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Abstract

In this paper, we present a novel and realistic model for modelling CPU usage of virtual machines
on a cloud. The model is based on considering the CPU consumption of a virtual machine as a one
generated from a Hidden Markov Model (HMM). The model assumes that the hidden layer (Markov
chain) is inhomogeneous and depends on the time of day. In addition the model assumes that the
observations follow an autoregressive process. The deviations from standard HMMs are motivated
by the properties of real CPU consumption data. The HMM model replicate the properties of the
real CPU consumption data in a very realistic way and outperform both AR(1) and AR(2) models
in predicting time ahead CPU consumption.

1 Introduction

Use of cloud computing is increasing in a tremendous speed as the use of virtual machines have exploded
these last years. More companies are centralizing their resources to data centers to get uninterrupted
power, better security, expansion opportunities and availability. The number of data centers has increased
with 56 percent worldwide from 2005 to 2010 [4] and they are installing more hardware to handle the
rapidly increasing demand. Cloud computing is now consuming more electricity every day than India [2]
and Google alone is consuming the same amount of energy as the Norwegian capital [6, 7].

Even though most cloud technologies and virtual environments support the technical building blocks
of dynamic power-savings, the remaining part is that of the algorithms by which to automate the process.

In this paper we study a case where the virtual machines on a cloud are used by office workers. A
typical example could be a large company that use a cloud to provide resources to the office workers of
the company. In order to tackle the problem of fast dynamics as described above, we model resource
consumption of CPU using a generalized version of the Hidden Markov model (HMM). This paper will
show that the model accommodate the main properties of CPU usage.

2 Related work

The fact that the growth of data centers has become a considerable environmental challenge and has high
operational power cost has motivated a great deal of research and development on modeling resource
usage.

In [8], the authors used elements from the theory of Model Predictive Control(MPC) to find the
optimal control policy for dynamic capacity provisioning. A system that controls the number of active
servers in a data center for energy savings. The solution aims to find a trade-off between energy sav-
ings and capacity reconfiguration cost. The framework is an initial step towards building a full-fledged
management system. RSOM [1] stands for Recurrent Self-Organizing Map and is a module for making
an energy-efficient self-provisioning approach for cloud resource management. RSOM was based on an
unsupervised predictor model in the form of an self-organizing map that predicted the user load after
historical usage.

HMMs have been used in many fields of research like speech recognition, sachine translation, gene
prediction, protein folding and environmental and climate research. There are also examples in cloud
computing. Khan et al. [3] clusters VMs with correlated temporal resource usage and apply a HMM to
characterize the temporal correlations in the discovered VM clusters and to predict variations of workload
patterns. We have not found any research paper using an inhomogeneous HMMs to model resource usage
in cloud compting as proposed in this paper.

3 Properties of CPU consumption over time
To be able to construct a good consolidation algorithm, we need an understanding of the properties of

resource consumption for users. We logged the CPU consumption of a typical (hard working) office worker
every fifth minute for 15 working days. The data is shown in Figure 1, where the three upper panels show
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Figure 1: CPU consumption for a typical office worker. Three upper panels: CPU consumption for
three arbitrary days. Bottom panel: Average CPU consumption over the 15 working days. 100% CPU
consumption is equivalent to one CPU kernel working on full activity.

CPU consumption for three arbitrary days, and the bottom panel the average CPU consumption over
the 15 working days we monitored the office worker. We will use the data to develop a suitable statistical
model for such data. We can do the following observations from the data.

A. The office worker have high activity during the day starting from about 5:00 AM in the morning
at the earliest and ending around 8:00 PM (20:00) in the evening. The highest CPU consumption
on average is between 10:00 AM and 3:00 PM (15:00). There are almost no activity before 5 AM
and after 8 PM.

B. It is also a clear dependence between subsequent observations (the autocorrelation is larger than
7€ero).

4 Statistical model for CPU consumption
In this section we present a suitable statistical model for the CPU data described in Section 3.

4.1 Hidden Markov models

Let X; be a discrete stochastic variable with possible outcomes {0,1,..., K} representing the states
of a Markov chain at time point ¢t € {1,2...,T}. The distribution of an other stochastic variable Y;



depends on the state of X;, Y; ~ P(Y;|X};). Given X, Xs,..., X1, we assume that Y;,t =1,2,...,T are
independent. Overall the model can be written as

T
P(Xv.r,Yir) = P(X1)P(Vi| X1) [ P(Xe|Xoo1) P(Yi] X2) (1)
t=2

where X1:T = Xl,XQ, ‘e 7XT and YVl:T = }/1,)/27 PN ,YT.

