gateway, direction,
duration, codec, mediatype
loop through call-values from 500 to 3000
configure pktgen, based on the variables
loop seven times
query switch for start values
start packet-generator
sleep 5 seconds
query switch for end values
repeat
repeat

The program returned one line per run, with the following fields:

pktsize The packet size (minus 4 bytes for the Ethernet-CRC).

host count Count of different source- and destination IP-addresses.

port count Count of different source-and destination UDP-addresses.

pps Packets-per-second, as reported by pktgen.

mpps Packets-per-second (calculated by the configuration script)

counters start The start count at the switch.

counters end The end count at the switch.

dur us Duration in microseconds, as reported by pktgen.

mdur us Duration in microseconds (calculated).

4.2. Forwarding capacity of the OpenBSD-firewalls 57

calls Amount of calls (parameter).

inter-packet-delay The inter-packet-delay (calculated).

source The sending computer.

gateway The forwarding firewall.

codec The VoIP codec chosen.

mediatype The media type chosen.

The information was recorded in a text file with a unique name and then
fed into a database where calculating the average and standard deviation as
well as grouping could be performed easily. First, the numbers were grouped
by source and gateway; if not abnormal numbers were discovered,7 the the
whole data set was averaged. Then, the numbers were visualized with gnuplot
for involving the left brain hemisphere even more in the analysis process.

In the already well-known series of unfortunate events, dell2 became very
unstable during the two last weeks of the master project and had to be com-
pletely exchanged on May 15th. This is problematic, since it cast doubts on
the reliability of the data produced by dell2 previously. Time only allowed
to repeat the most crucial “packet forwarding” experiments (biggest/smallest
voice codec) that had been conducted earlier more exhaustively, e.g. with the
full voice codec collection.

The firewall capacity was tested – again – with the biggest and smallest
codec and with single port and single host traffic in order to minimize the ef-
fect on the packet filter. The standard deviation was moderate in all cases (<
2%); figure 4.4 shows that the firewalls start dropping traffic at approximately
125,000 packets per second, corresponding to an inter-packet-delay of approxi-
mately 12,500 nanoseconds. Two trends became visible: trend 1 with the packet
forwarding rate dropping more evenly over time, and trend 2, where the rate
drops quickly to a small fraction of received packets. The reasons for these
distinct trends are unknown for the time being, but should be examined more
in detail.

Nonetheless, the measurements show that all firewalls independent of traf-
fic source and packet size start dropping packets at around 125,000 packets per
second. These results are surprising since the forwarding rate is far below the
possible traffic generation speed of pktgen, and also much lower than Gigabit
Ethernet capacity. With the biggest packet (G.711 with RTP media steam), the
forwarded traffic corresponds to 218 MBit/second.

7For example a wrapped packet counter on the switch, as mentioned previously.

58 Chapter 4. Experiments

 0 50000 100000 150000 200000 250000 300000

to
ta

l p
ac

ke
t c

ou
nt

avg packets/sec (pktgen)

firewall forwarding limit
G.711 with IAX2 (206 bytes), 1 IP address, 1 UDP port

averaged unidirectional traffic with measuring traffic load

(upmost) averaged in
(middle) trend 1
(lowest) trend 2

 0 50000 100000 150000 200000 250000 300000 350000

to
ta

l p
ac

ke
t c

ou
nt

avg packets/sec (pktgen)

firewall forwarding limit
GSM-fast with IAX2 (79 bytes), 1 IP address, 1 UDP port
averaged unidirectional traffic with measuring traffic load

(upmost) averaged in
(middle) trend 1
(lowest) trend 2

Figure 4.4: Firewall packet forwarding drop around 125,000 packets per sec-
ond with biggest and smallest codec.

4.2. Forwarding capacity of the OpenBSD-firewalls 59

For gaining a better understanding on possible reasons, a look at the inside
happenings of the firewalls is needed.

4.2.2 Inside the Firewalls

For the firewalls, the questions of main interest was to find out what the dom-
inant CPU-state of the firewall was under a given load. For monitoring the
performance of the packet filter, statistics about state table entries and count of
forwarded or blocked packets can be analyzed.

kern.cp time The kern.cp time parameter was read through sysctl, getting
hold of the amount of tics spent in the states user, nice, system, interrupt,
idle. Since – in analogy to the counter numbers of the switch – also the
tics are simply monotonically increasing, they need to be compared to
the previous numbers for understanding the change in the system.

pf-statistics The packet filter statistics of the WAN and LAN interfaces were
queried by calling the C-program pfquery-if (a rip-off of pfstats’8).
This information is obtained by directly reading the packet-filter struc-
tures; this would not have been possible with a shell script, and grep-
ping/cutting the output of pfctl -s info would most probably have
required much more computing.

For collecting this statistics, a shell script was run in an endless loop; after
every reading, the script slept for 1 second. The output of these three calls
(sysctl, pfquery-if LAN and pfquery-if WAN) was written to a file on the flash
card.

In order to have a reasonable amount of precision when measuring, the
scripts were started remotely with ssh. Since having an open SSH-connection
would generate additional traffic, it was desirable to close the ssh-session to
the server while the measurement script was running and before starting the
experiment. After some trial and error, it was found that closing the stan-
dard output and standard error makes an immediate disconnect possible. For
managing this, the load-measurement script had to be wrapped in a “kicker”
script that started the load-script with these two file descriptors closed. It was
not possible to do that directly in one ssh-call on the command-line.

As soon as pktgen had terminated, the load-script was killed by a calling a
kill.sh wrapper script via SSH that terminated the running measuring process.

8http://www.benzedrine.cx/pfstat.html

60 Chapter 4. Experiments

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

pe
rc

en
t

firewall monitoring system activities
with increasing load (500 to 3000 calls)

user system nice interrupt idle

Figure 4.5: OpenBSD CPU-states under increasing load

4.2. Forwarding capacity of the OpenBSD-firewalls 61

Due to the aforementioned dell2 hardware – and ensuing time – problems,
the load behavior was only analyzed based on the batch of tests from dell1,
but again with the biggest and smallest codec. The drop rate was the same as
without running the measuring scripts, which allows for the conclusion that
the resource measuring does not have a significant impact on the firewall’ s
overall performance.

