
UNIVERSITY OF OSLO
Department of Informatics

Exploring Patterns for
Scalability of Network
Administration with
Topology Constraints

Master thesis

Matthew S. Disney
Oslo University College

May 23, 2007

Abstract

This thesis considers the impact of distributed network communication pat-
terns on the scalability of dynamic systems configuration and monitoring us-
ing the software cfengine. Decentralized patterns are partially implemented
as cfengine policy on topologies with node degree constraints. Experiments
investigate total processing latency of patterns. Results show they provide a
balanced approach to parallelization and scalability. The study of patterns on a
chain topology reveals the challenge of phasing delay in deep tree structures.
A time buffering method for reducing total processing latency is tested and
found to be effective. Included are suggestions on new cfengine functionality
and syntax to support patterns integration. As a whole, this thesis offers new
perspectives in on-going patterns research as well as identifying challenges
and solutions for bringing patterns to cfengine.

4

Acknowledgements

First, I am grateful for the teaching, patience, guidance, and support of my advisor,
Professor Mark Burgess. His work and research in systems administration is instru-
mental in the effort to illuminate the technical field with analytical science and I am
very proud to have been his student and advisee. I have learned much from the in-
structors in this program and I thank them for their excellent efforts. I am also thank-
ful to Professor Rolf Stadler at the Royal Institute of Technology (KTH) in Stockholm
and his students for their pioneering development of network navigation patterns, for
generously hosting me to learn more about their work, and for the numerous helpful
discussions.

I am honored to be in the good company of my fellow classmates and alumni in this
program; they have been excellent comrades throughout our demanding classes. Alex
Andersen (first, as always), Kyrre Begnum, and Edson Ochoa have been my closest
companions and colleagues at school here and I am grateful for their friendship, good
will, and collaboration.

The support of my amazing friends and family was nothing less than critical in my
will and ability to move to Norway to pursue my master’s degree. It is humbling and
I will never forget their encouragement. My parents have given me a life of learning,
comfort, and opportunity even beyond their own. If there is a spirit of achievement in
me, it has been passed down from my mother and father.

Finally, I want to thank my wife, Hannah, who has been my constant companion for
these two years. She has supported me unconditionally in every way and at every
turn, often making sacrifices to do so. Her responsibility for this new success in my
life cannot be overstated; I would never have given any serious consideration to taking
the bold step of moving to Norway for this program without her encouragement. And
I am certainly glad we did.

Oslo, May 2007

Matt Disney

5

6

Preface

Developed in conjunction with this thesis, Professor Mark Burgess and I have
cowritten a paper entitled “Understanding Scalability in Network Aggrega-
tion with Continuous Monitoring,” which has been submitted to the 18th IFIP/IEEE
Distributed Systems: Operations and Management (DSOM 2007) conference.
We have also collaborated with Professor Rolf Stadler at the Royal Institute of
Technology (KTH), Stockholm on a paper entitled “Using Patterns in Cfengine
for Robustly Scaling Network Administration,” which has been submitted to
the 21st USENIX Large Installation System Administration conference. As of
May 2007, both papers are awaiting acceptance.

This work is supported by the EC IST-EMANICS Network of Excellence (#26854).

7

8

Contents

1 Introduction 15
1.1 Dynamic systems configuration 15
1.2 The centralization question . 16
1.3 Motivation and research questions 18

1.3.1 Echo pattern . 18
1.3.2 Aggregating chain . 19
1.3.3 Aggregating tree . 19
1.3.4 General analysis . 19

2 Background and theory 21
2.1 Navigation patterns . 21

2.1.1 Star pattern . 21
2.1.2 Echo pattern . 22
2.1.3 Generic aggregation protocol 25
2.1.4 Aggregating chain . 26

2.2 Cfengine . 27
2.3 Scalability . 28

2.3.1 Workload . 29
2.3.2 Time to aggregation . 29
2.3.3 Cost . 29
2.3.4 Configuration syntax . 30

2.4 Promise theory . 30
2.5 Chain propagation delays . 31
2.6 Voluntary cooperation . 32
2.7 Amdahl’s law and speedup . 34

3 Methodology 35
3.1 Test network setup . 35
3.2 Measurement and automation of TTA and TTPA data processing 35
3.3 Comparing parallel star and echo using cfrun 36
3.4 Copy chain . 37
3.5 Copy tree . 39
3.6 Experimental error and remarks 40

3.6.1 Standard deviation . 40

9

CONTENTS

3.6.2 Time synchronization issues 41
3.6.3 Cfengine run-time blocking 41
3.6.4 Node failure . 42
3.6.5 TTA time discrepancy . 42
3.6.6 Sample size . 43

4 Results 45
4.0.7 Echo/star/cfrun experiment results 45
4.0.8 Copy chain experiment results 47
4.0.9 Copy tree experiment results 55

5 Discussion 59
5.1 General remarks on push- vs. pull-based results 59
5.2 Echo/star/cfrun experiment . 59
5.3 Copy chain experiment results . 60

5.3.1 TTA characterizations . 60
5.3.2 The effect of sleep factors on TTA 60
5.3.3 Sleep factor 2 results analysis 61
5.3.4 Sleep factor 3 results analysis 61
5.3.5 Periodic groupings and comparison 61

5.4 Copy tree experiment results . 62
5.5 Amdahl’s law and speedup . 63
5.6 Cost function . 64
5.7 Promise theory . 64

5.7.1 Propagation model . 64
5.7.2 Kinematics of the system 67
5.7.3 The sampling process . 67

5.8 Supporting patterns in cfengine 70

6 Future work 75
6.1 Exploring cfengine enhancements for patterns 75
6.2 Voluntary RPC trees . 75
6.3 Implementation of more patterns 76
6.4 Experiment on a larger scale . 76
6.5 Economic interactions and policy 76
6.6 Autonomic resource distribution 76

7 Conclusions 77

A Experimental cfengine configurations 85
A.1 Serial star . 85
A.2 Parallel star . 85
A.3 Cfrun echo . 86

10

CONTENTS

A.4 Copy chain . 87
A.5 Copy tree . 89

B Speedup calculations 93
B.1 Serial star compared to parallel star 93

B.1.1 Observed speedup . 93
B.1.2 Karp-Flatt metric . 93

B.2 Serial star compared to echo . 94
B.2.1 Observed speedup . 94
B.2.2 Karp-Flatt metric . 94

C Programs written and used for testing and analysis 95
C.1 Copy chain simulation program 95
C.2 Copy chain data analysis . 98
C.3 Copy tree data analysis . 101

11

CONTENTS

12

List of Figures

2.1 The centralized query and response steps in the star pattern. . . 22
2.2 The expansion and contraction steps in the echo pattern. 24
2.3 Visualizing the periodic sampling process. 31

3.1 Diagram of 20-node tree overlay used for echo pattern tests. . . 37
3.2 A 20-node chain. 38
3.3 A 15-node proper binary tree. 40

4.1 Average results and standard deviation for 50 tests of each pat-
tern listed. The workload is the number of maximum parallel
cfrun operations occurring on any node, where lower is better. . 46

4.2 Average copy chain TTA for each different sleep factor (stan-
dard deviation plotted as the error) plotted against the predicted
model with a random noise multiplier of 0.19. Sleep factor 2 is
remarkable both because of its high standard deviation as well
as its distance from the prediction. Sleep factor 3 is remarkable
due to it being the lowest of all value and low standard devi-
ation. Sample sizes for each measurement are shown in Table
4.1. 47

4.3 Histograms showing the distribution of measured copy chain
TTA for sleep factors from 0 through 12. 48

4.4 TTA of observed copy chain τ groups compared. This graph
suggests a convergence for all the τ groups at a value of approx-
imately 13 during the fourth phase of each period. 51

4.5 TTA of predicted copy chain τ groups compared. 51
4.6 Average copy chain TTPA plotted against distance in the chain

from the leaf node. Note the atypical behavior exhibited in sleep
factors 2 and 3. 52

4.7 Copy chain τ groups compared: average TTPA plotted against
chain distance from leaf node. 54

4.8 Average copy tree TTA for each different sleep factor with stan-
dard deviation error. Table 4.3 shows the sample size for each
sleep factor. 55

13

LIST OF FIGURES

4.9 Histogram showing the distribution of measured total time to
aggregation for sleep factors of 0 through 12. 57

4.10 Histograms showing the distribution of measured total time to
aggregation for sleep factors of 15 through 42, at an interval of 3. 58

5.1 Average results and standard deviation for 50 tests of each pat-
tern listed. The workload is the number of maximum parallel
cfrun operations occurring on any node, where lower is better.
The calculations for the aforementioned values are included in
Appendix B. 63

5.2 Cost considerations can plausibly lead to an optimum depth of
network pattern when power considerations are taken into ac-
count. The minimum cost here is given for k = 5. Such con-
siderations require an arbitrary choice to be made about relative
importance of factors. 65

5.3 A bilateral promise tree of type±d indicating “depth” and “width”.
The structure can be thought of a cross between the star topol-
ogy and a chain, which are the extreme cases. 66

5.4 A cfservd.conf with potential topology and patterns options. . 72
5.5 A cfagent.conf with potential topology and patterns options,

including echo pattern support and full parallel generic aggre-
gation support made possible by an enhanced copy action able
to iterate through a server list like a for loop and copy in parallel. 73

14

Chapter 1

Introduction

1.1 Dynamic systems configuration

Configuration management is a moniker often applied to system administration
of many hosts. This term has also been used in the context of software configura-
tion management, which may be similar in some respects but should be consid-
ered a separate field unrelated to dynamic system configuration (DSC) for the
purposes of this thesis. Other popular labels for configuration management
include those similar to system configuration [1], large scale system configuration
[2], and infrastructure management [3]. For clarification, this thesis will rely on
the term system configuration.

System configuration includes all aspects of managing the service of a host
or group of hosts. This can range greatly from fundamental tasks such as in-
stalling operating system software and controlling access to advanced tasks
such as automatically scaling network services or programmatically respond-
ing to failures. Such advanced concepts can be considered closely related to
computer autonomics [4], described in [5] as the creation of systems that are
self-configuring, self-healing, self-optimizing, and self-protecting.

In 1997, Evard [1] described a history of system configuration that highlighted
an early system cloning method [6], the emergence of NIS and NFS [7], and
the introduction of the Tivoli Systems Management Environment [8]. System con-
figuration tools were at first primarily low-level [9] [10], requiring the system
administrator to specify exactly what the desired outcome would be on each
host and how to get there. Evard noted a significant expansion in 1994 with

15

CHAPTER 1. INTRODUCTION

four ambitious new configuration systems designed for centrally managing
networked hosts: LCFG [11], GeNUAdmin [12], OMNICONF [13],and Con-
fig [14]; Cfengine [15] was created during the same period. The emergence
of these tools represents a major step toward DSC and gave system admin-
istrators access to high-level tools specifically created for the management of
many hosts. This thinking, dynamic system configuration (DSC), focuses on
the challenge of requirements that change over time and has developed jointly
with high-level system configuration ideas that allow for increasingly abstract
specifications [10]. DSC stands in contrast to other system configuration ideas
that represent an ad hoc approach or do not take configuration drift from the
baseline into account. Some similar form of this kind of policy-based manage-
ment, in which can be seen strong similarities to configuration programming
work described in [16] as early as 1987, is a necessary component of autonomic
systems.

Recent years have seen not only an expansion of the system configuration tool
market (evident from the selection of technologies in [9]) but also increasing
attention to the theory involved in managing systems. This work continues
in that vein of research to provide an analytically sound basis for challenges
facing contemporary system administrators with a large number of hosts as
well as difficulties many system or network administrators will encounter in a
future of pervasive network computing.

The approaches described in this thesis are motivated by a desire to explore
and analyze the decentralization capabilities of a DSC tool, in this case cfengine.
Inspiration for how to approach decentralization is provided by research in
network navigation patterns, which include algorithms for distributing monitoring-
related resource demands throughout a network in a controlled manner (as
described in Section 2.1).

1.2 The centralization question

A centralized interface to configuration policy is an important aspect in the
simplification of system configuration. That begs the question: Why is the
issue of decentralization important in the context of DSC, when centralization
is the key to a scalable DSC interface?

Policy interface in system configuration is something that benefits from cen-
tralization: a single policy change can cause numerous configuration actions.
However, these two aspects (policy interface and configuration action,including

16

1.2. THE CENTRALIZATION QUESTION

communication) can be decoupled and optimized independently.

The problem with centralized configuration action involves the limitations of
a single system to either execute those actions itself or to communicate those
actions to other systems for execution. As an example, it is useful to enumerate
the parallel computation resource constraints internal to a computer system:

CPU The number of processors available constrains the number of operations
that can happen simultaneously. The processor architecture and speed
also affect how many operations can happen within a given time period.

Memory Each running process is loaded into memory, which means that the
number of running processes is restricted by the memory as well as the
size of those processes.

Storage Many programs require long-term storage for data that must reside
outside of memory. This storage typically consists of hard drives but can
easily be other forms of media; however, regardless of the media type, a
common characteristic is that the media is architecturally further away
from the CPU and has slower read and write performance than the main
memory and CPU cache. This storage can also provide low-performance
expanded (virtual or swap) memory space used to house data.

Network The network hardware serves to limit the amount and rates of data
that can be communicated with other systems.

Operating System The operating system itself contains a number of constraints,
as its architecture directly affects the performance of the hardware to
which it is an interface. Different operating systems will take advantage
of certain resources (e.g. memory, networking, process scheduling, etc...)
better than others.

If any of these resources needed by a system configuration program is com-
pletely consumed, the ability of the centralized configuration action server to
execute its policy in a timely fashion, or at all, is crippled. In other words, un-
like policy interface, centralizing configuration action introduces the concern
of being a performance or scalability bottleneck due to resource constraints.

This notion of controlled methods for decentralization is foreseeably important
to the userbase of Cfengine; the raison d’être for a DSC utility is to man-
age a set of nodes. Pursuing a modification to a DSC utility that might of-
fer decentralization benefits but decreases its capability to manage the subject

17

CHAPTER 1. INTRODUCTION

networked nodes is generally undesirable. Network navigation patterns that
have recently been considered are generally applied on tree topologies. This
structure provides centralized policy interface and decentralized policy action;
ergo network navigation patterns offer a suitable direction for experimenting
with decentralization in Cfengine.

Note: Any reference to “decentralization” for the remainder of this thesis is intended
to represent “decentralizing configuration action,” not configuration policy interface.

1.3 Motivation and research questions

A combination of cfengine and patterns would be desirable in at least two
general scenarios:

• Existing cfengine implementations that are facing limits to their central
cfengine server resources or that would generally benefit from shifting
the centralized workload throughout the network, and

• Decentralized networks, particularly mobile ad-hoc networks (e.g. sen-
sor networks) but also including wide area networks and any topology
that can benefit from proxied cfengine usage (e.g. firewalled enterprise
local area networks).

However, in order to be useful in these contexts, a number of questions must
be answered about cfengine and patterns, which can be decomposed into the
following topics and questions.

1.3.1 Echo pattern

Can a true parallel echo pattern be configured in cfengine? If so, how does
this compare with serial and parallel stars? Does it meet expectations of time
to aggregation values between that of serial and parallel stars? What is the
workload comparison for star and echo patterns? What is the parallel speedup
for parallel star and echo patterns compared to a serial star?