The conditional independence of Y7.7 given Xy in (1) is often unrealistic in many applications.
One possible generalization is to let Y¥; depend on the previous states, e.g. change P(Y;|X;) with
P(Yi|X¢—1.t,Y;—1) in (1). One example could be that observations are generated from an autoregres-
sive model of lag one

Yy =m(Xy) + a(Xe)(Yier — m(Xe)) + e1,2(Xy),
if Xt—l = Xt (2)

}/t = m(Xt) + 627t(Xt)7 if Xt—l 7& Xt

where the time series depends on the state of the underlying Markov chain.
The models above can efficiently be evaluated using the Forward Backward algorithm.

4.2 Hidden Markov model for CPU consumption

We now apply a Hidden Markov model to the CPU consumption data. The CPU consumption data for
office workers show as expected a periodicity of 24 hours (Figure 1). We assume that the observations
for different days are independent outcomes from the same model. We assume that the hidden Markov
chain have to states

e The user is using the computer at time ¢ (active), X; = 1. From Figure 1 we see that this is
typically from the morning to the afternoon.

e The user is not using the computer at time ¢ (inactive), X; = 0. This is typically in the evening
and the night.

For Hidden Markov models the far most common is to assume that the transition probabilities of the
hidden Markov chain is constant over time. This is not a realistic assumption for this application. For
example it is more likely to go from inactive to active state in the morning than in the evening or
from active to inactive state in the evening than in the morning. Thus we assume a time dependent
(inhomogeneous) Markov chain with transition matrix denoted as

POO POI
Py = {leo PZM}

where P}? is the probability of going from state i to j in time step ¢. Since P! = 1—P% and P}0 = 1—P},
the transition matrix consists of two free parameters in each time step. To reduce the number of unknown
parameters we assume that the transition probabilities are related through some functions. The following
functions turned out to perform well in our experiments

P =logit ™" (o0 + o1t + Yo2t>)

o (3)
PM = logit ™" (y10 + Y11t + 712t?)

where the v’s are parameters that will be estimated from CPU consumption data. Using a parabola
within the inverse logit function, we are able to model that a user during a 24-hour cycle go from a high
probability of being inactive (night) to a high probability of being active (e.g. working hours) and back
again to being inactive (evening/night). Using (3), the number of unknown parameters are reduced from
2(T — 1) to six.

Next we go to the model assumptions for the observations. Inspecting the CPU data in Figure 1 the
conditional independence between subsequent observations given the hidden state does not seem realistic
and thus we use the generalized version of the HMM based on autoregressive processes of lag 1, see (2).

We may not have many days with observations which results in uncertainty in the estimation of
the parameters. We deal with uncertainty by casting the problem into a Bayesian framework. We
use wide (non-informative) uniformly distributed prior distributions. We assume that a priori all the
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Figure 2: Estimated curves for P° (gray curve) and P!' (black curve).

hyperparameters are independent. Further we assume that we have observations for D days (24-hour
cycles) and that the observations for each day are independent given the hyperparameters. It is then
straight forward to set up the posterior distribution for the unknown parameters. We evaluate the
posterior distribution, i.e. estimate the unknown parameters, using Markov chain Monte Carlo (McMC)
simulation [5].

5 Experiments

In the rest of the paper we denote the model presented in Section 4.2 CPU HMM. Figure 2 shows the
estimated curves for P)° and P! in equation (3) based on the samples from the MH algorithm. We see
that the estimated transition matrix based on P2 and P} is highly inhomogeneous as a function of time
showing the importance of not modeling the hidden Markov chain as homogeneous. We see that in the
night it is a high probability of staying in the inactive state (P?°) and a very low probability of staying
in the active state (P}!). As the morning approaches P° decreases while P! increases rapidly which
means that a transition from inactive to active state becomes very likely. In the afternoon we observe
the opposite and a transition from active to inactive state becomes more and more likely. It is very
nice to observe how well the given model and simulation algorithm are able to automatically separate
the resource consumption in clear active and inactive states still using wide prior distributions with no
information on how to separate in active and inactive state.

Figure 3 shows three independent realization from the CPU HMM model and the average of 15
realization. The black lines at the bottom of each panel show at which time intervals the underlying
Markov chain were in the active state for these realizations. Because of the inhomogeneity of Markov
chain we see that it is far more likely to be in active state during working hours compared to the other
times of the day. Comparing Figure 3 with Figure 1, we see that the CPU HMM replicate the properties
of the real CPU usage data in an impressive way.

The prediction performance of the CPU HMM was compared to the prediction performance of AR(1)
and AR(2) time series models. The results show that the CPU HMM outperforms both of these commonly
used models.

6 Closing remarks
In this paper we present an inhomogeneous Hidden Markov model (HMM) that replicate the properties

of real CPU consumption data in a very realistic way. Our experiments show that the model has good
prediction properties and out-competes both AR(1) and AR(2).
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Figure 3: Three upper panels: Three arbitrary realizations from the CPU HMM. Bottom panel: Average
of 15 realizations. 100% CPU usage is equivalent to one CPU kernel working on full activity. The black
lines at the bottom of each panel show at which time intervals the underlying Markov chain were in the
active state for these realizations.
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