In contrast, figure 4.5 shows the result graph of CPU-states and gives a
plausible explanation of the unstable behavior when increasing the load: the
system spends more and more time in interrupt-mode and all resources are
bound, independently of the packet size of received traffic.

The reader will notice the significant increase of idle state towards the end
of the test, where the load is heaviest. This is very unexpected. In order to
get an explanation for this phenomenon, the load statistic files were analyzed
with focus on how many measurements were taken during one run, and in what in-
tervals. Since the “kill”-script was not started until 5 seconds had elapsed after
pktgen finished, the last 5 measurement lines were disregarded (not so for the
CPU-states!). This calculation yielded the data visualized in figure 4.6 and was
the key to understanding why the firewall seems to be idle, yet drops packets:
the more the firewall is loaded, the less measurements are taken. The measuring
process is simply starved – the system is just busy handling the interrupts. So
when the the load is highest, no information about the CPU states is recorded,
but as soon as the 5-second-pause is in effect, the measuring process gets CPU
time again. The approximately 2,400 “calls” – calculated with equation (3.2)–
correspond to the 120,000 packets per second as reported by pktgen. The mea-
suring process is starved, but still a large amount of packets is forwarded until
we reach 125,000 pps (2,500 calls).

Here, the circle to the open question of OpenBSD mechanisms for avoiding
“receive livelock” situations closes. The performance is disappointing since no
special handling seems to be implemented at present.

A batch of bi-directional traffic tests involving all 32 combinations of fire-
wall, source computer, codec and media stream type variables had been performed
before the aforementioned dell2 problems surfaced. The testing procedure, de-
scribed on page 56, was extended by starting the tests on both machines si-
multaneously. Frustratingly, a several-hour analysis of the data identified the
numbers as unusable: there was no recognizable pattern at all, and the num-
bers did not make any sense. Impossible packet forwarding rates were sighted,
bigger then Gigabit Ethernet allows, and other weird phenomena. As a conse-
quence, a closer look at bi-directional traffic is left for the future.

62 Chapter 4. Experiments

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 500 1000 1500 2000 2500 3000

m
ea

su
re

m
en

t l
in

e
co

un
t

calls

firewall monitoring frequency with increasing load
G.711 with IAX2

 averaged with standard deviation for dell1

Figure 4.6: Measurement process starvation with increasing load

4.2. Forwarding capacity of the OpenBSD-firewalls 63

4.2.3 Behavior when failing over

Taking down a firewall can have two reasons: either administrative for main-
tenance, or unexpected due to a failure. OpenBSD’s FAQ-document on CARP
and pfsync9 explains that turning off CARP manually with ifconfig carpN

down “will cause the master to advertise itself with an ‘infinite’ advbase and
advskew. The backup host(s) will see this and immediately take over the role
of master.” When the firewall simply “vanishes”, it takes about three seconds
before the new master starts forwarding traffic again.

Quick tests done in the beginning of the project confirmed this. While
sending 10 packets per second, the master firewall was taken down admin-
istratively. A count of received packets showed that all packets arrived consis-
tently. When taking the firewall down by power-cycling it, about 30 packets
were lost with a standard deviation of 1 packet, corresponding to the afore-
mentioned 3 second pause.

For testing failover effects with higher volume, a delay of 12,500 nanosec-
ondswas chosen, yielding a packet rate of 81,600 packets per second. This is
well under the maximum forwarding capacity so that the firewall does not suf-
fer resource starvation. Sending 1,000,000 packets takes 12.25 seconds. pkgten
was configured with mediatype rtp with 3,000 hosts in order to have unique
sockets. It was verified before running the tests that the firewall actually for-
wards all 1,000,000 packets and the receiver is able to receive and write them
to the dump-file.

The test were conducted seven times, and the steps are as follows:

• turn off CARP on both firewall, then on at the master firewall, then on at
the backup

• start tcpdump on the receiver with no filter

• start packet generator

• after 6 seconds, either (a) turn off CARP administratively or (b) power-
cycle the master firewall

• when pktgen returns, kill tcpdump

As a first analyzing step, the UDP-packets in the dump file were counted
and values averaged. The resulting interruption time (“glitch”) of network
connectivity was calculated as follows:

glitch =
1, 000, 000 [total packets]− received packets

sent packets per secondaverage × 1, 000, 000 [µsec]
(4.4)

9http://www.openbsd.org/faq/pf/carp.html

64 Chapter 4. Experiments

source master received glitch
dell1 firewall1 998,786 14.87
dell1 firewall2 980,279 241.48
dell2 firewall1 999,948 0.636
dell2 firewall2 973,199 328.17

Table 4.2: Received packet count for soft-failover with 81,667 (± 0.04%) pps
and 214B packets, with network glitch in milliseconds.

source master received glitch
dell1 firewall1 761,164 2,924
dell1 firewall2 778,084 2,717
dell2 firewall1 983,734 199
dell2 firewall2 829,688 2,085

Table 4.3: Packet receive rate for hard-failover (power-cycling) with 81,661 (±
0.04%) pps and 214B packets, with network glitch in milliseconds.

Table 4.2 summarizes the numbers when turning off CARP administra-
tively. The standard deviation for received packets was between 2 and 8%.
Interestingly, when firewall1 was master (and firewall2 backup), the network
glitch was much shorter than when the roles were reversed. Especially spec-
tacular is the extremely low packet loss value for dell2 sending packets and fire-
wall2 being backup! Repeating the experiments confirmed that this is a trend
and not just a one-time phenomenon. The reason for this is unknown at the
time, but does not seem to be dependent on the computers generating traffic
since both dells were sending packets at basically the same rate. The interrup-
tion of network connectivity is indeed minimal when doing a “soft-failover” -
less than one millisecond in best-case and 300 milliseconds in worst-case.