18

1.3. MOTIVATION AND RESEARCH QUESTIONS

1.3.2 Aggregating chain

Can an aggregating chain be implemented in cfengine using the copy and ed-
itfiles actions? If so, does the chain perform as expected, with a TTA that cor-
responds directly to the chain length? If it performs worse or better, to what
extent and why? Can this performance be predicted? Can it be tuned and
optimal variable values determined? Can a chain be implemented in cfengine
using voluntary RPC methods? If so, how does the TTA for a voluntary RPC
implementation compare to a copy chain?

1.3.3 Aggregating tree

Can an aggregating tree be implemented in cfengine using the copy and edit-
files actions? If so, how does tree performance compare to chain performance
for a similar number of nodes? Can the performance be predicted? Can it be
tuned and optimal variable values determined? Can a tree be implemented in
cfengine using voluntary RPC methods? If so, how does the TTA for a volun-
tary RPC implementation compare to a copy tree?

1.3.4 General analysis

Will modeling these patterns in promise theory explain observed behavior? Is
there a symbolic expression for determining cost of using these patterns? If so,
are there optimal values? How well does the cfengine syntax for these patterns
scale? Is there functionality that could be added to cfengine to better support
patterns?

19

CHAPTER 1. INTRODUCTION

20

Chapter 2

Background and theory

2.1 Navigation patterns

Navigation patterns are defined by the order and direction of inter-node com-
munication in a logical network topology. Specifically, they are characterized
by the messaging flow imposed by the combination of an overlay network and
communication policies as well as the usage of computing power throughout
the network to act on data (as opposed to all calculation occurring in a single
node). The product of navigation patterns is a capability to perform manage-
ment operations on a network without shared memory and have both the link
usage and the computational intensity distributed throughout the network
rather than focused at a single node.

Definition 1 (Navigation pattern). A graph traversal algorithm executed on a net-
work of programmable nodes.

A description of the star pattern as a reference and a brief summary of recently
defined navigation patterns follows.

2.1.1 Star pattern

The star pattern is a straight-forward example that serves as a good reference
for newer patterns because it is not decentralized. The star pattern relies on a

21

CHAPTER 2. BACKGROUND AND THEORY

star topology, i.e. a one-level tree. All clients interact directly with the server,
in a hub-and-spoke fashion. It is characterized by that central control as well
as bi-directional communication between the server and clients. This is illus-
trated in Figure 2.1 as the server directly queries the clients and they respond
directly.

Figure 2.1: The centralized query and response steps in the star pattern.

In particular, the star pattern can be subdivided into two types: serial and
parallel. This is remarkable because cfrun works in serial by default. This
kind of serial pattern can serve to protect a central resource from overloading
due to concurrent processes, but the time complexity is very high (as can be
seen in experimental results later). However, a parallel star incurs a very high
workload on central resources. This will be discussed in more detail later in
the thesis.

Patterns should not be confused with the topologies on which they rely. Discussing
the star pattern as an example might confuse readers into believing a certain
pattern and topology are always related. This is not the case. For example, the
patterns described in the following sections could be employed on a star topol-
ogy as well as in trees. However, the experiments contained herein focus on
patterns with specific topology constraints, principally the number of children
per node. This will be explained in more detail in the following sections.

2.1.2 Echo pattern

The simplest example of a navigation pattern designed for decentralization is
the echo pattern. The fundamental topology of the echo pattern is a spanning

22

2.1. NAVIGATION PATTERNS

tree, with a very central node in the network as the root of the tree. The pat-
tern has two phases of communication: expansion and contraction. During the
expansion phase, the root node issues a query to its children. Each node in
the tree repeats this process. The contraction begins as the query reaches a leaf
node. The leaf node answers the query, sending its response to its parent in the
tree. The parent receives the response of its children, aggregates or calculates
information for the query to the fullest extent possible, and then sends a single
aggregate answer to its own parent. This process is repeated back to the root
node, which finally receives and aggregates the messages from its children.
The tree topology provides for parallelized execution while the aggregation of
query responses during contraction reduces the amount of traffic that would
otherwise be necessary [17].

Ref. [17] provides a formal expression for the time complexity of the echo pat-
tern in terms of message transition time, network delay, and processing time. Equa-
tion (1) represents the time complexity for an execution graph G′ : Ctime =
Ctime(v′root), where:

• v′ is a vertex in the graph G′,

• v′root is the root vertex in the graph G′,

• tq is the total time required to transmit a query to a child (message transi-
tion time),

• tr is the total time required to transmit a response to a parent (message
transition time),

• tn is the total time required for a message to traverse the path between
two nodes (network delay),

• tc is the total time required to compute the local query and aggregation
from children (processing time).

Equation 1 (Echo pattern time complexity.).

Ctime(v′) =

{
tc + tr if childcount(v′) = 0,
tc + tr + M(v′) otherwise.

M(v′)1≤k≤childcount(v′) = max{ktq + 2tn(v′, childk(v′)) + Ctime(childk(v′))

23

CHAPTER 2. BACKGROUND AND THEORY

Figure 2.2: The expansion and contraction steps in the echo pattern.

24

2.1. NAVIGATION PATTERNS

Equation (1) shows that the time complexity of a node depends on the time
complexity of its children. Because the operations for each child are executed
in parallel, the time complexity is largely dependent on the max value of all
the children. Therefore, severely imbalanced trees do not stand to make per-
formance gains as substantial as that of well balanced trees.

2.1.3 Generic aggregation protocol

In contrast to the echo pattern in which the managing node queries other nodes
in the network, the generic aggregation protocol (GAP) employs a strategy
where the managing node is query-passive and receives continuous updates
from other nodes in the network. GAP creates a self-stabilizing, breadth-first
spanning tree that accommodates for network and node failures by maintain-
ing neighborhood information at each node. The ways in which the neighbor-
hood table at a node changes in response to changes in its neighbors can be
modified by policy, which allows for general policy-level adjustment of how
the network automatically forms and stabilizes [18].

TCA-GAP

An extension of GAP, TCA-GAP is concerned with aggregated threshold cross-
ing alerts. This method allows for the reduction of total traffic complexity in a
network by restricting the number of updates sent to the parents (in terms of
the overlay network tree) of the region for which a threshold is defined. The
local thresholds are derived from a global threshold and negotiated by neigh-
bors in the overlay. This distributed approach stands in contrast to the typical
current practice of monitoring thresholds at only the network edge and pro-
cessing that information on a managing node, which is often dedicated to the
task due to its computational intensity [19].

A-GAP

Another extension of GAP, A-GAP addresses the challenge of specifying a
monitoring accuracy level while minimizing the necessary management over-
head. Typical rate-control methods reduce traffic complexity but without re-
gard to the impact on accuracy. A-GAP, on the other hand, allows for the
specification of an accuracy threshold, below which local filters will prevent

25

CHAPTER 2. BACKGROUND AND THEORY

updates from being pushed to the managing node. The global accuracy thresh-
old is first specified on the managing node then distributed and re-computed
throughout the network as local filters [20].

Recent and current work

Recent and current work on GAP derivatives has not been reviewed for this
thesis but deserve mention because they have potential to be interesting for
comparison or application in cfengine. G-GAP [21] provides for network-wide
monitoring using epidemic communication strategies to provide robustness.
Results indicate that tree-based approaches both perform better and are more
robust, indicating that epidemic methods do not necessarily outperform more
organized structures. M-GAP is designed to distribute total aggregate data
throughout the network; this work is on-going and early discussions of the
work with the Prof. Stadler at KTH indicate it will be relevant to cfengine.

2.1.4 Aggregating chain

It is instructive to study the extreme circumstances of any research topic. In
the case of tree-based overlay centralization, there are two extremes. The first
is the star topology, as described earlier in this thesis. The complete opposite
of the star topology is a chain, provided the topology is one in which nodes
can pass on messages to other nodes. The example of a pattern relying upon
a chain topology is used here to facilitate the study of an extreme topology
configuration.

Definition 2. Node degree k: The number of children of a node.

Definition 3 (Extreme node degrees in tree-based topologies). . The two extreme
cases of node degrees as constraints in trees, excepting the case of 0 children, are chains
(k = 1) and stars (configurable k). All trees can be considered a combination of chains
and stars.

In a chain, each node with the major exceptions of the root node and the leaf
node have exactly one child and one parent. A chain maximizes depth, min-
imizes breadth, and equalizes workload among nodes (as much as possible

26

2.2. CFENGINE

within the constraints of Amdahl’s law, which will be discussed later in this
thesis). In contrast, star maximizes breadth, minimizes depth, and focuses
workload on the central resources.

Conventional wisdom suggests that tree depth corresponds directly to latency
in terms of end-to-end communication; chains contain the maximum num-
ber of non-repeated hops in a topology and therefore the highest latency on
messages passing from one end of the chain to the other. Chains are highly
susceptible to failure due to the fact that any individual link or node failure
can disrupt end-to-end communications; the closer the failure is to the root,
the more substantial the loss.

2.2 Cfengine

Cfengine is an agent-based server/client DSC application as well as a vessel
for researching various configuration and monitoring topics at Oslo University
College. It is characterized by several features, quoted here from [22]:

• Centralized policy-based specification, using an operating system inde-
pendent language, which conceals implementation details.

• Distributed agent-based action, in which every host node is responsible
for its own maintenance.

• Convergent semantics encourage every transaction to bring the system
closer to an ‘ideal’ average-state, like a ball rolling into a potential well.

• Once the system has converged, action by the agent desists, or more usu-
ally, does not even start at all, when convergence was assured on a pre-
vious run of the agent.

Cfengine consists of several major components:

cfagent This is the program that actually applies the operators to implement a
given policy, which is specified in the files update.conf and cfagent.conf.
updated.conf is intended to contain the policy necessary to ensure a
running cfengine setup. The actual configuration policy is contained in
cfagent.conf.

27

CHAPTER 2. BACKGROUND AND THEORY

cfservd This is a daemon that serves two purposes. One is to listen for re-
quests from other nodes to execute cfagent. The other purpose is to act
as a file server for other nodes that wish to copy files from the node in
question. Its configuration file, which includes access control operators,
is cfservd.conf.

cfexecd This can either be run as a standalone daemon or in non-daemon
mode. It is a wrapper for the execution of cfagent. It is preferred to sim-
ply running cfagent directly from a crontab because cfexecd can capture
and handle output according to policy settings in cfagent.conf.

cfenvd This is a daemon used to collect certain statistical data about nodes
on which it runs, including statistics about users, load, processes, and
sockets.

cfrun This is a command used to initiate cfagent on other nodes. Without
arguments, all the hosts in cfrun.hosts are contacted serially. However,
classes or specific hosts can be specified as constraints.

Cfengine has the ability to effectively either push or pull a configuration from a
server to a configuration client. Normally, cfagent is run on each configuration
client, which then executes the operators in the update.conf before moving to
the operators in cfagent.conf. This process can include pulling new copies
of those files from a configuration server. However, the push is actually sim-
ulated; the command cfrun is used to send a request to the cfservd processes
on the clients to execute cfagent, which operates in the pull manner described
above. This implementation, where the push is actually achieved through a
requested pull, is a result of the autonomy-centric voluntary cooperation model
guiding the development of Cfengine [23].

2.3 Scalability

Generally speaking, scalability can be considered whether the growth of a sys-
tem approaches some kind of limit that prohibits its function or viability. How-
ever, that explanation provides no dimensions so it is important to clarify the
terms of its use and measurement for this work. Throughout this thesis, sev-
eral different factors each provide some notion of scalability. In each case,
scaling linearly is optimal.

28

2.3. SCALABILITY

2.3.1 Workload

First, scalability can be measured in terms of resource consumption on a given
node. Low-level resource consumption monitoring method depends on the re-
source itself. However, in this case, a general characterization of the workload
on each node is sufficient and attainable by prediction. The workload metric
used for this thesis is defined below:

Definition 4 (Workload). The number of cfengine processes executing simultane-
ously on a node related to that node’s participation in a pattern test.

2.3.2 Time to aggregation

A metric specific to patterns, the total time to aggregation is defined below:

Definition 5. Total Time to Aggregation (TTA): The total amount of time necessary
to propagate aggregated data from the leaf of a tree or chain to the root. In the case of
push-based protocols, this will include time spent in the expansion/query phase.

While TTA implies that the entire network aggregate is complete, TTPA is the
amount of time for a subsection of the tree or chain to aggregate. Such a sub-
aggregate is called a partial aggregate.

Definition 6. Time to Partial Aggregation (TTPA): The amount of time necessary to
propagate aggregated data from the leaf of a tree or chain to a node in the network that
is lower in the logical network than the root.

2.3.3 Cost

Another potential limit to scalability is cost-prohibitiveness. Therefore a metric
based on the indirect cost related to power is considered in Section 5.6.

29

CHAPTER 2. BACKGROUND AND THEORY

2.3.4 Configuration syntax

Configuration syntax is the only aspect of interface scalability considered in
this thesis. Syntax is considered to scale poorly if it must be changed as the
network changes in terms of growth or failure and if it requires many lines to
express the objective. A scalable syntax can be expressed in few lines and does
not need to be modified as the network changes.

2.4 Promise theory

Promise theory is a high level description of constrained behavior in which
ensembles of agents document the behaviors they promise to exhibit. Agents
in promise theory are truly autonomous, i.e. they decide their own behavior,
cannot be forced into behavior externally but can voluntarily cooperate with
one another[24]. This approach has been used to create an implementation of
remote procedure calls that preserves node autonomy, as described in Section
2.6.

Definition 7 (Promises). A promise is a directed edge a1
b→ a2 that consists of a

promiser a1 (sender), a promisee a2 (recipient) and a promise body b, which describes
the nature of the promise.

Promises made by agents fall into two basic categories, promises to provide

something or offer a behavior b (written a1
+b→ a2), and promises to accept

something or make use of another’s promise of behavior b (written a2
−b→ a1). A

successful transfer of the promised exchange involves both of these promises,
as an agent can freely decline to be informed of the other’s behavior or receive
the service.

Promises can be made about any subject that relates to the behavior of the
promising agent, but agents cannot make promises about each others’ behav-
iors. The subject of a promise is represented by the promise body b. Finally,
the value of a promise to any agent is a numerical function of the constraint e.g.

va1(a1
+b→ a2), and is determined and measured in a currency that is private to

that agent. Any agent can form a valuation of any promise that it knows about.

30

2.5. CHAIN PROPAGATION DELAYS

The essential assumption of promise theory is that all nodes are independent
agents, with only private knowledge (e.g. of time). No node can be forced
to promise anything or behave in any way by an outside agent. Moreover,
there are no common standards of knowledge (such as knowing the time of
day) without explicit promises being made to yield this information from a
source. This viewpoint is important in analyzing the collection of distributed
information for measurement purposes.

2.5 Chain propagation delays

The following theory was developed in cooperation with Prof. Mark Burgess
and is also discussed in [25].

Consider a sampling/aggregation process scheduled to run every P seconds
along a chain, where P is the period (see Figure 2.3), so that the promise com-
pliance frequency is P. In a periodic process, that which happens in one period

P

Figure 2.3: Visualizing the periodic sampling process.

is identical (for all intents and purposes) to that which happens in any period.
Thus, describing one period is sufficient for describing all of them. This can
be turned into a description of the system in terms of a new time variable τ
which runs from time 0 to P.

Definition 8. τ is a time offset, in seconds, of any period P such that 0 < τ < P.

These are related by

Equation 2. t = nP + τ, n = 0,±1,±2, . . .

31

CHAPTER 2. BACKGROUND AND THEORY

Equation 3. τ = t mod P

The effects of scheduling become clearest when using modulo “clock” arith-
metic τ. Let tn be the real time at which agent an wakes up, samples its data
and collects data from upstream agent an−1. The time to keep the promise

t(an
−d→ an−1) = tn − tn1 . In order for promises to be kept transmitted along

the chain in a single avalanche, we must have:

Equation 4. tn > tn−1, ∀n > 1

i.e. each successive agent must begin at a time that is strictly greater than that
of its predecessor. This constraint is easily solved by choosing:

Equation 5. tn = t0 + (n− 1)ts,

for some offset ts. The subtlety here is that this schedule has to be wound
around the periodic time schedule of the agents. Since each agent is time-
shifted by ts relative to the last, the total time-span of a single schedule is
(N − 1)ts. As long as this is less than a single period, there will be no phas-
ing between the delays and the periodic activation of the agents. However, in
long chains where (N − 1)ts > P some agents will wrap around into the next
activation of the schedule and possibly start out of sequence with respect to
periodic time τ. Thus, even if Equations 4 and 5 are satisfied in real time, it is
not necessarily true that τn > τn−1. Indeed, this condition will necessarily be
violated for some of the agents as long as (N − 1)ts > P.

2.6 Voluntary cooperation

Burgess describes a type of policy and protocol designed to preserve the au-
tonomy of nodes in networked cooperative environments [26]. It considers
how nodes can interact without one subjugating the other, i.e. preserving the
node’s autonomy. The method, called voluntary remote procedure calls (RPC),
involves two nodes (a server and a client) communicating directly to first ne-
gotiate a service agreement. Afterwards, a third party (a blackboard) acts as a
service broker between the two nodes, with the blackboard receiving requests

32

2.6. VOLUNTARY COOPERATION

from the client and letting the server pull that information from the black-
board. This system essentially uses a publish/subscribe method to ensure that
all parties are pulling information from each other rather than directives being
pushed upon them by others. In that way, the method preserves the autonomy
of each system.

In the case of voluntary RPC in cfengine [26], there are two notable departures
from the original model. First, there is no initial negotiation phase in which
the server and client communicate directly to make a service agreement; the
service agreement is implied and trusted in the form of configuration files.
Additionally, the cfengine implementation does not make use of a blackboard,
therefore publication repositories on both the server and client serve in place
of a blackboard.

The following steps describe the interaction in a cfengine voluntary RPC oper-
ation:

1. Host A has an RPC method defined to run on Host B in cfagent.conf.
Host A publishes the method in a special outbound RPC directory (e.g.
/var/cfengine/rpc out/), designated for Host B.

2. When Host B’s cfagent runs, it checks in /var/cfengine/rpc out/ on its
MethodPeers (as defined in update.conf) to find any RPC methods des-
ignated for Host B. In this case, there is an RPC method waiting on Host
A. Host B downloads this RPC method into an inbound RPC directory
(e.g. /var/cfengine/rpc in/ and executes it. The results, including re-
turn data, are stored in Host B’s outbound RPC directory and designated
for Host A.

3. When Host A’s cfagent runs, it checks Host B’s /var/cfengine/rpc out/

and finds the response to the method. Host A downloads the result to
its own /var/cfengine/rpc in/ and processes it according to the policy in
cfagent.conf.

In the steps above, both hosts are configured (using the MethodPeers parameter
in update.conf) to check each other for RPC methods.

It is worth noting that a principal motivation for using patterns is to reduce
the amount of traffic in a network necessary to perform a given monitoring ac-
tion. However, the voluntary RPC model is shown to have a relatively higher
overhead in this respect [26]. Therefore, this work does not aim to combine
benefits of voluntary RPC and patterns with the intended result of reducing
network traffic complexity.

33

CHAPTER 2. BACKGROUND AND THEORY

2.7 Amdahl’s law and speedup

Amdahl’s Law [27] provides a way to analyze the experiment results and
determine what amount of the workload benefits from parallelization. The
premise is that any computational task has subcomponents that must occur
sequentially and others that can be performed in parallel. Understanding how
much of the task is serial is imperative in being able to determine the maxi-
mum speedup and vice-versa.

Equation 6 (Amdahl’s Law: Observed speedup). Ψ = T(1)
T(p) ,

where T(p) is the time required to solve the problem with p processors [27].

Equation 7 (Amdahl’s Law: Maximum speedup). Ψ ≤ 1
e+ 1−e

p
,

where e is the fraction of the problem that cannot be parallelized and p is the number
of processors [27].

Equation 8 (Karp-Flatt Metric: Serial fraction). e =
1
Ψ−

1
p

1− 1
p

,

where Ψ is the observed speedup and p is the number of processors [28].

Gustafson’s Law [29] provides an alternative to the Amdahl speedup model
that accounts for a problem size that scales with the number of processors.
The analysis in this thesis uses a fixed problem size, which makes Amdahl’s
speedup more suitable.

34

Chapter 3

Methodology

3.1 Test network setup

These experiments are designed to test the TTA of different communication
patterns. Therefore it was necessary to use a network of hosts sufficient to
indicate some problems of scalability. Due to resource constraints, the decision
in this case was to create a network of Xen virtual machines [30] on a small
set of servers. The utility MLN [31] was used to easily create and maintain
20 Ubuntu Dapper Drake GNU/Linux [32] virtual machines across 5 servers
with 4 virtual machines per physical host.

3.2 Measurement and automation of TTA and TTPA
data processing

The output of a total or partial aggregate in these tests is a file containing a
timestamp of each hop and when it arrived. The TTA can be determined by
taking the difference between the timestamp of the root node and that of the
oldest leaf node. Similarly the TTPA for any node is the difference between
its own timestamp and that of its oldest leaf node. The script used for trans-
forming copy chain output into something suitable as output for graphing is
included in Appendix C.2.

35

CHAPTER 3. METHODOLOGY

3.3 Comparing parallel star and echo using cfrun

The first step in analyzing cfengine in light of patterns is considering cfengine’s
behavior that is analogous to the echo pattern, as it is the simplest of the decen-
tralized navigation patterns. By default, cfrun works in a centralized manner
similar to the star pattern but it runs in serial, not parallel. As such, the implied
parallelism of that pattern is not sufficient in describing cfrun. For clarifica-
tion, further references in this work will specify parallel or serial echo patterns.

The cfengine configuration used to create a serial star is listed in Appendix A.1
while the configuration used to create a parallel star is in A.2. The parallel star
cfagent.conf issues an individual cfrun command to each client in the back-
ground. Additionally, the output from each of those commands is redirected
to a file. When all the cfrun processes have finished, the output files are con-
catenated together and printed to the terminal so that the parallel and serial
star tests both provide nearly identical terminal output. However, it should
be noted that the parallel star approach, involving the use of a separate tem-
porary file for each client, involves a great deal more file input and output
operations than serial star.

The echo cfagent.conf draws from the same framework used for the parallel
star, e.g. executing cfrun commands in the background with output redirected
to files. In this case, a variable is defined for each host that has children. The
variable contains a list of the node’s children in the tree. If this variable is
defined, cfrun is called for each child node. Therefore the tree, as illustrated
in Figure 3.1, is statically defined. There is a later discussion in this thesis
regarding the creation of overlay networks in the context of cfengine.

Each test must have some kind of monitoring or configuration operation. For
this test, a hostname query is performed on each client. This is a simple and
fast operation without network dependence. There are two important metrics
for this test. The first is total elapsed time for the query to complete on the
entire network of 20 hosts. The other is workload. A metric in the form of
maximum number of simultaneous cfrun operations for any node is used to
indicate workload. This serves as a very simple indicator of how much work
the node is doing. A lower level representation of scalability (e.g. measuring
system calls) might be more precise, but using a refined definition of the pre-
viously stated workload definition is nonetheless instructive and sufficient in
the case of very large factors of difference between the methods.

36

3.4. COPY CHAIN

Figure 3.1: Diagram of 20-node tree overlay used for echo pattern tests.

Definition 9 (Echo workload). The theoretical maximum number cfrun processes
any node will be running in performance of a given test.

For an indication of uncertainty, each test is performed 50 times.

3.4 Copy chain

The next stage of experiments target a chain in which the nodes autonomously
send data to the root at certain intervals, but there is no polling for data by the
root node. And so it is more similar to GAP than echo, however without the
benefit of topology recovery. The exclusion of topology recovery in this work is
by design; implementing topology awareness in cfengine is a formidable task.
The work in this thesis reveals certain foundational aspects of pattern behavior
that further the understanding of how topology awareness and management
could be implemented in cfengine. Considerations for this challenge will be
discussed later in the thesis.

Using the same 20 nodes as the echo pattern tests, cfengine on each node is con-
figured into a chain topology, i.e. as shown in Figure 3.2 and the cfagent.conf
in Appendix A.4. Similar to the way variables were used to define the tree for
the echo pattern tests, for the chain tests a variable containing the hostname of
the node’s child is defined for each node.

37

CHAPTER 3. METHODOLOGY

Figure 3.2: A 20-node chain.

The result of the completed aggregation for this test is a file on the root node
containing each node’s CPU load average as well as the time at which that
information was collected. Each node uses the cfengine copy action to copy a
partially aggregated file from its child. Then the node uses the cfengine editfiles
action to append its own load data to the bottom of the file.

Because this is a concatenation, it is not strictly an aggregation as proposed by
Stadler et al [17]. In such an aggregation, input at each node would be pro-
cessed in a way that resulted in a single value being passed up the tree rather
than a collection of values (e.g. operations such as finding the maximum, mini-
mum, or sum). Such an aggregation was not practical for this scenario because
the data collected from each node needed to include a timestamp which could
then be used to measure the latency of the update at the root node. All nodes
were configured to synchronize time using the network time protocol, which
allowed for measurements accurate up to the second. The cfengine configura-
tion ensured that each cfagent would be initialized every minute. Therefore,
every node would simultaneously try to obtain an update from its child each
minute. Cfengine uses locks to ensure that multiple copies of cfagent are not
running at the same time. If cfagent is called and another cfagent is running,
the new cfagent will exit.

The tests in the copy chain experiments run every minute but the timing can
safely be abstracted to phasing in general (i.e. discussing latency in terms of
cycles or steps), provided all the nodes remain relatively time-synchronized
and execute cfagent on the same schedules. Two metrics are measured in this
case, TTA and time to partial aggregation (TTPA).

38

3.5. COPY TREE

The expectation of the tests were that the length of the chain would be identical
to the number of copy phases. As will be shown later in this thesis, that turned
out not to be true. The chain had significantly less latency than originally
expected. This led to a further exploration of chains and considerations on
their behavior and opportunities for improving chain performance.

Specifically, an incremental sleep is added to the copy chain cfengine configu-
ration. For example, node20 is the leaf and will not incur a sleep. However,
node19 is node20’s parent and will sleep for 1 second before executing its ag-
gregation actions. node18, which is node19’s parent, will sleep for 2 seconds.
And so the sleep value at the root node will be N − 1, where N is the number
of nodes in the chain. Taking the tests a step further, a sleep interval factor is
defined and the the incremental sleep value is multiplied by the sleep interval
factor to observe the effect on the update latency of the chain. A higher sleep
interval factor corresponds to each node having more time to complete its pro-
cessing operation; the sleep time serves as a buffer that allows for a sequenced
communication from the leaf to the node. Such a coordinated communication
has the potential to significantly reduce chain latency. This is in contrast to the
copy chain without sleep, in which the communication is not coordinated and
therefore will only occur in sequence randomly or by clock shift.

Because a chain is simply a worst-case depth configuration of a tree, discov-
eries made about chains are also likely to apply to more standard patterns
scenarios that rely on tree-based topologies.

3.5 Copy tree

Taking the next step from a copy chain, the experiment that followed concerns
expanding the copy chain approach into a binary tree (i.e. a tree with a node
degree of k = 2). As in the case of the copy chain, the copy tree more closely
resembles GAP than echo pattern.

With a similar number of nodes, it is reasonable to expect the copy tree to per-
form much better than the copy chain. It is also expected to be less susceptible
to high-level failures in that half the tree can continue updating the root node,
even if the other half is not providing updates.

However, a challenge inherent in any attempt to implement a pattern on a non-
chain topology that is not push-based. In current versions of cfengine, the copy
action is unable to parallelize copies within a single running cfagent process.

39

CHAPTER 3. METHODOLOGY

Cfengine has no way to perform multiple copies at once. However, the copy
tree is partially parallel because the separate nodes are performing their copies
in parallel relative to each other.

To have a full binary tree, i.e. a tree where each node has exactly 0 or 2 children
[33], 20 nodes could not be used. Therefore, the copy tree tests use 15 nodes,
as indicated in Figure 3.3.

Figure 3.3: A 15-node proper binary tree.

3.6 Experimental error and remarks

3.6.1 Standard deviation

The equation used for computing the standard deviation of experimental data
samples is listed below.

Equation 9. σ =
√

1
N ∑N

i=1(xi − x)2

40

3.6. EXPERIMENTAL ERROR AND REMARKS

3.6.2 Time synchronization issues

On the initial echo pattern tests, unusual timing results were observed in the
echo pattern but not the star pattern. Certain nodes appeared to be completing
before their children in the same phase, which should not be possible. Looking
at the issue in detail revealed that this was consistent to specific nodes and that
the clocks on those nodes were lagging behind their children, which caused
the aforementioned discrepancy. Because the error was systematic, it could be
corrected but I chose to repeat the tests. The data presented for those tests are
from the repeated tests, not the adjusted data from the initial results.

Even though the time synchronicity issue was generally solved, further inves-
tigation into the matter following the experimentation phase determined that
the use of the network time protocol on the Xen virtual machines was subopti-
mal. Virtual machines, including Xen domains, cannot currently have a system
clock with a sufficiently high response time for clock interrupts [34]. Similar
future experiments, if using virtual machines, should install the network time
protocol on the physical host and ensure that each virtual machine is getting
its own time directly from the physical host. In consideration of this, it is likely
that there were minor timing errors throughout all tests that effectively intro-
duced random noise in the scheduling.

3.6.3 Cfengine run-time blocking

During copy chain and copy tree tests, sometimes a cfagent process would
hang. This would cause an interruption in the pattern, causing the root node
not to receive updates from the node with the hung cfagent process or its chil-
dren. For every run-time phase during which this situation endured, the mea-
sured latency of the leaf node data increased one phase period. The manifes-
tation of this, and the symptoms by which it was noticed, was a high stan-
dard deviation as well as a very flat, rather than normal, distribution. It was
confirmed by checking the aggregated file output, which showed the time at
which each node’s data was passed up the client or tree. It was also confirmed
by viewing the start time of any running cfagent processes on the trouble-
some nodes. When encountered, the interval that included corrupt data was
removed from analysis. The exact cause is unconfirmed; some occurrences
corresponded to the approximate time when new cfengine configuration files
were deployed (meaning that changing cfengine’s configuration files at a pre-
cise point in its operation could yield unstable behavior), but not all. The error,
though compensated for in this study unless otherwise specified, is a form of

41

CHAPTER 3. METHODOLOGY

noise and should be considered in further work.

3.6.4 Node failure

Some tests yielded results that were similar in nature to the behavior described
for cfengine run-time blocking, though the symptom of having a process age
greater than the run-time period was not present. Investigation determined
that the troublesome nodes in this case were all virtual machines on the same
physical machine and were experiencing a kernel level error, which prevented
the nodes from functioning normally in several ways including networking.
This was only directly observed twice in a very long series of copy chain
tests. Samples that exhibited the same statistical symptoms as cfengine run-
time blocking were edited to exclude those anomalies. Burgess shows that in
peer-to-peer networks, node failure and network failure are effectively equiv-
alent:

Theorem 1. A fixed network of partially reliable components, Ci, is equivalent to an
ad hoc network of reliable components, on average [35].