As mentioned earlier, VoIP traffic pauses bigger than 150ms can be per-
ceived by the call participants.[4, 23, 27, 9, 1] On average, taking administra-
tively down the current master firewall will cause a short audible hiccup, but
since the traffic flow continues normally afterwards, is seems to be tolerable
from an end-user perspective.

Also the results of hard-failovers (power-cycling the current master) are of
interest. Table 4.3 contains the exact numbers; also here, the standard deviation
was between 2 and 8%, but there is no obvious interrelation to the standard
deviation for soft-failovers.

Since [47] states that a network interruption of about 3 seconds is to be ex-
pected when the master firewall “vanishes”, the obtained numbers displayed
a better behavior. The traffic was interrupted by about 2 to 3 seconds with the

4.2. Forwarding capacity of the OpenBSD-firewalls 65

exception of dell2 (traffic source) and firewall2 as backup (table-row 2), outper-
forming the others combinations by far. Also in this case, more repetitions con-
firmed the trend, with not clear cause. Since the other series yielded a much
higher average, it is probably safer to assume that these reflect a real-world
scenario more realistically. Such a long break is irritating for VoIP participants,
but since hard failovers should be rare, it does not disrupt the service beyond
reason.

One uncertainty factor is the non-bursty nature of the traffic generated
by pktgen running at this “low rate”. More bursty traffic could reveal a more
stable failover-behavior, but with higher packet loss numbers.

For further analysis, the tcpdump-file was fed to the d2t.sh script. As men-
tioned before, the speed is abysmally slow; yet this was not the biggest prob-
lem. A quick glance at the output of d2h revealed that pktgen neither did in-
crease the sequence number nor the IP-address or UDP-port. A countercheck
with pktgen versions 1.3 and 2.58 on two kernels (2.6.16.14 with PF RING
patch and 2.6.11.12 with KUTE patch), as well as version 1.4 with kernel 2.6.10
(with Ubuntu-patches) displayed the same behavior. Consequently, further
analysis would have to concentrate on time-stamp analysis – with device polling-
biased pcap-stamps, and possibly also irregular pktgen-timestamps10 – but in
view of the limited information value it was decided not to process the data
any further.

At present, it is unclear what the reason for this additional weird behavior
of the packet generator might be. This discovery would have significantly rel-
ativized and state-statistics and performance information for the packet-filter.
Since all traffic – probably – was sent with only one source- and destination-
IP-address, as well as single UDP-port, most of the experiments would have
to be repeated to get correct values.

Due to “receive livelock” being the main performance stoppage, analysis
of the packet-filter numbers and thereby trying to classify the influence of the
filtering process was considered superfluous at the moment. If the interrupt-
handling problem can be mitigated, then this pktgen-bug needs to be ad-
dressed before any experiments are designed or repeated.

10By now, the trust in pktgen and the hardware had sunken to a very low level!

Chapter 5

Discussion and Conclusions

Most of the results of the experiments have been commented already in chap-
ter 4. During the 17 weeks available for this thesis, the questions asked have
changed several times, and have a big span width. So, what conclusions can
be drawn? For answering this, the questions from the introduction that have
shown themselves to be relevant are taken up again:

Can VoIP traffic be generated with a moderate set of commodity hardware?
Yes, this is possible with certain restrictions. Pktgen, the Linux kernel UDP-
packet generator, was used for generating artificial traffic. The “recently” re-
worked version of pktgen (2.63, included in the Linux kernel 2.6.16.14) seems
to be “work-in-progress”, and cannot be considered stable. Many problems
were encountered, and both the traffic approximation model and the experi-
ments themselves need to be revisited.

How much traffic can be generated? This depends on the packet size.
Since all VoIP packets have a very small packet size, the producible loads are
fractions of the Gigabit Ethernet capacity. Values range from 45% (G.711 codec
with RTP media type, packet size of 218 bytes) to 24.8% (GSM fast with IAX2
media type).

Which properties must synthetic/artificial VoIP packets have in common
with real ones? A relatively simple method has been presented for genera-
tion artificial, synthetic traffic that has common properties with true VoIP traf-
fic. Variations in packet size mimic different voice codecs (G.711/G.726/GSM-
fast/GSM-slow) and media stream types (RTP/IAX2), as well as variation in
IP-addresses and UDP-ports for simulating different numbers of hosts.

What is the upper forwarding limit for the OpenBSD-firewalls? What are
the limiting factors? The upper limit for one firewall for unidirectional traf-

67

68 Chapter 5. Discussion and Conclusions

fic was found to be about 125,000 packets per second, independent of packet
size in the range from 83 to 218 bytes. This corresponds to about 2,500 VoIP
calls with voice codecs sending 50 packets per second, no control traffic (SIP,
IAX2, RTCP) included in the calculation.

The firewalls suffer from “receive livelock”, system overload due to lots of
interrupt request caused by incoming packets. The problem is aggravated by
the typical small payload packets size (<= 160 bytes); the interrupt handling
consumes all system resources and leaves the firewall in an unstable forward-
ing state.

What can be said about network interruption in failover situations, either
administratively (soft-failover), or by power-cycling (hard-failover)? While
sending 81,500 pps, turning the current CARP-master administratively off lead
to a network glitch between one millisecond in best-case and 300 milliseconds
in worst-case. This causes a perceivable hiccup in a conversation, but since
the traffic flow continues normally afterwards, is seems to be tolerable from
an end-user perspective.

When power-cycling the active master, the traffic was interrupted for about
2 to 3 seconds. Such a long break is irritating for VoIP participants, and may
lead to isolated individuals ringing off, but since hard failovers should be rare,
it does not disrupt the service beyond reason.