Therefore node failures such as those described here should be given fur-
ther consideration as they are examples of real-world scenarios that introduce
noise, which should be taken into account when building models.

3.6.5 TTA time discrepancy

The TTA measurements collected for this experiment have an inherent inac-
curacy. The inaccuracy is surrounding the timestamp used to mark the com-
pletion of TTA. All variables available in a cfagent.conf are assigned near the
beginning of its execution, including the variables containing timestamps used
for determining TTA. This means all collected time data refers to the beginning
of a cfagent execution, not when it finishes. So in cases where a cfagent pro-
cess takes minutes to complete, the timestamp will be significantly inaccurate.
However, it will be correct as to when the cfagent process started. Therefore,
the most correct and accurate usage of this data is to discuss it in terms of
run-interval phases, rather than seconds or minutes. The analysis in this thesis
does that but will also present models for evaluating TTA data that assumes
accurate timestamps.

42

3.6. EXPERIMENTAL ERROR AND REMARKS

3.6.6 Sample size

The intended sample size for each test is 50 but in some cases a smaller sample
size is used. This variation is due to sleep delays longer than the run interval.
For fixed test time lengths, tests with sleep delays longer than the run interval
would yield less samples than those tests where the sleep delays were less than
the run interval. Data verification (to identify aforementioned errors) and a
longer sampling time should have been used to obtain 50 samples for every
test.

43

CHAPTER 3. METHODOLOGY

44

Chapter 4

Results

The experimental data is included below for echo and star pattern experi-
ments, copy chain experiments, and copy tree experiments.

4.0.7 Echo/star/cfrun experiment results

Figure 4.1 provides a summary of star and echo pattern test results along with
a barchart of the values. Serial star has the highest (worst) TTA while the
parallel star has the best and the echo pattern is in-between.

45

CHAPTER 4. RESULTS

Figure 4.1: Average results and standard deviation for 50 tests of each pattern
listed. The workload is the number of maximum parallel cfrun operations
occurring on any node, where lower is better.

Pattern TTA (minutes) Std Dev Workload
Serial Star 10.71 1.78 1
Parallel Star 2.26 0.17 20
Echo/cfrun 5.68 0.37 4

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

EchoParallel StarSerial Star

S
e

c
o

n
d

s
 e

la
p

s
e

d

Comparing star and echo using cfrun

46

4.0.8 Copy chain experiment results

The following figure shows the average TTA for each sleep factor as well as a
plot of the prediction model.

Figure 4.2: Average copy chain TTA for each different sleep factor (standard
deviation plotted as the error) plotted against the predicted model with a ran-
dom noise multiplier of 0.19. Sleep factor 2 is remarkable both because of its
high standard deviation as well as its distance from the prediction. Sleep fac-
tor 3 is remarkable due to it being the lowest of all value and low standard
deviation. Sample sizes for each measurement are shown in Table 4.1.

-5

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6 7 8 9 10 11 12

T
T

A
 i

n
 p

h
a

s
e

s
 (

m
in

u
te

s
)

Sleep factor

The effect of incremental sleep delays on update latency

Measured
Prediction (0.19 noise)

Additionally, histograms of the measurements for each sleep factor are shown
in Figure 4.0.8. The value in these histograms is to indicate some similarity
to a normal distribution, which is confirmed in most of the histograms. The
notable exceptions are sleep factors 2 and 3.

47

CHAPTER 4. RESULTS

Figure 4.3: Histograms showing the distribution of measured copy chain TTA
for sleep factors from 0 through 12.

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy chain TTA : 0 second sleep factor

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy chain TTA : 1 second sleep factor

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy chain TTA : 2 second sleep factor

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24
Q

u
a

n
ti

ty
 o

f
m

e
a

s
u

re
d

 v
a

lu
e

s
Measured TTA in minutes

Distribution of copy chain TTA : 3 second sleep factor

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy chain TTA : 4 second sleep factor

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy chain TTA : 5 second sleep factor

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy chain TTA : 6 second sleep factor

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy chain TTA : 7 second sleep factor

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy chain TTA : 8 second sleep factor

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy chain TTA : 9 second sleep factor

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy chain TTA : 10 second sleep factor

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy chain TTA : 11 second sleep factor

 0

 5

 10

 15

 0 2 4 6 8 10 12 14 16 18 20 22 24

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy chain TTA : 12 second sleep factor

48

Table 4.1: The sample size for each sleep factor in the copy chain tests. 50 was
used when that data was available. Smaller samples are due to sleep delays
longer than the run interval and therefore less samples within a given time
period (discovered after sampling was complete).

Sleep factor Sample Size
0 50
1 50
2 50
3 50
4 50
5 50
6 39
7 25
8 50
9 32
10 50
11 31
12 50

49

CHAPTER 4. RESULTS

Because of the pseudo-periodicity, each period demonstrates similar behavior.
Therefore certain sleep factors can be categorized together. τ can be defined as
a sleep delay within a period, therefore the TTA at similar τ values of different
periods should be similar. Table 4.2 shows the τ values for each sleep factor
categorized into τ groups. These values are plotted and compared in Figure
4.4.

Table 4.2: The sleep factor for the copy tree as seconds delayed on the root
node and then converted to minutes. The τ group creates an association be-
tween sleep factors based on τ, defined here as the number of seconds beyond
the most recent full run interval period. Members of the same τ group are
expected to have similar propagation latency after accounting for full period
rotations.

Sleep factor Node20 Sleep in Seconds Node20 Sleep in Minutes τ Group
0 0 0:00
1 19 0:19 A
2 38 0.38 B
3 57 0:57 C
4 76 1:16 A
5 95 1:35 B
6 114 1:54 C
7 133 2:13 A
8 152 2:32 B
9 171 2:51 C
10 190 3:10 A
11 209 3:29 B
12 228 3:48 C

τ Group Step 1 Step 2 Step 3 Step 4
A 1.64 4.78 9.88 12.96
B 5.76 8.66 11.88 12.77
C 0.16 12.41 12.19 13.00

Figure 4.4 indicates what appears to be a convergence point near 13. This is un-
expected, because the predicted behavior would indicate that the τ group plots
should be near-linear and parallel to each other, as seen in Figure 4.5. There-
fore, an analysis was conducted on the TTPA value at each node in the chain.
For each sleep factor, the average TTPA was computed for each node, along
with the standard deviation. This data is plotted in Figure 4.6 and the τ groups

50

are compared in Figure 4.7. The graphs are generally linear after exceeding the
utility of the sleep factor as buffer (represented as the near-horizontal compo-
nent of the plot).

Figure 4.4: TTA of observed copy chain τ groups compared. This graph sug-
gests a convergence for all the τ groups at a value of approximately 13 during
the fourth phase of each period.

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4

T
T

A
 i

n
 p

h
a

s
e

s
 (

m
in

u
te

s
)

Phase Number

A
B
C

Figure 4.5: TTA of predicted copy chain τ groups compared.

 0

 5

 10

 15

 20

 25

 1 2 3 4

T
T

A
 i

n
 p

h
a

s
e

s
 (

m
in

u
te

s
)

Phase Number

Tau group comparison of predicted data

A
B
C

51

CHAPTER 4. RESULTS

Figure 4.6: Average copy chain TTPA plotted against distance in the chain from
the leaf node. Note the atypical behavior exhibited in sleep factors 2 and 3.

-2

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Average TTPA at each node: 0 second sleep

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Average TTPA at each node: 1 second sleep

-15

-10

-5

 0

 5

 10

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Average TTPA at each node: 2 second sleep

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
A

v
e

ra
g

e
 T

T
P

A
 i

n
 p

h
a

s
e

s
 (

m
in

u
te

s
)

Chain distance from leaf

Average TTPA at each node: 3 second sleep

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Average TTPA at each node: 4 second sleep

-2

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Average TTPA at each node: 5 second sleep

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Average TTPA at each node: 6 second sleep

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Average TTPA at each node: 7 second sleep

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Average TTPA at each node: 8 second sleep

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Average TTPA at each node: 9 second sleep

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Average TTPA at each node: 10 second sleep

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Average TTPA at each node: 11 second sleep

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Average TTPA at each node: 12 second sleep

52

Figure 4.7 shows the average TTPA for each sleep factor, grouped together by
similar τ. This shows linear and generally parallel TTPA scalability among the
τ groups, with the exceptions of sleep factors 1-3.

53

CHAPTER 4. RESULTS

Figure 4.7: Copy chain τ groups compared: average TTPA plotted against
chain distance from leaf node.

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Comparing the average TTPA at each node under varying sleep factors for tau group A

1 seconds
4 seconds
7 seconds

10 seconds

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Comparing the average TTPA at each node under varying sleep factors for tau group B

2 seconds
5 seconds
8 seconds

11 seconds

 0

 2

 4

 6

 8

 10

 12

 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
v

e
ra

g
e

 T
T

P
A

 i
n

 p
h

a
s

e
s

 (
m

in
u

te
s

)

Chain distance from leaf

Comparing the average TTPA at each node under varying sleep factors for tau group C

3 seconds
6 seconds
9 seconds

12 seconds

54

4.0.9 Copy tree experiment results

Figure 4.8 shows the average TTA for each different sleep factor in the copy
tree. Note the stabilization at sleep factor 3-12 and then the dip at sleep factor
15. As the sleep factor increases, there is more variation and greater uncer-
tainty.

Figure 4.8: Average copy tree TTA for each different sleep factor with standard
deviation error. Table 4.3 shows the sample size for each sleep factor.

 0

 1

 2

 3

 4

 0 5 10 15 20 25 30 35 40 45

T
T

A
 i

n
 p

h
a

s
e

s
 (

m
in

u
te

s
)

Sleep factor

The effect of incremental sleep delays on update latency - copy tree

Histograms showing the very small distribution spread of the TTA at each
sleep factor are included as Figures 4.9 and 4.10.

55

CHAPTER 4. RESULTS

Table 4.3: The sample size for each sleep factor in the copy tree tests.
Sleep factor Sample Size

0 50
1 50
2 50
3 50
4 50
5 50
6 50
7 50
8 50
9 50
10 50
11 50
12 50
15 50
18 50
21 38
24 50
27 36
30 25
33 25
36 30
39 26
42 40

56

Figure 4.9: Histogram showing the distribution of measured total time to ag-
gregation for sleep factors of 0 through 12.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 0 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 1 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 2 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 3 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 4 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 5 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 6 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 7 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 8 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 9 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 10 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 11 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 12 second sleep factor

57

CHAPTER 4. RESULTS

Figure 4.10: Histograms showing the distribution of measured total time to
aggregation for sleep factors of 15 through 42, at an interval of 3.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 15 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 18 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s
u

re
d

 v
a

lu
e

s

Measured TTA in minutes

Distribution of copy tree TTA: 21 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s
u

re
d

 v
a

lu
e

s

Measured TTA in minutes

Distribution of copy tree TTA: 24 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s
u

re
d

 v
a

lu
e

s

Measured TTA in minutes

Distribution of copy tree TTA: 27 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s
u

re
d

 v
a

lu
e

s

Measured TTA in minutes

Distribution of copy tree TTA: 30 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s
u

re
d

 v
a

lu
e

s

Measured TTA in minutes

Distribution of copy tree TTA: 33 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s
u

re
d

 v
a

lu
e

s

Measured TTA in minutes

Distribution of copy tree TTA: 36 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 39 second sleep factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3

Q
u

a
n

ti
ty

 o
f

m
e

a
s

u
re

d
 v

a
lu

e
s

Measured TTA in minutes

Distribution of copy tree TTA: 42 second sleep factor

58

Chapter 5

Discussion

5.1 General remarks on push- vs. pull-based re-
sults

It is remarkable that the TTA for the push-based results, including the star and
echo patterns, are significantly less than the pull-based results, which include
the copy chain and copy tree. Indeed, the TTA for the push-based patterns are
measured in seconds while that for the pull-based are measured in minutes.
This is not surprising, as the performance of any pull-based approach is going
to rely on the poll interval. In these experiments, the pull-based poll interval
was a minute. A poll interval of 1 second, which is not currently available in
cfengine and for general purposes not recommended, would provide for the
ability to directly compare the timing results for push-based and pull-based
patterns in this thesis. Otherwise, such a direct comparison is invalid.

5.2 Echo/star/cfrun experiment

The results of the cfrun experiments comparing serial star, parallel star, and
echo are shown in 4.0.7. The serial star performs the worst, naturally, but scales
very well on the server side because it is always only performing one opera-
tion. The parallel star performs the best of the three methods, but it will suffer
from bottlenecks on a large scale; the server is always running as many cfrun

commands as there are nodes, including itself. Finally, echo offers both a re-

59

CHAPTER 5. DISCUSSION

markable performance improvement and a workload improvement that is, in
this case, a factor of 1

5 ; specifically, the echo workload will always be k + 1,
because there will be an operation running for each child as well as the parent
process, because it is a polling operation and so there must also be a parent
operation running that triggered the query to the children.

5.3 Copy chain experiment results

5.3.1 TTA characterizations

The initial results from the copy chain experiment were surprising because
they did not require N number of phases to commute data from the leaf to the
root. Test results show that, without a sleep delay, the average TTA of leaf node
data on the root node was approximately 10 phases rather than the expected
19 phases. See Figure 4.2.

Investigation into this surprisingly good performance uncovered the cause:
some adjacent nodes in the chain were randomly being executed in sequence
at a very small interval. For example, node19 is configured to aggregate data
from node20. Cfagent is executed on both hosts every minute. In some cases,
node19 will execute one second after node20 simply due to timing synchro-
nization issues or low-level resource contention issues delaying the execution
of cfagent on node19. When this happens, node20 will have had enough time
to complete its own aggregation routine when node19 copies its data. This
ambiguity can be considered random scheduling noise.

5.3.2 The effect of sleep factors on TTA

The response to discovering the noise was to perform experiments that used
an incremental sleep factor as a buffer to reduce the TTPA and thereby reduc-
ing the TTA, as discussed in Section 3.4. Very large sleep factors were included
because the periodic behavior produced by sleep delays that overlap run-time
intervals for software that safely handles such timing conflicts is largely unex-
plored.

The results, shown in Figure 4.2 are promising. That plot includes a model
developed in cooperation with Prof. Mark Burgess, the advisor on this work,

60

5.3. COPY CHAIN EXPERIMENT RESULTS

which is discussed in detail in Section 2.5. It is an effective predictor of the
observed pseudo-periodic behavior.

5.3.3 Sleep factor 2 results analysis

The histogram for sleep factor 2 (see Figure 4.0.8) is unusual in 2 ways. First,
it is flatter than normal. The expected behavior at this sleep factor is a more
concentrated distribution rather than a flat one. Second, the values are out of
place given the context of the values for sleep factor 1 and sleep factor 3; while
it is not always the case that this should be true, here it is expected because the
incremental time buffer increase is not crossing a period threshold.

5.3.4 Sleep factor 3 results analysis

The histogram for sleep factor 3 is also unusual. However, in contrast to the
histogram for sleep factor 2, it is very concentrated. Indeed, the histogram for
sleep factor 3 is essentially the desired outcome: a high occurrence of TTA that
is within a single phase. Therefore, based on the collected data, a sleep factor
of 3 can be considered optimal for the function being aggregated in this case.
However, it is important to remember that sleep factor suitability is subject to
function being aggregated.