During the project, new questions surfaced:

How can the pktgen-interface be made more user-friendly for simulat-
ing VoIP traffic? An approximative approach for correlating user-friendly
call count and duration simulation parameters with pktgen’s total packet count and
inter-packet-gap was proposed. A first and a second model were implemented
and tested; the latter is still off by 50% when it comes to real vs. expected
packet rates. A more precise model is needed, but depends on a more stable
“sleep” behavior of pktgen.

How can pkgten’s payload yield useful information for stream analysis?
The sequence-number in the payload of every pktgen-packet together with the
IP-addresses and UDP-ports could be used to correlate packets to “connec-
tions” and thereby enabling a statement about the probable end-user experi-
ence. When combined with the analysis of both the pcap-timestamp and the
timestamp in pktgen’s packet, an solid analysis of packet loss and inter-arrival-
times (jitter) is possible.

The unstable nature of ptkgen inhibited the successful analysis. The se-
quence number was not increased, adding one major “bug” to pktgen. It can-
not be excluded that the problem is rooted in other code than pktgen itself.

5.1. Future Work 69

On a more general level, the accomplished measurements allow for ques-
tioning the suitability of the OpenBSD operating system for firewalls in high
packet rate networks. Using specialized, expensive server hardware (running
OpenBSD) as “dedicated VoIP firewall” seems to be a waste of resources; such
a hardware/operating system combination could better be used in networks
with more heterogeneous packet sizes, since the bigger the packet size, the
fewer packets per second there are. Having fewer but bigger packets may
weaken the “receive livelock” problem.

5.1 Future Work

Many open questions and possible research areas were encountered; in the
author’s opinion, the most interesting ones for future research are these (with
decreasing importance):

• Improving the user-friendliness of pktgen’s interface for simulating VoIP
traffic, especially making the

functionf(calls, duration) = (delay, total packet count)

more accurate.

• Repeating the experiments with the firewalls running an operating sys-
tem that has a proven solution to the “receive livelock” problem. FreeBSD
(with CARP and pfsync) and Linux (with uCarp and ct sync) can be
patched with device polling enhancements.

• Retesting the forwarding capacity if the OpenBSD-community comes up
with solutions for “receive livelock” for Gigabit Ethernet cards.

• Enhancing the model of artificial/synthetic VoIP traffic by using Fabian
Schneider’s enhanced pktgen, supporting a statistical packet size dis-
tribution. This allows for including signaling and control traffic, differ-
ent codecs simultaneously, and even IAX2-trunking: since one Asterisk
“meta-frame” contains payloads from multiple connections, the packet
sizes could reach a size where “receive livelock” is not the main inhibitor
any longer.

• Analyzing jitter behavior when a failover occurs; once running on a re-
cent kernel, the KUTE-receiver seems to be an interesting candidate for
classifying the inter-arrival times, as well as PLAB in its next version.

• If the “receive livelock” problem is solved, does the firewall have spare
resources to do NATting, or acting as a secure gateway for IPsec or SRTP?

Bibliography

[1] Phil Sherburne and Cary Fitzgerald. You Don’t know Jack about VoIP.
ACM Queue, 2(6):30–38, September 2004.

[2] C.A. Polyzois, H.K. Purdy, Yang Ping-Fai, D. Shrader, H. Sinnreich,
F. Menard, and H. Schuzerinne. From POTS to PANS: a commentary on
the evolution to Internet telephony. IEEE Network, 13(3):58–64, May/June
1999.

[3] Upkar Varshney, Andy Snow, Matt McGivern, and Christi Howard. Voice
over IP. Communications of the ACM, 45(1):89–96, January 2002.

[4] Aleš Vigrinec and Sašo Tomažič. IP telephony from a user perspective.
Proceedings of the 10th Mediterranean Electrotechnical Conference (Melecon),
2:344–7, 2000.

[5] Maurice David Woernhard. VoIP – Next Generation Telephony. Litera-
ture Survey, Høgkolen i Oslo, Oslo, Norway, May 2005. http://cube.
iu.hio.no/∼s117181/voip-survey.pdf.

[6] Alan E. Frey and Guy J. Zenner. The Role of SIP in the Migration of Ser-
vice Provider Networks to VoIP. Bell Labs Technical Journal, 9(3):199–216,
2004.

[7] Steven Cherry. Seven Myths About Voice over IP. IEEE Spectrum, pages
53–7, March 2005.

[8] A. Dutta-Roy. The cost of quality in Internet-style networks. IEEE Spec-
trum, 37(9):57–62, September 2000.

[9] Bur Goode. Voice over Internet Protocol (VoIP). In Proceedings of the IEEE,
volume 90, pages 1494–1517. IEEE, Sep 2002.

[10] Ulysses Black. Voice over IP. Prentice Hall, 2002.

[11] Ligang Wang, Anjali Agarwal, and J. William Atwood. Modelling and
verification of interworking between SIP and H.323. Computer Networks,
45:77–98, 2004.

71

72 BIBLIOGRAPHY

[12] Hong Liu and Petro Mouchtaris. Voice over IP Signaling: H.323 and Be-
yond. IEEE Communications Magazine, 38(10):142–148, 2000.

[13] Ted T. Kwon, Mario Gerla, Sajal Das, and Subir Das. Mobility Manage-
ment for VoIP Service: Mobile IP vs. SIP. IEEE Wireless Communications,
9(5):66–75, October 2002.

[14] Pawan Goyal, Albert Greenberg, Charles R. Kalmarek, William T. Mar-
shall, Partho Mishra, Doug Nortz, and K.K. Ramakrishnan. Integration
of Call Signalling and Resource Management for IP Telephony. IEEE In-
ternet Computing, 3(3):44–52, May 1999.

[15] Sudir R. Ahuja and Robert Ensor. VoIP: What is it good for? ACM Queue,
2(6):48–55, September 2004.

[16] Mark Spencer and Frank W. Miller. IAX Protocol Description.
http://www.cornfed.com/iax.pdf, March 2004.

[17] J. Andren, M. Hilding, and D. Veitch. Understanding end-to-end Inter-
net traffic dynamics. In IEEE Global Telecommunications Conference 1998
(GLOBECOM 98), volume 2, pages 1118–22, 1998.

[18] O. Hagsand, K. Hanson, and I. Marsh. Measuring Internet telephony
quality: where are we today? In Global Telecommunications Conference,
volume 3, pages 1838–42, 1999.

[19] W. Kampichler and K.M. Goeschka. Measuring voice readiness of local
area networks. In IEEE Global Telecommunications Conference 2001 (GLOBE-
COM ’01), volume 4, pages 2501–5. IEEE, 2001.

[20] B. Duysburgh, S. Vanhastel, B. De Vreese, C. Petrisor, and P. Demeester.
On the influence of best-effort network conditions on the perceived
speech quality of VoIP connections. In Proceedings of the 10th International
Conference on Computer Communications and Networks 2001, pages 334–9,
2001.

[21] Paul Ferguson and Geoff Huston. Quality of Service: Delivering QoS on the
Internet and in Corporate Networks. Wiley, New York, 1998.

[22] W. Kampichler and K.M. Goetschka. A light-weight measuring method
for QoS performance of IP networks. In Proceedings of the PDCS 2000,
pages 297–301, 2000.

[23] S. Zeadally, F. Siddiqui, and P. Kubher. Voice over IP in intranet and Inter-
net environments. In Communications of the IEEE Proceeings, volume 151,
pages 263–269, June 2004.

BIBLIOGRAPHY 73

[24] Douglas C. Sicker and Tom Lookabough. VoIP Security: Not an After-
tought! Queue, 2(6):56–64, September 2004.

[25] Michael Stukas and Douglas C. Sicker. An Evaluation of VoIP Traversal
of Firewalls and NATs within an Enterprise Environment. Information
Systems Frontiers, 6(3):219–228, 2004.

[26] International Telecommunication Union. ITU Recommendation G.114:
One-way transmission time. Technical report, ITU, 1996.

[27] P. Denisowski. How does it sound? [voice clarity analysis]. IEEE Spec-
trum, 38(2):60–4, February 2001.

[28] International Telecommunication Union. ITU Recommendation P.800
(08/98): Methods for subjective determination of transmission quality.
Technical report, ITU, 1998.

[29] International Telecommunication Union. ITU Recommendation P.830:
Subjective performance assessment of telephone-band and wideband
digital codecs. Technical report, ITU, 1996.

[30] International Telecommunication Union. ITU Recommendation P.862
(02/2001, superseeds P.861): Perceptual evaluation of speech quality
(PESQ). Technical report, ITU, 2001.

[31] T. Kushida. The traffic measurement and the empirical studies for the
Internet. In IEEE Global Telecommunication Conference (GLOBECOM 98),
volume 2, pages 1142–7, 1998.

[32] A. Lakaniemi, J. Rosti, and V.I. Räisänen. Subjective VoIP speech quality
evaluation based on network measurements. In IEEE International Confer-
ence on Communications ICC 2001, volume 3, pages 748–52, 2001.

[33] Ray Peckham. 911 over VoIP: whose responsibility? Communication News,
41(7):6–+, 2004.

[34] Bård M. Bergersen. Spam. Network and System Administration: Researy
Surveys, 1(24), 2004.

[35] K. Anderberg. SPIT on VoIP. Communications News, 42(1):4, 2005.

[36] D. Roth. Catch us if you can. Fortune, 149(3):64+, 2004.

[37] J. Karlin. Skype hunt. Fortune, 149(5):34, March 2004.

[38] D Sweeney. Sum Of All Fears [peer-to-peer technology]. America’s Net-
work, 108(17):16–20, November 2004.

74 BIBLIOGRAPHY

[39] Roxanne Khamsi. Skype Beyond The Hype. Technology Review, 107(5):44–
7, June 2004.

[40] Dennis Bergström. An Analysis of Skype VoIP application for use in
a Corporate Environment. based on Skype 1.0.0.29; availabe online at
http://www.geocities.com/bergstromdennis/, October2004.

[41] M. Popovic and V. Kovacevic. An Approach to Internet-Based Virtual Call
Center Implementation. In Lecture Notes in Computer Science. Springer-
Verlag Berlin Heidelberg, 2001. University of Novi Sad.

[42] Masayuki Kumazawaa, Taisuke Matsumoto, Shinkiechi Ikeda, Makoto
Funabiki, Hirokazu Kobayasi, and Toyoki Kawahara. Router Selection for
Moving Networks. In First IEEE Consumer Communications and Networking
Conference (CCNC), 2004.

[43] Anton Batchvarov. Security Issues and Solutions for Voice over IP com-
pared to Circuit Switched Networks. INFOTECH Seminar Advanced
Communication Services, University of Stuttgart, Germany.

[44] Nils Ohlmeier. Design and Implementation of a High Availability SIP
Server Architecture. Technical University Berlin, July 2003.

[45] Fabian Schneider. Analyse der Leistung von BPF und libpcap in
Gigabit-Ethernet Umgebungen. Ausarbeitung zum Systementwick-
lungsprojekt, Technische Universität München, Munich, Germany, Okto-
ber 2004. http://www.net.in.tum.de/∼schneifa/papers/sep
ausarbeitung sep.ps.

[46] Fabian Schneider. Performance evaluation of packet capturing sys-
tems for high-speed networks. Diplomarbeit, Technische Universität
München, Munich, Germany, November 2005. http://www.net.in.
tum.de/∼schneifa/papers/da.ps.

[47] Ryan McBride. Firewall Failover with pfsync and CARP.
http://www.countersiege.com/doc/pfsync-carp/.

[48] W. Feng et al. TCPivo: A High-Performance Packet Replay Engine. In
ACM Sigcomm Workshop, 2003.

[49] Robert Olsson (Uppsala University). pktgen the linux packet generator.
In Proceedings of the 2005 Linux Symposium, Ottawa, Canada, July 2005.