5.3.5 Periodic groupings and comparison

Figure 4.4 indicates what appears to be a convergence point near 13. This is
unexpected, because the predicted behavior would indicate that the τ group
plots should be near-linear and parallel to each other, as seen in Figure 4.5. To
explain this, there are two possibilities. The first is that there is some kind of
limit at 13, to which sleep factors beyond 12 will converge as well. The second
possibility is simply that this is coincident and not actually representative of
the data.

To make a determination as to which is the case, an analysis was conducted on
the TTPA value at each node in the chain. For each sleep factor, the average
TTPA was computed for each node, along with the standard deviation. This
data is plotted in Figure 4.6 and the τ groups are compared in Figure 4.7. If

61

CHAPTER 5. DISCUSSION

there were a limit being approached, these graphs would indicate some kind
of asymptote. But that is missing and all the graphs, with the exception of that
for sleep factor 2, indicate linear scaling. Thus it is reasonable to expect higher
sleep values to scale linearly; clearly there is no limit at 13 phases.

However, these data plots reveal some erroneous data in the sleep factor 2 tests
that was not as obvious from earlier analysis. By manually checking the data,
a time synchronization error can be seen in node10 being 11 minutes behind
the other nodes, resulting in a negative value for the TTPA. The data has been
left uncorrected in this case to further justify the TTPA analysis. Additionally,
and perhaps due to a related cause, node10 only received an aggregate from
node11 approximately every 10 minutes. The exact cause for the high periodic
latency is unknown because the error was not discovered until the tests were
complete but it can be explained by a potential misconfiguration of the run-
time interval (so that node10’s cfagent ran every 10 minutes rather than every
1 minute).

5.4 Copy tree experiment results

Studies of chains, while useful for studying fundamentals of tree-based pat-
terns, is an unlikely topology in real distributed systems. In most cases one
would expect a node to be able to connect to several other nodes and allow
a greater centralization of data during aggregation. Therefore, the copy chain
experiments have been repeated on a binary tree.

The results are shown in Figure 4.8. Clearly, for a similar number of nodes to
the copy chain, the TTA for a copy tree is much lower. The number of varied
sleep factors had to be increased for the copy tree, relative to the copy chain
tests, to show periodicity. Notice that the TTA stabilizes at a value of 1 phase
from sleep factors 3-12, then makes a drop to 0. This stabilization at 1 shows
that the aggregated function, in this case a sequence of serial copy actions and
then a file concatenation via an editfiles action, cannot be completed within the
given poll interval. At a sleep factor of 15, it can. The next sleep factor step,
18, pushes the root node sleep delay close to 60 seconds and the TTA for the
tree is likely to accordingly exceed that to a small degree, which causes delays
from cfengine’s duplicate run-time prevention.

The jump between the TTA values prior to a sleep factor of 27 and that of
30 and later is not fully understood. It is possible that those data points are
marred by an insufficiently large sample size, though the generally higher la-

62

5.5. AMDAHL’S LAW AND SPEEDUP

tency than lower sleep factors is obviously expected.

The histograms and standard deviation indicate that the tree is less sensitive
to sleep factor as well, suggesting that the tree may be a more stable option to
a chain.

5.5 Amdahl’s law and speedup

Observed speedup values, determined by Amdahl’s law, along with the serial
fraction, determined using the Karp-Flatt metric formula are shown in Table
5.1. In the case of the parallel star, 83% (or 1 − e) of the serial star workload
benefitted from parallelization. The sequential component includes the ag-
gregation computation at the center node and the input/output operations
that follow (e.g. writing information to files and terminal but not including
any temporary file creations that can occur in parallel). Considering the actual
computational intensity for the tested operation (merely echoing the hostname
of each node) is so low, the value e = .17 is surprisingly high. For a star pattern
of 20 hosts and a seemingly low computational intensity, a ratio closer to 1:20
rather than 1:5 would be expected. Therefore, it is reasonable to expect high
communications overhead.

The echo pattern speedup and serial fraction are included for reference. The
serial component is much higher than that for the parallel star. More infor-
mation on communications overhead would be needed to further validate this
data, but it could be useful for future experiments.

Figure 5.1: Average results and standard deviation for 50 tests of each pattern
listed. The workload is the number of maximum parallel cfrun operations
occurring on any node, where lower is better. The calculations for the afore-
mentioned values are included in Appendix B.

Pattern TTA (minutes) Speedup Serial fraction
Serial Star 10.71 0 1
Parallel Star 2.26 4.74 .17
Echo/cfrun 5.68 1.89 .50

63

CHAPTER 5. DISCUSSION

5.6 Cost function

The following theory was developed in cooperation with Prof. Mark Burgess
and is also discussed in [25].

Another aspect of scalability is the indirect cost associated with delivering per-
formance goals. Is there an argument for choosing pattern dimensions ac-
cording to cost? Is there an optimum answer? This thesis does not provide
a definitive answer to these questions, as such concerns are a matter for policy.
However, consider the following.

The rate of power consumption of a node is proportional to its CPU frequency[36]
squared. Thus if a node maintains a minimal CPU frequency and dynamically
increases that frequency to cope with demand from aggregation of k neighbors,
indirect cost scales as k2 which represents power, cost of cooling or shortened
battery life, etc. The risk, on the other hand, associated with not getting data
quickly is proportional to the effective depth of the network pattern (N− 1)/k.
So there is a cost function that is a balance between these two as demonstrated
in Equation 10:

Equation 10. Cost1<i<N = vi

(⊕
i(ai

−di→ ai−1)
)

= α
(

k(−d)
i

)2
+ (N−1)

k(−d)
i

.

A plot for the arbitrary policy α = 0.1 is shown below. This shows the existence
of an optimum aggregation degree, in this case k = 5. Such arguments should
also be taken into account in the scaling argument, as the cost can be seen
rising sharply with increasing centralization.

5.7 Promise theory

The following application of promise theory to patterns was created in coop-
eration with Prof. Mark Burgess and is also discussed in [25].

5.7.1 Propagation model

Consider the following promise designations:

64

5.7. PROMISE THEORY

0 5 10 15 20
Node degree k

0

10

20

30

40

C
os

t f
un

ct
io

n
C

Figure 5.2: Cost considerations can plausibly lead to an optimum depth of
network pattern when power considerations are taken into account. The min-
imum cost here is given for k = 5. Such considerations require an arbitrary
choice to be made about relative importance of factors.

• +d Server provides data,

• −d Client receives/uses data,

• +a Branch node aggregates data,

• +t Server provides time/clock, and

• −t Client uses time/clock.

When referring to network “nodes” below, it will be understood that each
node is modeled as an “agent” in promise theory parlance.

Assume an underlying network substrate with partially reliable communica-
tion. The interactions between the agents form directed graphs which can be
typed with the promise labels. A forward pointing promise graph forms a
transpose adjacency matrix

Equation 11. ai
b→ aj ⇔ AT (b)

ij .

65

CHAPTER 5. DISCUSSION

Since the communication requires bilateral ±b promises, there is an implicit
promise graph of opposite sign whose structure is the transpose of the matrix
above.

Nodes can, in principle, have any in- or out-degree equal to or greater than
zero. It is conventional to restrict network patterns to tree structures however
so that the data flow promises of type +d form a monotone confluence. The
adjacency matrix A(−d)

ij for the forward part of Figure 5.3 and similar ones can
be used to represent the typed node degrees through the relations:

Equation 12. A+d
ij = A(a)

ij =
(

A(−d)
ij

)T

Equation 13. k(+)
i = ∑j

(
A(+)

ij

)T
= ∑j

(
A(−)

ij

)

Figure 5.3 shows the overlain complementary trees of ± data promises.

+d

−d

+d +d

+d

+d

+d

+d
+d

+d

+d

−d −d

−d

−d

−d
−d

−d

−d

−d

1

2

3

4

5

6

7

8 9

−d

−d

−d −d

−d

−d

−d

−d

+d

+d
+d +d

+d +d

+d

+d

depth

w
id

th

=

Figure 5.3: A bilateral promise tree of type±d indicating “depth” and “width”.
The structure can be thought of a cross between the star topology and a chain,
which are the extreme cases.

66

5.7. PROMISE THEORY

5.7.2 Kinematics of the system

The rate and timing of the information flowing through the promise network
structure is important to its observable properties. There are two processes
taking place that ‘interfere’ with one another.

• Sampling process at each node.

• Propagation of data from node to node.

If the stream is not synchronized by waiting, information will not propagate
faithfully along the full length of the chain. This is obvious in a one-shot en-
actment of the promises, but the matter becomes much more interesting in the
case where the promises are implemented in a periodic schedule. If nodes
have memory of previously measured values then one can obtain the illusion
of propagation of data, but at the price of having undetermined or inaccurate
results.

Start by considering the basic rates of transport in the promise structures. Then
consider the time it takes to transport across network depth and the time it
takes to aggregate across network width as separate processes. By dimensional
analysis[37], it is clear that the behavior of the system will depend essentially
on the various dimensionless ratios that can be formed from the basic scales of
the system.

5.7.3 The sampling process

Let qi be a variable at node ai and dqi
dt be the rate at which qi changes in time.

Assume that time increases at the same rate for all observers, within the limits
of measurement; in other words, all agents have clocks that run at the same
rate. This is a more likely approximation to the truth than assuming that they
are all synchronized. Finally, let Qi mean the size in bytes of the representation
of the value of qi that has been measured. This is important to know when
transporting the data over fixed capacity channels.

Use ti to mean the time at which ai sampled the value of qi, and let Pi be the
periodic sampling rate of the agent node ai, so that after ` samples, the time
will be ti + `/Pi.

67

CHAPTER 5. DISCUSSION

This generality is suggestive of the earlier copy chain results. For the present,
however, consider the idealized case in which all agents sample at the same
basic rate P, the period of the system.

Promise ai
+d→ aj

Let C(+d)
ij be the rate at which ai can transmit data to aj. This is a property

of the communication channel between the agents as well as the agents’ own

limitations. We now introduce the promise-valuation function t(ai
b→ aj) to be

the time to complete the promise 〈ai, b, aj〉. Then the time to transmit the data
is:

Equation 14. t
(

ai
+d→ aj

)
= Qi

C(+d)
ij

Promise ai
−d→ aj

Let C(−d)
ij be the rate at which ai can receive data from aj. Then the time to

receive the data is:

Equation 15. t
(

ai
−d→ aj

)
= Qj

C(−d)
ji

Agent constraints on ±d

It must be generally true that the rate at which a promise is used is less than or
equal to the rate at which it is provided.

Equation 16. C(−b)
ji ≤ C(+b)

ij

for any promise body b. Moreover, if we let C(±b)
i be the maximum communi-

cation capacities of the agents for sending/ receiving (a property of the agents

68

5.7. PROMISE THEORY

rather than the channel between them) we must have the additional constraint
that, if an agent has several neighbors, the sum of communications with all
neighbors cannot exceed the agent’s own capacity:

Equation 17. ∑j A(−b)
ij C(−b)

ij ≤ C(−b)
i , ∑j(A(+b)

ij)TC(+b)
ij ≤ C(+b)

i

Promise ai
+a→ aj (aggregation)

Each node that receives data from more than one source promises to aggregate
the information according to some algorithm, which is deployment-specific
and shall not be specified here. We define the aggregation to be the following
computation:

Equation 18. ai ≡ qi + ∑k A(−d)
ij aj, i, j = 1 . . . N

For leaf nodes, the second term is zero and the aggregation is simply equal
to the contribution from the agent node itself. The recipient of this promise
might be the aggregation agent above the promiser in the aggregation tree, or
it could be an agent external to the tree, such as a policy agent or an external
observer. The final recipient at the top of the tree makes this promise either to
itself or to a suitable policy agent or observer.

This aggregation promise has a number of consequences. The result of the
computation is dependent on the values collected by the−d promises of neigh-
bors. Thus there must be a strict ordering of events before the promise can be
completed in a given time frame. We must always remember that the aggre-
gating agent knows only what it has been promised in a scheme of voluntary
cooperation.

The semantics of the aggregation promise must now be defined. Several alter-
natives present themselves:

1. The node polls its sources in turn.

2. The node aggregates from its sources in parallel.

3. The node does not promise its result until all sources have kept their
promises to provide data, i.e. we have conditional promises:

69

CHAPTER 5. DISCUSSION

Equation 19. ai−1
+d/a→ ai, ai

a/−d→ ai+1

4. The node does not wait for its sources and provides its best answer and
there is no condition on the dependents in the chain:

Equation 20. ai−1
+d→ ai, ai

a→ ai+1

These details are important to fully describe the propagation of data within a
network structure.

The time to complete the aggregation promise is straightforwardly given by
Equation 21:

Equation 21. t
(

ai
+a→ aj

)
= Qi+∑k A(−d)

ik Qk

C(a)
i

5.8 Supporting patterns in cfengine

Existing syntax for patterns in cfengine does not scale well because the entire
topology has to be expressed in policy files. The challenges for this, along with
proposed solutions, are described as follows.

Scalability of described method

Appendix A.3 demonstrates a configuration for the tree used in the echo pat-
tern tests; the tree is described using classes to conditionally define a variable
that lists the children for each node. There are two undesirable traits of this
approach.

First, the syntax does not scale well because it has to be modified each time the
tree changes. This might be due to node or link failure or simply the addition
of a new node, for example. Second, the expression itself is relatively long.
At least two lines are required for each node that has children. Ideally, the
tree definition could be automatically computed and distributed. However,
there is also a bootstrapping problem inherent in initially communicating the
topology to all nodes.

70

5.8. SUPPORTING PATTERNS IN CFENGINE

Bootstrapping problem

Sites using cfengine must initialize their policies out-of-band, that is, not using
cfengine. Once they have a valid update.conf, cfagent can download future
policy updates from servers specified in the update.conf. There are at least
three options for bootstrapping a topology for cfengine:

Pre-seed using out-of-band distribution. The tree can be designed and de-
ployed to all the nodes using an out-of-band distribution method. This
has the benefit of the nodes assuming the desired topology from the be-
ginning of the deployment but requires relatively more manual interven-
tion.

Pre-seed star, then update to tree. The initial out-of-band policy could be a
star. During the first update, download the topology information (which
would have been seeded on the central host) and assume the appropri-
ate role in the topology thereafter. This requires less manual intervention
but has an initially high load on central resources.

Service discovery by broadcast or multicast. Each cfengine node could announce
a request for topology. If a response comes from a trusted node, included
topology information would be loaded. This method has the benefits of
little manual intervention and no centralized resource load spike. How-
ever, the topology information will need to have been seeded on at least
a single node, and that information will propagate through the network
slowly (relative to aforementioned approaches).

The two former approaches are currently available in cfengine. However, the
latter approach is most interesting both from a research and an autonomics
perspective. In combination with GAP, it would allow for a completely hands-
free topology. This is because the methods above do not take into account how
the topology will be initially defined. GAP includes a specification for this
[18], which could be implemented in cfservd.

Cfengine interface to network and execution graphs

Based on the understanding provided from the work in this thesis, a cfengine
node only needs to know about its immediate neighbors and potentially, for
the purposes of performance optimization, its distance from its leaf node. This
clarification allows for several syntax suggestions.