[50] Sebastian Zander, David Kennedy, and Greenville Armitage. KUTE –
A High Performance Kernel-based UDP Traffic Engine. CAIA Technical
Report, January 2005.

BIBLIOGRAPHY 75

[51] Ted Wallingford. Switching to VoIP. O’Reilly, 2005.

[52] Jim Van Meggelen, Jared SMith, and Leif Madsen. Asterisk - The Future of
Telephony. O’Reilly, 2005.

[53] Luca Deri. Improving Passive Packet Capturing: Beyond Device Polling.
In 4th International System Administration and Network Engineering Confer-
ence, 2004.

[54] Loris Degioanni, Mario Baldi, Fulvio Risso, and G. Varenni. Profiling
and Optimization of Software-Based Network-Analysis Applications. In
Proceedings of the 15th IEEE SBAC-PAD 2003 Symposium, 2003.

[55] I. Kim, J. Moon, and H. Y. Yeom. Timer-based Interrupt Mitigation for
High Performance Packet Processing. In Proceedings of the 5th International
Conference on High-Performance Computing in the Asia-Pacific Region, 2001.

[56] Luca Deri. nCap: Wire-speed Packet Capture and Transmission. In Pro-
ceedings of E2EMON 2005, May 2005.

[57] Teruyuki Hasegawa, Tomohiko Ogishi, and Toru Hasegawa. A Frame-
work on Gigabit Rate Packet Header Collection for Low-cost Internet
Monitoring Systems. In IEEE International Conference on Communications
ICC 2002, volume 4, pages 2206–2211, 2002.

[58] Herbert Bos, Willem de Bruijn, Mihai Cristea, Trung Nguyen, and Geor-
gios Portokalidis. FFPF: Faily Fast Packet Filters. In 6th Symposium on
Operating Systems Design and Implementation OSDI 2004, pages 347–362,
2004.

[59] Se-Hee Han, Myung-Sup Kim, Hong-Taek Ju, and James Won-Ki Hong.
The Architecture of NG-MON: A Passive Network Monitoring Systems
for High-Speed IP Networks. In Lecture Notes in Computer Science.
Springer-Verlag Berlin Heidelberg, 2002.

[60] Emily Hollis. Monitoring and Analyzing VoIP Traffic. Certification Maga-
zine, February 2005.

[61] Luca Deri. Open Source VoIP Traffic Monitoring. In Proceedings of SANE
2006 (to be published), 2006.

[62] S. Chatterjee, B. Tulu, T. Abhichandani, and H. Q. Li. SIP-based enter-
prise converged networks for voice/video-over-IP: Implementation and
evaluation of components. IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS, 23(10):1921–1933, Oct 2005.

76 BIBLIOGRAPHY

[63] Alberto Dainotti and Antonio Pescapé. Plab: a packet capture and
analysis architecture. http://www.grid.unina.it/Traffic/pub/TR-DIS-
122004.pdf, December 2004.

Appendix A

pktgen

While experimenting with pktgen, it was discovered that the packet rate gener-
ation drops significantly when arriving at at delay value of 1,000 nanoseconds
(figure A.1). In response to an SOS mail to Olsson, he answered on May 8th:

OK Något är skumt.... Lennert Bytenheack hackade för att inte
spinna bort CPU medans vi väntade.

Kolla i spin() pktgen.c
Ta bort prink-raden.
Testa.
Vad har du HZ till? Sätt HZ=1000.

So a close look at the code in question (starting with line 1645 in pktgen.c,
kernel 2.6.16.14) revealed:

1645 static void spin(struct pktgen_dev *pkt_dev, __u64 spin_until_us)
1646 {
1647 __u64 start;
1648 __u64 now;
1649

1650 start = now = getCurUs();
1651 // printk(KERN_INFO "sleeping for %d\n", (int)(spin_until_us - now));
1652 while (now < spin_until_us) {
1653 /* TODO: optimize sleeping behavior */
1654 if (spin_until_us - now > jiffies_to_usecs(1)+1)
1655 schedule_timeout_interruptible(1);
1656 else if (spin_until_us - now > 100) {
1657 do_softirq();
1658 if (!pkt_dev->running)
1659 return;
1660 if (need_resched())

77

78 Chapter A. pktgen

Figure A.1: Dramatic drop in packet generation rate per second at 1,000 ns

1661 schedule();
1662 }
1663

1664 now = getCurUs();
1665 }
1666

1667 pkt_dev->idle_acc += now - start;
1668 }

After commenting out the pkrintk line and recompiling the kernel with a
timer frequency of 1,000 Hertz, pktgen’s packet generation rate became stable.

However, doubts on the real stability and maturity of pktgen in it current
version arose. Both the the TODO: optimize sleeping behavior comment in the
pktgen-source and Olsson’s mail suggest that this is work in progress and might
be subject to change at any time. This situation of uncertainty poses a rather
serious challenge to a simple yet accurate simulation of VoIP traffic.

Appendix B

Configuration Files

B.1 pf configuration file (firewall1)
1 # PF-conf for FW1
2 # Versions:
3 # 2006-03-20 0.01 initial draft, rip-off delivered version
4 # 2006-03-21 0.02 cont’d
5 # 2006-04-16 0.03 working on it
6 # 2006-04-25 0.4 wrong logical operator for udp range
7 # 2006-05-03 0.41 added udp timeouts
8
9 # interfaces