71

CHAPTER 5. DISCUSSION

The first suggestion is to separate the topology graph from the execution graph.
This is the easiest to immediately accomplish in cfengine and also allows the
most control via policy. The topology would be automatically distributed
through cfservd announcements and responses (as mentioned previously) but
there would be no automatic execution based on this information; the admin-
istrator would need to use the topology information explicitly. An example
cfservd.conf is listed in Figure 5.4 with a corresponding cfagent.conf in Figure
5.5. This is a cfengine-centric approach.

Figure 5.4: A cfservd.conf with potential topology and patterns options.
c o n t r o l :

Only t r u s t graphs provided by these hosts :
TrustGraphsFrom = ($ (t r u s t e d h o s t s))

Our t r u s t e d h o s t s w i l l be queried f o r topology
information . One ore more of them w i l l provide
t h i s node with information t h a t populates
the v a r i a b l e s chi ldren , parent , and root .

Only allow connect ions from t r u s t e d hosts ,
peers , and the root .
AllowConnectionsFrom = ($ (t r u s t e d h o s t s) $ (ch i ldren) $ (parent) $ (root))

grant :
Allow our t r u s t e d h o s t s and peers a c c e s s to
operation−c r i t i c a l f i l e s and d i r e c t o r i e s .
/var/cfengine/inputs $ (t r u s t e d h o s t s) $ (ch i ldren) $ (parent) $ (root)
/var/cfengine/bin/cfagent $ (t r u s t e d h o s t s) $ (ch i ldren) $ (parent) $ (root)
/var/cfengine/rpc out $ (t r u s t e d h o s t s) $ (ch i ldren) $ (parent) $ (root)

Allow aggregates to be copied by the parent
or ch i ldren nodes .
/var/ c h i l d r e n f i l e s $ (parent)
/var/ p a r e n t f i l e s $ (ch i ldren)

Figure 5.4 shows how the security approaches used for the MethodPeers option
(for listing voluntary RPC peers [38]) and other cfservd security options such
as AllowConnectionsFrom can be similarly used for an option called TrustGraphsFrom.
The network nodes listed in this option would be the ones from which cf-
servd is willing to trust information about graphs (both topology and execu-
tion graphs, i.e. patterns).

The copy action in Figure 5.5 shows two important suggested enhancements.
The first is the creation of a new built-in variable that coincides with cfengine’s
context-sensitive list iteration. This variable, called $() here, would be a refer-
ence to the current list item during a list iteration. This provides for a looping
mechanism very similar to a foreach construct and the underscore as the vari-
able name is taken from Perl’s default variable which serves the same purpose:
$. The other suggested enhancement is the capability to run a copy action in

72

5.8. SUPPORTING PATTERNS IN CFENGINE

Figure 5.5: A cfagent.conf with potential topology and patterns options, in-
cluding echo pattern support and full parallel generic aggregation support
made possible by an enhanced copy action able to iterate through a server
list like a for loop and copy in parallel.
c o n t r o l :

act ionsequence = (shellcommands copy t idy)

c l a s s e s :
Define a c l a s s i f we have chi ldren , using
the v a r i a b l e i n h e r i t e d from cfservd .
HasChildren = (IsDef ined (ch i ldr e n))

shellcommands :
Execute cfrun i f the push c l a s s i s defined
push : :

”/ usr/ l o c a l /bin/cfrun $ (ch i ldr e n) −− push \
2>&1 /tmp/echorun . $$” background=true

”/ usr/bin/pgrep cfrun > /dev/n u l l ;
while [$? = 0] ; do pgrep cfrun > /dev/n u l l ; done”

”/bin/ c a t /tmp/echorun . * ”

copy :
Copy some f i l e s from our parent ,
moving data from the root to the
leaves .
/var/ p a r e n t f i l e s

dest=/var/ p a r e n t f i l e s
server=$ (parent)
e l s e d e f i n e =parentdown

This i s a i t e r a t i v e copy t h a t i s
c u r r e n t l y unsupported by cfengine .
Copying data from the chi ldren ,
moving i t from the leaves to the
root .
/var/ c h i l d r e n f i l e s

dest=/var/ c h i l d r e n f i l e s /$ (ch i ldren)
The $ () i s a proposed v a r i a b l e t h a t would
always r e f e r e n c e the current element in an
i t e r a t e d l i s t , s i m i l a r to Perl ’ s $ d e f a u l t
v a r i a b l e .
se rver=$ ()
background=true

I f the update from the parent f a i l s ,
t r y to copy the f i l e s from the root node .
parentdown : :

/var/ p a r e n t f i l e s
dest=/var/ p a r e n t f i l e s
server=$ (root)

t idy :
Clean up a f t e r our push .
push : :

/tmp pat te rn=echorun . * age=0

73

CHAPTER 5. DISCUSSION

the background or parallel. This functionality already exists in shellcommands
actions. Such an option for copies would allow for the transmissions between
parents and children to occur in parallel, thus providing patterns that work in
parallel.

There are several attractive features of the aforementioned enhancements to
cfengine, in addition to the general assertion that the additions would behave
as described. First, the changes do not affect the scope or general syntax level
of cfengine. Second, the new options or functionality are consistent with exist-
ing cfengine security models. Finally, by separating any instruction set from
the exposure of graph information, node autonomy is preserved.

Another suggestion for implementing patterns in cfengine is not as easy to
conceptualize. It would mean giving the pattern precedence over the policy;
the pattern would be defined first and then the policy executed on that graph.
This is a patterns-centric approach that does not seem to fit well with cfengine,
but could be accomplished by effectively adding a patterns layer (or in prac-
tical terms, an encapsulation or wrapper) on top of the existing cfengine con-
cepts.

These suggestions merely touch upon what is a very complex issue with many
details that are similar to challenges in mobile ad-hoc network routing. If
implemented, certain suggestions could require significant restructuring of
cfengine functionality. This topic is therefore recommended for further study.

74

Chapter 6

Future work

6.1 Exploring cfengine enhancements for patterns

Section 5.8 includes suggestions for improving support for patterns in cfengine.
A continuation of this work would be to implement these or similar suggestion
and repeat the copy tree experiments in this work. Trees with different node
degrees should also be considered. Also, the topology management compo-
nents of patterns should receive integration attention and evalution as well.

6.2 Voluntary RPC trees

Burgess has proven the concept of voluntary RPC trees on a small scale [38],
but future work should implement them on a larger scale and similarly ana-
lyze phasing issues. It is possible that a voluntary RPC GAP implementation
in cfengine will yield similar phasing results to those described for the earlier
copy chain analysis. However, a voluntary RPC echo pattern implementation
is certain to be more time-consuming than the one described in this thesis.
Specifically, when considering the echo pattern time complexity as described
in Equation 1, a periodic poll timing parameter will need to be added. Inter-
esting questions include whether or not phasing can be manipulated, as in this
study, to reduce TTA.

75

CHAPTER 6. FUTURE WORK

6.3 Implementation of more patterns

This work has focused on echo and GAP, the foundational patterns. Once GAP
has been suitably implemented in cfengine, patterns derived from GAP should
also be implemented and evaluated in cfengine.

6.4 Experiment on a larger scale

Experimentation on a much larger scale would be interesting to determine if
there are unpredicted limits to specific applications of patterns in cfengine.
PlanetLab[39] is a global scale cooperative research grid that may be an effec-
tive setting for such work. It would also provide a realistic scenario in terms
of node and network reliability.

6.5 Economic interactions and policy

There is an economic aspect to dynamic cooperative distributed systems and
patterns should be considered through this lens. Promise theory, economics,
and various network interaction models provide a framework for this. Agents
should be able to opt out of participation in a pattern (because the agents are
autonomous) but it is currently unclear what currencies should be evaluated
by nodes in a pattern to scope their involvement. Understanding this can pro-
vide motivation for the development of quality of service components.

6.6 Autonomic resource distribution

Future work that implements topology recovery in cfengine will naturally
be in the direction of autonomic networking. Additionally, sensors could be
added to cfengine that provide appropriate context and decision support for
dynamically reorganizing the topology so that the nodes with the most re-
sources are placed appropriately.

76

Chapter 7

Conclusions

This study of patterns in cfengine has proven to be instructive work. Cfengine
was not originally intended to extend into a lower layer to manage the flow of
communication among nodes in a network. And patterns were not conceived
with voluntary cooperation in mind. In terms of implementation, there is no
doubt that bringing these two technologies together is, as the idiom provides,
trying to fit a square peg in a round hole. However, while the implementations
discussed here have not been completely true to the original patterns in all
senses, patterns are clearly complementary to cfengine. This work shows that
patterns can be used to success in cfengine to offset scalability limitations and
costs.

The push-based echo pattern was fully implemented in cfengine. Evaluation
showed a significant improvement in time to aggregation over the serial star
pattern while providing a much lower workload than the parallel star pattern.
Parallel speedup analysis indicated a surprisingly high serial work compo-
nent for the aggregated function. This implementation shows that patterns
with true parallelism can be accomplished in cfengine but is not endorsed for
production use or as the focus for future work; it violates the premise of volun-
tary cooperation while the generic aggregation protocol offers more flexibility
on that point as well as topology recovery.

A limited form of the generic aggregation protocol was implemented in cfengine
in two topology configurations, first a chain and then a tree. The chain study
showed better time to aggregation than anticipated due to random schedul-
ing noise. Adding an incremental sleep factor to each node in the chain, so
that each node would sleep longer than its child, was successful in buffering
the noise and providing a stable and low time to aggregation. Some data sug-

77

CHAPTER 7. CONCLUSIONS

gested a convergence and a time to aggregation ceiling, which would have
been important to understand. Further analysis on the time to partial aggre-
gation at each node in the chain invalidated the hypothesis that a limit exists
and showed linear scalability.

The corresponding study showed the scalability benefit, in time to aggrega-
tion, of using a limited pattern on a binary tree topology in cfengine. Tests on
total time to aggregation with incremental sleep values were also performed
and determined a range of near-optimal sleep factors. The form of the generic
aggregation protocol in cfengine, both for chains and trees, is not recommended
for current production use currently as it is weak in its parallelism and also
does not include topology recovery. However, this topic should be a focus
of future work as the protocol’s definition includes topology recovery and
cfengine would foreseeably benefit generally from the capability to parallelize
copy actions. These experiments show the linear scalability in even a partial
implementation of the generic aggregation protocol.

An important next step that this thesis aimed for but did not attain is the imple-
mentation and analysis of voluntary RPC trees in cfengine. However, appro-
priate background information and suggestions for future work on voluntary
RPC is included.

There was some experimental uncertainty in the results due to a variety of
errors. The direct errors are now well-understood with the minor exception
of a single test (the sleep factor 2 test in the copy chain tests). In a repeat of
these experiments, the existing scripts and graphing strategies could be used
to validate the data immediately after the tests complete. Some of the higher
sleep factor tests had sample sizes smaller than 50; this should be corrected in
repeats of this work or related future work by extending the test duration as
necessary to yield enough samples.

The experiment design, while generally sound, was constrained by inherent
limitations in cfengine. For example, the copy tree tests should have been con-
ducted on a star topology as well as a tree with a higher node degree but a
lack of support for parallel copy actions in cfengine makes this a low priority.
Additionally, better low-level resource monitoring in experiments could pro-
vide more information about the communication overhead in terms of parallel
speedup.

Modeling patterns using promise theory provides a quality-of-service perspec-
tive that reinforces the importance of analysis at the local node level because
there are not transitive service promises.

78

Consideration of difficulties in implementing patterns in cfengine provides
some proposed direction for future integration work. The manual interaction
necessary in using patterns in cfengine is generally discouraging; providing
an interface that automates the automatic formation and management of a
network topology and the application of patterns will promote adoption and
reduce likelihood of error.

Over the long term, research in implementing patterns in cfengine will pro-
mote the cause of scalable autonomic network and system management. Cfengine
already contains a significant amount of context-awareness sensors and in the
coming years it is reasonable to expect the addition of policy-driven autonomic
actions based on the information from such sensors. In the future, a network
of autonomous cfagents that are aware of topologies, execution graphs, and
system resource consumption could cooperate without human intervention
to modify the overlay network or re-provision services as necessary to dis-
tribute system and network resource load as appropriate throughout the net-
work. Foreseeable related research includes integrating service auto-discovery
techniques, reducing overhead in voluntary scenarios, auto-negotiated quality
of service dynamics, optimized overlay network auto-negotiation for further
performance improvements, and reductions in failure recovery times.

This thesis commences a new discussion on the fundamental behavior of pat-
terns in periodic execution scenarios and promotes the integration of patterns
and cfengine. The outcome includes propositions for further implementation
and analysis of patterns in cfengine and, hopefully, additional foundation for
continued discussions and cooperative research.

79

CHAPTER 7. CONCLUSIONS

80

Bibliography

[1] R. Evard. An analysis of unix system configuration. Proceedings of the
Eleventh Systems Administration Conference (LISA XI) (USENIX Association:
Berkeley, CA), page 179, 1997.

[2] P. Anderson. Large scale system configuration (lssconf) homepage.
http://homepages.informatics.ed.ac.uk/group/lssconf. Accessed March
5, 2006.

[3] S. Traugott and J. Huddleston. Bootstrapping an infrastructure. Proceed-
ings of the Twelth Systems Administration Conference (LISA XII) (USENIX
Association: Berkeley, CA), page 181, 1998.

[4] P. Anderson. Why configuration management is crucial. ;login:, 1:5–8,
2006.

[5] A.G. Ganek and T.A. Corbi. The dawning of the autonomic computing
era. IBM Systems Journal, 42(1):5–18, 2003.

[6] K. Stone. System cloning at hp-sdd. Proceedings of the Large Installation
System Administration Workshop (USENIX Association: Berkeley, CA, 1987),
page 18, 1987.

[7] Hal Stern, Mike Eisler, and Ricardo Labiaga. Managing NFS and NIS.
O’Reilly & Associates, Inc., Sebastapol, CA, 2001.

[8] Tivoli systems/IBM. Tivoli software products. http://www.tivoli.com.

[9] P. Anderson, G. Beckett, K. Kavoussanakis, G. Mecheaneau, and
P. Toft. Technologies for large-scale configuration management.
http://www.gridweaver.org/WP1/report1.pdf. Accessed March 5, 2006.

[10] A. Couch and M. Gilfix. It’s elementary, dear watson: Applying logic pro-
gramming to convergent system management processes. Proceedings of the
Thirteenth Systems Administration Conference (LISA XIII) (USENIX Associa-
tion: Berkeley, CA), page 123, 1999.

81

BIBLIOGRAPHY

[11] P. Anderson. Towards a high level machine configuration system. Pro-
ceedings of the Eighth Systems Administration Conference (LISA VIII)
(USENIX Association: Berkeley, CA):19, 1994.

[12] M. Harlander. Central system administration in a heterogeneous unix
environmentl genuadmin. Proceedings of the Eighth Systems Administration
Conference (LISA VIII) (USENIX Association: Berkeley, CA), page 1, 1994.

[13] Imazu Hideyo. Omniconf - make os upgrade and disk crash recovery
easier. In LISA ’94: Proceedings of the 8th USENIX conference on System ad-
ministration, pages 27–32, Berkeley, CA, USA, 1993. USENIX Association.

[14] J.P. Rouillard and R.B. Martin. Config: a mechanism for installing and
tracking system configurations. Proceedings of the Eighth Systems Adminis-
tration Conference (LISA VIII) (USENIX Association: Berkeley, CA), page 9,
1994.

[15] M. Burgess. Cfengine - a configuration engine. University of Oslo, Dept. of
Physics report, 1993.