10 wan_if="bge0"
11 lan_if="bge1"
12 sync_if="sk0"
13 # addresses
14 voip_lan="10.2.0.0/16"
15 wan_ip="10.0.1.0/24"
16 lan_ip="10.0.2.0/24"
17
18 # voip protocols
19 sip="5060"
20 iax2="4569"
21 # voip payload
22 rtp_from="19999"
23 rtp_to="30001"
24
25 set skip on { lo }
26 set limit { states 50000, frags 20000 }
27 set block-policy return
28
29 #scrub incoming from WAN - not sure if I wanne use that
30 #scrub in all on $wan_if
31
32 # natting - not for now
33 #scrub in all fragment reassemble no-df
34 #nat on $ext_if from !($ext_if) -> ($ext_if:0)
35
36 # default policy
37 block in on $wan_if
38 pass in on $lan_if
39 pass out on $wan_if keep state
40
41 # pfsync and carp - filter on the physical interfaces!
42 pass quick on { $sync_if } proto pfsync
43 pass on { $wan_if $lan_if } proto carp keep state
44
45 # enable ssh
46 pass in on { $wan_if $lan_if } proto tcp to any port ssh flags S/SA keep state
47
48 # enable UDP/RTP between 20,000 and 30,000 for bi-directional traffic
49 # set aggressive udp timeouts
50 pass in on $wan_if proto udp from any to $voip_lan port $rtp_from >< $rtp_to keep state (udp.first 5 udp.single 15 udp.multiple 15)
51 pass in on $lan_if proto udp from $voip_lan to any port $rtp_from >< $rtp_to keep state (udp.first 5 udp.single 15 udp.multiple 15)
52
53 # enable IAX2 - since IAX uses same port for controlling, use longer initial timeouts
54 pass in on $wan_if proto udp from any port $iax2 to $voip_lan port $iax2 keep state (udp.first 45 udp.single 15 udp.multiple 15)
55 pass in on $lan_if proto udp from $voip_lan port $iax2 to any port $iax2 keep state (udp.first 45 udp.single 15 udp.multiple 15)

79

Appendix C

Scripts

All scripts can be found at http://student.iu.hio.no/∼s117181/thesis.
tgz

C.1 pktg-conf-voip.sh – modeling VoIP charac-
teristics

The script is several hundred lines long and is included in the above men-
tioned tgz-file.

C.2 d2h.sh – consolidate tcpdump text output
1 #!/bin/bash
2

3 # extracts output fed from tcpdump to one-text liners
4 # 2006-04-28 0.1 initial version
5 # 2006-05-01 0.15 more stuff (first working version)
6

7 # returns
8 # pcap-sec pcap-usec src-ip.udp dst-ip.udp seq pktg-sec pktg-usec
9

10 # expects input from tcpdump -nNXttr dumpfile
11

12 myself=‘basename $0‘
13 prefix=""; postfix=""
14 if ["x$1" != "x"]
15 then
16 postfix=" $1"
17 fi
18 if ["x$2" != "x"]
19 then
20 prefix="$2 "
21 fi
22

23 gotsocket="no"
24 ispktgen="no"
25 skiprest="no"
26

81

82 Chapter C. Scripts

27 # dehex - concatenate args and convert to decimal
28 dehex () {
29 local hex=""
30 for arg in $*
31 do
32 hex="${hex}${arg}"
33 done
34 printf ’%d\n’ "0x${hex}"
35 return 0
36 }
37

38 while read line
39 do
40 linea=($(cut -d " " -f 1- <<< $line))
41 linetype=${linea[0]}
42 if [["${linetype:0:2}" = "0x" && "$skiprest" = "no"]] ; then
43 # payload - does it belong to a socket?
44 if ["$gotsocket" = "no"] ; then
45 # abort, skip packet since payload
46 skiprest="yes"
47 else
48 case $linetype in
49 0x0000:)
50 ;;
51 0x0010:)
52 # check for pktgen-magic
53 if [["${linea[7]}" = "be9b" && "${linea[8]}" = "e955"]] ; then
54 ispktgen="yes"
55 else
56 # not pktgen
57 ispktgen="no"
58 packet=""
59 gotsocket="no"
60 fi
61 ;;
62 0x0020:)
63 # get seq, sec, usec
64 if ["$ispktgen" = "yes"] ; then
65 seq=‘dehex ${linea[1]} ${linea[2]}‘
66 sec=‘dehex ${linea[3]} ${linea[3]}‘
67 usec=‘dehex ${linea[5]} ${linea[6]}‘
68 packet="$packet $seq $sec $usec"
69 echo "${prefix}${packet}${postfix}"
70 fi
71 packet=""
72 gotsocket="no"
73 ispktgen="no"
74 ;;
75 *)
76 # set ispktgen to false since fields must come after ispkgen = true
77 skiprest="yes"
78 ;;
79 esac
80 fi
81 elif ["${linetype:0:2}" != "0x"] ; then
82 # first line of packet - get timestamp and socket
83 gotsocket="yes"
84 skiprest="no"
85 # fields: time from-socket > to-socket: ...
86 pcapsec=$(cut -d . -f 1 <<< ${linea[0]})
87 pcapusec=$(cut -d . -f 2 <<< ${linea[0]})
88 socket2=$(cut -d : -f 1 <<< ${linea[4]})
89 packet="$pcapsec $pcapusec ${linea[2]} $socket2"
90 #echo "socket ($packet)"
91 fi

C.3. Huge shell-commands for experiment control and logfile analysis 83

92 done
93

94 exit 0

C.3 Huge shell-commands for experiment control
and logfile analysis

The beauty of script-coding becomes really visible in these examples. Either,
the variables at the beginning of the statements can be changed, or they can be
replaced by a for ...in val1 val2 ; do ...; done construct. This is use-
ful for looping through multiple computers, firewalls, codecs and mediatypes.

C.3.1 Starting traffic generation

This command has to be started independently on every machine.