[16] J. Kramer, J. Magee, and M. Sloman. Configuration support for system
description, construction and evolution. In IWSSD ’89: Proceedings of the
5th international workshop on Software specification and design, pages 28–33,
New York, NY, USA, 1989. ACM Press.

[17] K.S. Lim and R. Stadler. A Navigation Pattern for Scalable Internet Man-
agement. In Proceedings of the 7th IFIP/IEEE Symposium on Integrated Net-
work Management, May 2001.

[18] M. Dam and R. Stadler. A generic protocol for network state aggregation.
Radiovetenskap och Kommunication (RVK), June 2005.

[19] F. Wuhib, M. Dam, R. Stadler, and A. Clemm. Decentralized Computation
of Threshold Crossing Alerts. In 16th Workshop on Distributed Systems:
Operations and Management (DSOM), pages 220–232, 2005.

[20] A. Gonzalez Prieto and R. Stadler. Distributable Real-Time Monitoring
with Accuracy Objectives. Technical report, KTH Royal Institute of Tech-
nology, Sweden, 2005.

[21] Fetahi Wuhib, Mads Dam, Rolf Stadler, and Alexander Clemm. Robust
monitoring of network-wide aggregates through gossiping. In The Tenth
IFIP/IEEE International Symposium on Integrated Network Management (IM
2007), May 2007. To Appear.

[22] M. Burgess. Recent developments in cfengine. The Hague, 2001. Unix.nl
Conference.

82

BIBLIOGRAPHY

[23] Mark Burgess. An approach to understanding policy based on autonomy
and voluntary cooperation. In DSOM, pages 97–108, 2005.

[24] Mark Burgess. An approach to understanding policy based on autonomy
and voluntary cooperation. In IFIP/IEEE 16th international workshop on dis-
tributed systems operations and management (DSOM), in LNCS 3775, pages
97–108, 2005.

[25] M. Burgess and M. Disney. Understanding scalability in network aggre-
gation with continuous monitoring. Submitted to the 18th IFIP/IEEE
Distributed Systems: Operations and Management (DSOM 2007) confer-
ence., May 2007.

[26] M. Burgess and K. Begnum. Voluntary cooperation in a pervasive com-
puting environment. Proceedings of the Nineteenth Systems Administration
Conference (LISA XIX) (USENIX Association: Berkeley, CA), page 143, 2005.

[27] G.M. Amdahl. Validity of a the single processor approach to achieving
large scale computer capabilities. In Proceedings of the AFTPS Spring Joint
Computer Conference, 1967.

[28] A.H Karp and H.P. Flatt. Measuring parallel processor performance. Com-
munications of the ACM, 33(5):539–543, 1990.

[29] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–
533, 1988.

[30] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neuge bauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 164–177, New York, NY, USA, 2003.
ACM Press.

[31] Kyrre Begnum. Manage large networks of virtual machines. In Proceed-
ings of the Twentieth Systems Administration Conference (LISA XX), page 101.
USENIX Association: Berkely, CA, 2006.

[32] Canonical Ltd. Ubuntu linux. http://www.ubuntu.com. Last accessed
on March 25, 2007.

[33] Paul E. Black. “full binary tree” in Dictionary of al-
gorithms and data structures [online], paul e. black,
ed., u.s. national institute of standards and technology.
http://www.nist.gov/dads/HTML/fullBinaryTree.html. Accessed
on May 17, 2007.

83

BIBLIOGRAPHY

[34] Internet Systems Consortium.

[35] Mark Burgess. Analytical Network and System Administration — Managing
Human-Computer Systems. J. Wiley & Sons, Chichester, 2004.

[36] M. Burgess and F. Sandnes. A promise theory approach to collaborative
power reduction in a pervasive computing environment. In Springer Lec-
ture Notes in Computer Science, volume LNCS 4159, pages 615–624, 2006.

[37] M. Burgess. Analytical Network and System Administration — Managing
Human-Computer Systems. J. Wiley & Sons, Chichester, 2004.

[38] M. Burgess, M. Disney, and R. Stadler. Using patterns in cfengine for
robustly scaling network administration. 21st USENIX Large Installation
System Administration conference, May 2007.

[39] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson,
Mike Wawrzoniak, and Mic Bowman. Planetlab: an overlay testbed for
broad-coverage services. SIGCOMM Comput. Commun. Rev., 33(3):3–12,
2003.

84

Appendix A

Experimental cfengine
configurations

A.1 Serial star

c o n t r o l :
act ionsequence = (shellcommands t idy)
domain = (c f t e s t n e t)
I fE lapsed = (1)
TrustKeysFrom = (1 0 . 0 . 0)

shellcommands :
any : :

”/bin/echo $ (hostname) ” background= f a l s e

A.2 Parallel star

c o n t r o l :
act ionsequence = (shellcommands t idy)
domain = (c f t e s t n e t)
I fE lapsed = (1)
TrustKeysFrom = (1 0 . 0 . 0)

node1 : :
serve = (node2 : node3 : node4 : node5 : node6 : node7 : node8 : node9 : node10 :

node11 : node12 : node13 : node14 : node15 : node16 : node17 : node18 : node19 :
node20)

c l a s s e s :
HasChildren = (IsDef ined (serve))

shellcommands :
any : :

”/bin/echo $ (hostname) ” background= f a l s e

HasChildren : :

85

APPENDIX A. EXPERIMENTAL CFENGINE CONFIGURATIONS

”/ usr/ l o c a l /sbin/cfrun $ (serve) 2>&1 > /tmp/echorun . $$” background=
true

”/ usr/bin/pgrep cfrun > /dev/n u l l ; while [$? = 0] ; do pgrep cfrun >
/dev/n u l l ; done”

”/bin/ c a t /tmp/echorun . * ”

t idy :
HasChildren : :

/tmp pat te rn=echorun . * age=0

A.3 Cfrun echo

c o n t r o l :
act ionsequence = (shellcommands t idy)
domain = (c f t e s t n e t)
I fE lapsed = (1)
TrustKeysFrom = (1 0 . 0 . 0)

node1 : :
serve = (node2 : node3 : node4)

node2 : :
serve = (node5 : node6 : node7)

node3 : :
serve = (node8 : node9 : node10)

node4 : :
serve = (node11 : node12 : node13)

node5 : :
serve = (node14 : node15 : node16)

node8 : :
serve = (node17 : node18 : node19)

node11 : :
serve = (node20)

c l a s s e s :
HasChildren = (IsDef ined (serve))

shellcommands :
any : :

”/bin/echo $ (hostname) ” background= f a l s e

HasChildren : :
”/ usr/ l o c a l /sbin/cfrun $ (serve) 2>&1 > /tmp/echorun . $$” background=

true
”/ usr/bin/pgrep cfrun > /dev/n u l l ; while [$? = 0] ; do pgrep cfrun >

/dev/n u l l ; done”
”/bin/ c a t /tmp/echorun . * ”

t idy :
HasChildren : :

/tmp pat te rn=echorun . * age=0

86

A.4. COPY CHAIN

A.4 Copy chain

c l a s s e s :

l e a f = (node20)
root = (node1)

##

c o n t r o l :

workf i le = (”/tmp/chain−pat tern ”)
tempf i l e = (”/tmp/chain−temp”)
act ionsequence = (shellcommands copy e d i t f i l e s)
domain = (c f t e s t n e t)
I fE lapsed = (0)
TrustKeysFrom = (1 0 . 0 . 0)
S p l i t = (,)

For cfexecd
smtpserver = (mail−out . hio . no)
sysadm = (admin@email . address)
EmailMaxLines = (i n f)

microdate = (ExecResult (”/ bin/date −−r f c −3339=ns ”))

node1 : :
serve = (node2)
s leep = (19)

node2 : :
serve = (node3)
s leep = (18)

node3 : :
serve = (node4)
s leep = (17)

node4 : :
serve = (node5)
s leep = (16)

node5 : :
serve = (node6)
s leep = (15)

node6 : :
serve = (node7)
s leep = (14)

node7 : :
serve = (node8)
s leep = (13)

node8 : :
serve = (node9)
s leep = (12)

node9 : :
serve = (node10)
s leep = (11)

node10 : :

87

APPENDIX A. EXPERIMENTAL CFENGINE CONFIGURATIONS

serve = (node11)
s leep = (10)

node11 : :
serve = (node12)
s leep = (9)

node12 : :
serve = (node13)
s leep = (8)

node13 : :
serve = (node14)
s leep = (7)

node14 : :
serve = (node15)
s leep = (6)

node15 : :
serve = (node16)
s leep = (5)

node16 : :
serve = (node17)
s leep = (4)

node17 : :
serve = (node18)
s leep = (3)

node18 : :
serve = (node19)
s leep = (2)

node19 : :
serve = (node20)
s leep = (1)

##

shellcommands :

! l e a f : :
”/bin/s leep $ (s leep) ”

##

copy :

! l e a f : :

$ (workf i le)

dest=$ (tempf i l e)
server=$ (serve)
f o r c e =true

def ine=success
e l s e d e f i n e = f a i l u r e

##

e d i t f i l e s :

88

A.5. COPY TREE

success : :

{ $ (workf i le)

AutoCreate
EmptyEnt i reFi lePlease
I n s e r t F i l e ”$ (tempf i l e) ”
AppendIfNoSuchLine ”copy−chain $ (host) =$ (value loadavg) a t $ (date) $ (microdate) ”
}

f a i l u r e : :

{ $ (workf i le)

AutoCreate
EmptyEnt i reFi lePlease
AppendIfNoSuchLine ”copy−chain − no response from $ (serve) ”
AppendIfNoSuchLine ”copy−chain $ (host) =$ (value loadavg) a t $ (date) $ (microdate) ”
}

l e a f : :

{ $ (workf i le)

AutoCreate
EmptyEnt i reFi lePlease
AppendIfNoSuchLine ”copy−chain $ (host) =$ (value loadavg) a t $ (date) $ (microdate) ”
}

###

t idy :
/tmp pat te rn=chain−temp * age=0

a l e r t s :

success : :

”Chain update succeeded ”
P r i n t F i l e (” $ (workf i le) ” ,”25”)

f a i l u r e : :

”No Chain update a t $ (date) ”

A.5 Copy tree

c l a s s e s :

l e a f = (node12 node13 node14 node15 node16 node17 node18 node19)
root = (node1)
disabled = (node5 node6 node7 node8 node20)

##

c o n t r o l :

workf i le = (”/tmp/tree−pat tern ”)
g l o b a l t e m p f i l e = (”/tmp/tree−temp”)

89

APPENDIX A. EXPERIMENTAL CFENGINE CONFIGURATIONS

act ionsequence = (shellcommands copy e d i t f i l e s)
domain = (c f t e s t n e t)
I fE lapsed = (0)
TrustKeysFrom = (1 0 . 0 . 0)
S p l i t = (,)

microdate = (ExecResult (”/ bin/date −−r f c −3339=ns ”))

node1 : :
serve1 = (node2)
serve2 = (node3)
s leep = (3)

node2 : :
serve1 = (node4)
serve2 = (node9)
s leep = (2)

node3 : :
serve1 = (node10)
serve2 = (node11)
s leep = (2)

node4 : :
serve1 = (node12)
serve2 = (node13)
s leep = (1)

node9 : :
serve1 = (node14)
serve2 = (node15)

node10 : :
serve1 = (node16)
serve2 = (node17)
s leep = (1)

node11 : :
serve1 = (node18)
serve2 = (node19)
s leep = (1)

! l e a f : :
t empf i le1 = (”$ (g l o b a l t e m p f i l e) . $ (serve1) ”)
tempf i le2 = (”$ (g l o b a l t e m p f i l e) . $ (serve2) ”)

##

##

shellcommands :

! l e a f . ! d isabled : :
”/bin/s leep $ (s leep) ”

##

copy :

! l e a f . ! d isabled : :

$ (workf i le)

dest=$ (tempf i le1)
server=$ (serve1)

90

A.5. COPY TREE

f o r c e =true
def ine=success
e l s e d e f i n e = f a i l u r e

$ (workf i le)

dest=$ (tempf i le2)
server=$ (serve2)
f o r c e =true
def ine=success
e l s e d e f i n e = f a i l u r e

##

e d i t f i l e s :

! l e a f . ! f a i l u r e . ! d isabled : :

{ $ (workf i le)

AutoCreate
EmptyEnt i reFi lePlease
I n s e r t F i l e ”$ (tempf i le1) ”
I n s e r t F i l e ”$ (tempf i le2) ”
AppendIfNoSuchLine ”copy−t r e e $ (host) =$ (value loadavg) a t $ (date) $ (microdate) ”
}

f a i l u r e . ! d isabled : :

{ $ (workf i le)

AutoCreate
EmptyEnt i reFi lePlease
AppendIfNoSuchLine ”copy−t r e e − no response from $ (serve) ”
AppendIfNoSuchLine ”copy−t r e e $ (host) =$ (value loadavg) a t $ (date) $ (microdate) ”
}

l e a f . ! d isabled : :

{ $ (workf i le)

AutoCreate
EmptyEnt i reFi lePlease
AppendIfNoSuchLine ”copy−t r e e $ (host) =$ (value loadavg) a t $ (date) $ (microdate) ”
}

###

t idy :
/tmp pat te rn=chain−* age=0
/tmp pat te rn=tree−temp * age=0

a l e r t s :

success : :

” Tree update succeeded ”
P r i n t F i l e (” $ (workf i le) ” ,”25”)

f a i l u r e : :

”No t r e e update a t $ (date) ”

91

APPENDIX A. EXPERIMENTAL CFENGINE CONFIGURATIONS

92

Appendix B

Speedup calculations

B.1 Serial star compared to parallel star

B.1.1 Observed speedup

Ψ =
T(1)
T(p)

Ψ =
Tserialstar

Tparallelstar

Ψ =
10.71
2.26

Ψ = 4.74

B.1.2 Karp-Flatt metric

e =
1
Ψ − 1

p

1− 1
p

e =
1

4.74 −
1

20

1− 1
20

e = 0.17

93

APPENDIX B. SPEEDUP CALCULATIONS

B.2 Serial star compared to echo

B.2.1 Observed speedup

Ψ =
T(1)
T(p)

Ψ =
Tserialstar

Techo

Ψ =
10.71
5.68

Ψ = 1.89

B.2.2 Karp-Flatt metric

e =
1
Ψ − 1

p

1− 1
p

e =
1

1.89 −
1
20

1− 1
20

e = 0.50

94

Appendix C

Programs written and used for
testing and analysis

C.1 Copy chain simulation program

/ * /
/ * * /
/ * F i l e : p e r i o d . c * /
/ * * /
/ * C r e a t e d : Sat Apr 28 1 1 : 0 9 : 2 3 2007 * /
/ * * /
/ * Author : Mark Burges s * /
/ * * /
/ * R e v i s i o n : Id * /
/ * * /
/ * D e s c r i p t i o n : * /
/ * * /
/ * /

include <s t d i o . h>
include <math . h>
include <s t d l i b . h>
define N 20

/ / g c c −o p e r i o d p e r i o d . c −lm

/ * With a s p l a y t ime , we canno t g e t a p r o f i l e from
t ime z e r o f o r a l l h o s t s −− on ly from t h e c l o s e s t

95

APPENDIX C. PROGRAMS WRITTEN AND USED FOR TESTING AND
ANALYSIS

p o s s i b l e o r d e r e d s e t . So as soon as we i n t r o d u c e
wa i t ing , t h e r e w i l l be a s p r e a d o f v a l u e s .

In a p e r i o d i c scheme with z e r o wait , e a c h a g e n t c o u l d
measure t h e v a l u e a t t h e s y n c h r o n i z e d t ime but would
have t o wa i t t o p r o p a g a t e i t . . s o we can t a l k t o
” t ime t o a g g r e g a t i o n ” we can on ly minimize t h e TTA * /

main ()

{ i n t i , j ;
double t [N+1] , tau [N+1] , dt ;
i n t P = 60 , t s = 1 ;
double sum = 0 , commdelay ;
i n t k , ex ;
double d e l t a = −1;
long seed ;
double noise = 0 . 1 9 ;

double d [1 3] [7 5] ;
double av [1 3] , var [1 3] ;
i n t branch [1 3] ;

/ / WIth t h e random s e e d we now have a new t i m e s c a l e t f l u c / P
seed = ((long) time (NULL) * 1 7) ;
srand48 (seed) ;

for (ex = 0 ; ex < 7 5 ; ex ++)
{
/ / p r i n t f (”EXPT %d\n ” , ex) ;

for (t s = 0 ; t s <= 1 2 ; t s ++)
{
d [t s] [ex] = 0 ;
av [t s] = 0 ;
var [t s] = 0 ;
branch [t s] = 0 ;
}

}

for (ex = 0 ; ex < 7 5 ; ex ++)
{
/ / S t a r t i n g e x p e r i m e n t t r i a l ex − a v e r a g e o v e r 75 t r i a l s
for (t s = 0 ; t s <= 1 2 ; t s ++)

{

96

C.1. COPY CHAIN SIMULATION PROGRAM

sum = 0 ;

for (i = 1 ; i <= N; i ++)
{
double random = noise * drand48 () ;

/ / MEasurement / sample t ime
t [i] = (i −1) * t s + random ;
}

for (i = 2 ; i <= N; i ++)
{
/ / Des imal v a l u e d r e m a i n d e r :
double dt1 = t [i] − (((i n t) t [i]) /P) *P ;

/ / Need t o do t h i s f o r a c c u r a c y
double dt2 = t [i −1]−(((i n t) t [i −1])/P) *P ;
d e l t a = −1;
dt = dt1 − dt2 ;

i f (dt <= 0)
{
sum += P ; / / Must wa i t a c y c l e i f t h e o r d e r i s

wrong
}

d e l t a = t [i]− t [i −1];

/ / J u s t a g u e s s t o make some e r r o r b a r s
/ / Note t h e y grow with t s due t o w a i t i n g d e l a y
commdelay = fabs (dt * noise /0 .19* drand48 () * 4 . 5) ;
sum += (d e l t a + commdelay) ;

}

d [t s] [ex] = sum ;

/ / Note t h e c a s e o f t s =0 i s much more s e n s i t i v e
/ / t o n o i s e a s t h e r e i s no b u f f e r margin t o a b s o r b
/ / i t . . . h e n c e e r r o r b a r s b i g g e r i f n o i s e < t s

p r i n t f (” Resul t : %d %f = %f \n” , ts , sum , d [t s] [ex]) ;
p r i n t f (” Predic : %d %d\n” , ts , (N−1) * t s + (((N−1) * t s) /P) *P)

;
p r i n t f (”−−−−−−−−−−−−−−−−−−−−−−−−−−−\n”) ;

97

APPENDIX C. PROGRAMS WRITTEN AND USED FOR TESTING AND
ANALYSIS

}
}

for (t s = 0 ; t s <= 1 2 ; t s ++)
{
double t e s t = 0 ;
av [t s] = 0 . 0 ;
var [t s] = 0 . 0 ;

for (ex = 0 ; ex < 7 5 ; ex ++)
{
av [t s] += d [t s] [ex] / 7 5 . 0 ;
}

for (ex = 0 ; ex < 7 5 ; ex ++)
{
var [t s] += (d [t s] [ex] − av [t s]) * (d [t s] [ex] − av [t s])

/ 7 5 . 0 ;
}

p r i n t f (”%d %f %f \n” , ts , av [t s] / 6 0 . 0 , s q r t (var [t s]) / 6 0 . 0) ;
}

/ / d u r a t i o n o f o f f s e t s p l u s (number o f t i m e s i t
/ / wraps around −1) *P
}

C.2 Copy chain data analysis

! / usr / b in / p e r l
Name : c h a i n p a r s e . p l
Author : Matt Disney
D e s c r i p t i o n : A s c r i p t t o p a r s e c h a i n t e s t s
o u t pu t from c f e n g i n e , a s s p e c i f i e d in my
t h e s i s . The ou t pu t o f t h i s s c r i p t can be
r e a d by g n u p l o t . S e p a r a t e s e c t i o n s can be
r e f e r e n c e d us ing g n u p l o t ’ s i n d e x p a r a m e t e r .

use Getopt : : Std ;
use Date : : Manip qw(ParseDate UnixDate) ;
use Time : : Local ;
use L i s t : : U t i l qw(sum) ;

98

C.2. COPY CHAIN DATA ANALYSIS

getopts (’ hf : ’ , \%opt) or usage () ;
i f ($opt{h} or ! $opt{ f }) { usage () } ;

sub usage ()
{

print STDOUT << ”EOF” ;
Usage : $0 [−h] −f f i l e
EOF

e x i t ;

}

open (FILELIST , $opt{ f }) | | die ;

my $ j = 0 ;
my $accum = 0 ;
my $stdev = 0 ;
my @dif fary ;
my %h i s t o ;
my %phases ;

print ”\#ID D i f f \n” ;
while (<FILELIST >)
{

my $ i = 1 ;
my $node ;
my $ c r u f t ;
my $node1 = 0 ;
my $node20 = 0 ;

open (DATAFILE, $) | | die ;

while (<DATAFILE>)
{
Format example :
copy−c h a i n node20 =35 a t Tue Apr 24 13 : 5 0 : 0 9 2007

2007−04−24 1 3 : 5 0 : 0 9 . 9 5 2 3 3 3 0 0 0 + 0 2 : 0 0
@line = s p l i t (’ ’ , $) ;
i f ($ l i n e [3] =˜ /succeeded/) { next ; }

($node , $ c r u f t) = s p l i t (’= ’ , $ l i n e [1]) ;
$node =˜ s/node//;

99

APPENDIX C. PROGRAMS WRITTEN AND USED FOR TESTING AND
ANALYSIS

@middle = s p l i t (’ ’ , $ l i n e [3]) ;
($hours , $min , $secs) = s p l i t (’ : ’ , $middle [4]) ;
i f ($hours =˜ /2007/)
{

($hours , $min , $secs) = s p l i t (’ : ’ , $middle [3]) ;
}

$date = ParseDate ($ l i n e [4]) ;

i f (! $date) {
print ”Date didn ’ t work\n” ;

} e lse {
($year , $month , $day) = UnixDate ($date , ”%Y” , ”%m” , ”%d”) ;

}

my $epoch seconds = t i m e l o c a l (0 , $min , $hours , $day , $month ,
$year) ;

my $epoch minutes = $epoch seconds / 6 0 ;

i f ($node == 20)
{

$node20 = $epoch minutes ;
}
e l s i f ($node == 1)
{

$node1 = $epoch minutes − $node20 ;
}

push (@{$phases{$node}{ ’ values ’ }} , $epoch minutes −
$node20) | | die ”Couldn ’ t push element onto array : $! ” ;

$ i ++;

}

c lose (DATAFILE) ;
$ d i f f = $node1 − $node20 ;
$ d i f f += 60 i f ($ d i f f < 0) ;
p r i n t ” $ j $node1 $node20 $ d i f f \n ” ;

print ” $ j $node1\n” ;

$ j ++;
$accum = $accum + $node1 ;
push (@diffary , $node1) ;

100

C.3. COPY TREE DATA ANALYSIS

}

c lose (FH) ;

print ”\n\n\n” ;

print ”\# Histogram\n” ;
$ h i s t o { $ }++ for @dif fary ;
foreach $key (s o r t (keys %h i s t o))
{

print ”$key $ h i s t o {$key}\n” ;
}
print ”\n\n\n” ;

print ”\#Average TTA at each node\n” ;
print ”\# D i s t a n c e f r o m l e a f a v g t t a stdev\n” ;
for $n (s o r t {$b <=> $a } (keys %phases))
{

$phases{$n}{ ’ avg ’ } = sum(@{$phases{$n}{ ’ values ’ }})/ $ j ;

foreach $m (@{$phases{$n}{ ’ values ’ }})
{

$phases{$n}{ ’ stdev ’ } = $phases{$n}{ ’ stdev ’ } + ($m −
$phases{$n}{ ’ avg ’ }) * * 2 ;

}
$phases{$n}{ ’ stdev ’ } = sqr t ($phases{$n}{ ’ stdev ’ } / $ j) ;

print 20−$n . ” $phases{$n}{ ’ avg ’} $phases{$n}{ ’ stdev ’}\n” ;
}

print ”\n\n\n” ;

print ”\# Other s t a t s \n” ;
print ”Average : $phases { ’ 1 ’}{ ’ avg ’}\n” ;
print ” Standard Deviat ion : $phases { ’ 1 ’}{ ’ stdev ’}\n” ;

C.3 Copy tree data analysis

! / usr / b in / p e r l
Name : t r e e p a r s e . p l
Author : Matt Disney
D e s c r i p t i o n : A s c r i p t t o p a r s e t r e e t e s t s
o u t pu t from c f e n g i n e , a s s p e c i f i e d in my

101

APPENDIX C. PROGRAMS WRITTEN AND USED FOR TESTING AND
ANALYSIS

t h e s i s . The ou t pu t o f t h i s s c r i p t can be
r e a d by g n u p l o t . S e p a r a t e s e c t i o n s can be
r e f e r e n c e d us ing g n u p l o t ’ s i n d e x p a r a m e t e r .
#
The p r i n c i p a l d i f f e r e n c e s in t h i s s c r i p t
and t h e c h a i n p a r s e s c r i p t i s t h a t t h i s one
u s e s t h e l o n g e s t v a l u e o b t a i n e d and i t a l s o
d o e s not p r o v i d e TTPA d a t a .

use Getopt : : Std ;
use Date : : Manip qw(ParseDate UnixDate) ;
use Time : : Local ;

ge topts (’ hf : ’ , \%opt) or usage () ;
i f ($opt{h} or ! $opt{ f }) { usage () } ;

sub usage ()
{

print STDOUT << ”EOF” ;
Usage : $0 [−h] −f f i l e
EOF

e x i t ;

}

open (FILELIST , $opt{ f }) | | die ;

my $ j = 0 ;
my $accum = 0 ;
my $stdev = 0 ;
my @dif fary ;
my %h i s t o ;

print ”\#ID D i f f \n” ;
while (<FILELIST >)
{

my $ i = 1 ;
my $node1 = 0 ;
my $ o l d e s t = 0 ;

open (DATAFILE, $) | | die ;

102

C.3. COPY TREE DATA ANALYSIS

while (<DATAFILE>)
{
Format example :
copy−c h a i n node20 =35 a t Tue Apr 24 13 : 5 0 : 0 9 2007

2007−04−24 1 3 : 5 0 : 0 9 . 9 5 2 3 3 3 0 0 0 + 0 2 : 0 0
@line = s p l i t (’ ’ , $) ;
i f ($ l i n e [3] =˜ /succeeded/) { next ; }

@middle = s p l i t (’ ’ , $ l i n e [3]) ;
($hours , $min , $secs) = s p l i t (’ : ’ , $middle [4]) ;
i f ($hours =˜ /2007/)
{

($hours , $min , $secs) = s p l i t (’ : ’ , $middle [3]) ;
}

$date = ParseDate ($ l i n e [4]) ;

i f (! $date) {
print ”Date didn ’ t work on $ l i n e [4]\n” ;

} e lse {
($year , $month , $day) = UnixDate ($date , ”%Y” , ”%m” , ”%d”) ;

}

my $epoch seconds = t i m e l o c a l (0 , $min , $hours , $day , $month ,
$year) ;

my $epoch minutes = $epoch seconds / 6 0 ;

i f ($ l i n e [1] ! ˜ /node1=/)
{

i f ($ o l d e s t == 0)
{

F i r s t v a l u e . . .
$ o l d e s t = $epoch minutes ;

}
e l s i f ($epoch minutes < $ o l d e s t)
{

I f t h e c u r r e n t l i n e has a v a l u e o l d e r (l e s s) than
t h e e x i s t i n g $ o l d e r , r e p l a c e $ o l d e r wi th t h a t v a l u e .
$ o l d e s t = $epoch minutes ;

}
}
e lse
{

$node1 = $epoch minutes − $ o l d e s t ;
}

103

APPENDIX C. PROGRAMS WRITTEN AND USED FOR TESTING AND
ANALYSIS

$ i ++;

}

c lose (DATAFILE) ;
print ” $ j $node1\n” ;

$ j ++;
$accum = $accum + $node1 ;
push (@diffary , $node1) ;

}

c lose (FH) ;

print ”\n\n\n” ;

$average = $accum/ $ j ;

for $n (@dif fary)
{

$stdev = $stdev + ($n − $average) * * 2 ;
}
$stdev = sqr t ($stdev / $# d i f f a r y) ;

print ”\# Histogram\n” ;
$ h i s t o { $ }++ for @dif fary ;
foreach $key (s o r t (keys %h i s t o))
{

print ”$key $ h i s t o {$key}\n” ;
}
print ”\n\n\n” ;

print ”\# Other s t a t s \n” ;
print ”Average : $average\n” ;
print ” Standard Deviat ion : $stdev\n” ;

104

	Introduction
	Dynamic systems configuration
	The centralization question
	Motivation and research questions
	Echo pattern
	Aggregating chain
	Aggregating tree
	General analysis

	Background and theory
	Navigation patterns
	Star pattern
	Echo pattern
	Generic aggregation protocol
	Aggregating chain

	Cfengine
	Scalability
	Workload
	Time to aggregation
	Cost
	Configuration syntax

	Promise theory
	Chain propagation delays
	Voluntary cooperation
	Amdahl's law and speedup

	Methodology
	Test network setup
	Measurement and automation of TTA and TTPA data processing
	Comparing parallel star and echo using cfrun
	Copy chain
	Copy tree
	Experimental error and remarks
	Standard deviation
	Time synchronization issues
	Cfengine run-time blocking
	Node failure
	TTA time discrepancy
	Sample size

	Results
	Echo/star/cfrun experiment results
	Copy chain experiment results
	Copy tree experiment results

	Discussion
	General remarks on push- vs. pull-based results
	Echo/star/cfrun experiment
	Copy chain experiment results
	TTA characterizations
	The effect of sleep factors on TTA
	Sleep factor 2 results analysis
	Sleep factor 3 results analysis
	Periodic groupings and comparison

	Copy tree experiment results
	Amdahl's law and speedup
	Cost function
	Promise theory
	Propagation model
	Kinematics of the system
	The sampling process

	Supporting patterns in cfengine

	Future work
	Exploring cfengine enhancements for patterns
	Voluntary RPC trees
	Implementation of more patterns
	Experiment on a larger scale
	Economic interactions and policy
	Autonomic resource distribution

	Conclusions
	Experimental cfengine configurations
	Serial star
	Parallel star
	Cfrun echo
	Copy chain
	Copy tree

	Speedup calculations
	Serial star compared to parallel star
	Observed speedup
	Karp-Flatt metric

	Serial star compared to echo
	Observed speedup
	Karp-Flatt metric

	Programs written and used for testing and analysis
	Copy chain simulation program
	Copy chain data analysis
	Copy tree data analysis