1 pc="dell1" ; fw="fw1" ; dir="W2L" ; duration="10" ; codec="g711";
2 mediatype="rtp" ;
3 for calls in ‘seq 500 100 3000‘ ; do
4 read delay mpps <<< ‘./pktg-config-voip.sh -codec
5 $codec -mediatype $mediatype -nocarp -${fw} -direction
6 $dir -calls $calls -duration $duration | grep delay |
7 cut -d " " -f 8,10‘ ;
8 let mdur_us=$duration*1000*1000 ;
9 pktsize=‘./xpktsize.sh‘ ;

10 for try in ‘seq 1 7‘ ; do
11 counters_start=‘./qif-smc.sh -${fw} -direction $dir‘ ;
12 pgstart ;
13 sleep 5 ;
14 counters_end=‘./qif-smc.sh -${fw} -direction $dir‘ ;
15 pps=‘./xpps.sh‘ ;
16 count=‘./xcount.sh‘ ;
17 dur_us=‘./xdur.sh‘ ;
18 echo "$pktsize $calls $calls $pps $mpps
19 $counters_start $counters_end $dur_us $mdur_us $calls
20 $delay $pc $fw $codec $mediatype" ;
21 done ;
22 done
23 > blackbox-${fw}-${pc}-${codec}-${mediatype}-callloop.data

C.3.2 Starting traffic generation with load analysis on the fire-
walls

In addition to starting the traffic generation, this command starts and kills the
load measuring processes on the given firewall.

84 Chapter C. Scripts

1 sleep="5" ; pc="dell1" ; fw="fw1" ; dir="W2L" ; duration="15" ;
2 codec="g711"; mediatype="iax2" ;
3 for calls in ‘seq 500 100 3000‘ ; do
4 read delay mpps <<< ‘./pktg-config-voip.sh -codec $codec
5 -mediatype $mediatype -nocarp -${fw} -direction $dir
6 -calls $calls -duration $duration | grep delay
7 | cut -d " " -f 8,10‘ ;
8 let mdur_us=$duration*1000*1000 ;
9 pktsize=‘./xpktsize.sh‘ ;

10 for try in ‘seq 1 7‘ ; do
11 counters_start=‘./qif-smc.sh -${fw} -direction $dir‘ ;
12 ssh root@${fw} /flash/stats/kicker.sh
13 ${pc}-${codec}-${mediatype}-nocarp-${calls}calls-try${try}
14 $calls &> /dev/null ;
15 pgstart ;
16 sleep $sleep ;
17 ssh root@${fw} /flash/stats/kill.sh &> /dev/null ;
18 counters_end=‘./qif-smc.sh -${fw} -direction $dir‘ ;
19 pps=‘./xpps.sh‘ ;
20 count=‘./xcount.sh‘ ;
21 dur_us=‘./xdur.sh‘ ;
22 echo "$pktsize $calls $calls $pps $mpps $counters_start
23 $counters_end $dur_us $mdur_us $calls $delay
24 $pc $fw $codec $mediatype" ;
25 done ;
26 done |
27 tee -a blackbox-${fw}-${pc}-${codec}-${mediatype}-callloop-load.data

C.3.3 Analyzing measurement frequency in the firewall log-
files

This command counts how many lines every measurement logfile contains,
“minus 7” because the first 2 lines are comments, and the last 5 lines are mea-
surements taken during the “sleep” period. seq was replaces with jot since the
former was not installed on Mac OS X by default.

1 pc="dell2" ; fw="fw1" ; codec="g711" ; mediatype="iax2" ;
2 hosts="1" ; ports="1" ; minus="7" ;
3 for type in cp_time pfstat-lan pfstat-wan ; do
4 for calls in ‘jot - 500 3000 100‘ ; do
5 hosts=$calls ; ports=$calls ;
6 for try in ‘jot - 1 7 1‘ ; do
7 lc=‘wc -l < ${fw}-logs/${pc}-${codec}-${mediatype}-nocarp-${calls}calls-try${try}-${type}‘ ;
8 let "lc -= $minus " ;
9 echo "${pc} ${fw} ${codec} ${mediatype} $hosts $ports ${calls} ${type} ${try} ${lc} $minus" ;

10 done ;
11 done ;
12 done

C.3.4 Combining the firewall’s cp-time logfiles

This command filters out lines starting with #, hops over the last 5 lines (again
due to the “sleep” period) and does not output the first line since the ni−1th line
is the base value for line ni for calculating the CPU-state percent values.

C.3. Huge shell-commands for experiment control and logfile analysis 85

1 minus="5" ; pc="dell1" ; fw="fw1" ; type="cp_time" ; codec="g711" ; mediatype="iax2";
2 for calls in ‘jot - 500 3000 100‘ ; do
3 hosts=$calls ; ports=$calls ;
4 for try in ‘jot - 1 7 1‘ ; do
5 i=0 ;
6 lc=‘wc -l < ${fw}-logs/${pc}-${codec}-${mediatype}-nocarp-${calls}calls-try${try}-${type}‘ ;
7 let "limit = lc - minus" ;
8 while read counter call user nice system interrupt idle ; do
9 if [["${counter:0:1}" != "#" && $i -lt $limit]] ; then

10 if [$i -eq 0] ; then
11 user0=$user ;
12 nice0=$nice ;
13 system0=$system ;
14 interrupt0=$interrupt ;
15 idle0=$idle ;
16 else
17 let "userN = $user - $user0" ;
18 let "niceN = $nice - $nice0" ;
19 let "systemN = $system - $system0" ;
20 let "interruptN = $interrupt - $interrupt0" ;
21 let "idleN = $idle - $idle0" ;
22 let "sum = $userN + $niceN + $systemN + $interruptN + $idleN" ;
23 echo "$i $call ‘bc <<< "scale=2; $userN*100 / $sum"‘
24 ‘bc <<< "scale=2; $niceN*100 / $sum"‘ ‘bc <<< "scale=2; $systemN*100 / $sum"‘
25 ‘bc <<< "scale=2; $interruptN*100 / $sum"‘ ‘bc <<< "scale=2; $idleN*100 / $sum"‘
26 $pc $fw $codec $mediatype $hosts $ports $try" ;
27 user0=$user ;
28 nice0=$nice ;
29 system0=$system ;
30 interrupt0=$interrupt ;
31 idle0=$idle ;
32 fi ;
33 let "i += 1" ;
34 fi ;
35 done < ${fw}-logs/${pc}-${codec}-${mediatype}-nocarp-${calls}calls-try${try}-${type} ;
36 done ;
37 done

