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Abstract—To meet the demands of the Exascale era and facili-
tate Big Data analytics in the cloud while maintaining flexibility,
cloud providers will have to offer efficient virtualized High
Performance Computing clusters in a pay-as-you-go model. As a
consequence, high performance network interconnect solutions,
like InfiniBand (IB), will be beneficial. Currently, the only way
to provide IB connectivity on Virtual Machines (VMs) is by
utilizing direct device assignment. At the same time to be scalable,
Single-Root I/O Virtualization (SR-IOV) is used. However, the
current SR-IOV model employed by IB adapters is a Shared

Port implementation with limited flexibility, as it does not allow
transparent virtualization and live-migration of VMs.

In this paper, we explore an alternative SR-IOV model for
IB, the virtual switch (vSwitch), and propose and analyze two
vSwitch implementations with different scalability characteristics.
Furthermore, as network reconfiguration time is critical to make
live-migration a practical option, we accompany our proposed
architecture with a scalable and topology agnostic dynamic
reconfiguration method, implemented and tested using OpenSM.
Our results show that we are able to significantly reduce the
reconfiguration time as route recalculations are no longer needed,
and in large IB subnets, for certain scenarios, the number
of reconfiguration subnet management packets (SMPs) sent is
reduced from several hundred thousand down to a single one.

I. INTRODUCTION

There is a lot of work going on, both in academia and

the industry, to make cloud computing capable of offering

High Performance Computing (HPC). With HPC-as-a-Service,

traditional HPC users can save capital expenditure, while new

user groups that cannot afford to own a private HPC cluster,

can get on-demand access. However, the overhead imposed by

virtualization combined with the extreme performance demands

of HPC kept this idea immaterialized for a long time. During

the last ten years, the situation has improved considerably as

CPU overhead has been practically removed through hardware

virtualization support [1], [2]; memory overhead has been

significantly reduced by virtualizing the Memory Management

Unit; storage overhead has been reduced by the use of fast SAN

storages or distributed networked file systems; and network I/O

overhead has been reduced by the use of device passthrough

techniques like Single Root Input/Output Virtualization (SR-

IOV) [3]. It is now possible for clouds to accommodate virtual

HPC (vHPC) clusters using high performance interconnect

solutions and deliver the necessary performance [4], [5], [6].

InfiniBand (IB) [7] is an interconnection network technology

offering high bandwidth and low latency, thus, is very well

suited for HPC and other network demanding workloads. IB

accelerates 224 HPC systems in the TOP500 supercomputers

list as of November 2014 [8], 44.8% of the list.

To ensure efficient virtualization, while maintaining high

bandwidth and low latency, modern IB Host Channel

Adapters (HCAs) support SR-IOV. Nevertheless, to achieve

transparent live migration of Virtual Machines (VMs) assigned

to IB HCAs using SR-IOV has proved to be challenging [5],

[6], [9]. Each InfiniBand connected node has three different

addresses (LID, GUID, GID – further discussed in section II).

When a live migration happens, one or more of these addresses

changes. Other nodes communicating with the VM-in-migration

lose connectivity and try to find the new address to reconnect

to by sending Subnet Administration (SA) path record queries

to the IB Subnet Manager (SM) [7].

In [10] we showed that by using address caching, one do

not have to send repetitive SA queries to reconnect once a

VM is live migrated. However, in order to allow a VM to

be moved and benefit from such a caching mechanism, each

VM should be bound to a dedicated set of IB addresses that

follows the VM when the VM migrates. With the current IB

SR-IOV Shared Port implementation [11], the VMs running

on the same hypervisor [12], share one LID address and have

dedicated GUID and GID addresses. When a VM with its

associated LID is migrated, the connectivity will be broken for

the rest of the VMs that share the same LID.

In this paper we propose two implementations of the Virtual

Switch (vSwitch) [13] architecture with different scalability

characteristics, that will allow IB subnets to support transparent

virtualization and migration of IB addresses, accompanied

with a scalable and topology agnostic dynamic network

reconfiguration method to make live migrations of VMs feasible

in large vSwitch-based IB subnets.

The rest of the paper is organized as follows: Section II

gives background information on Input/Output Virtualization

(IOV) and IB addressing schemes, followed by the related

work in section III. The IB SR-IOV design overview in

section IV emphasizes the pros and cons of the vSwitch

and the Shared-Port architectures. In section V we propose

our vSwitch architectures and the dynamic reconfiguration

mechanism, followed by an analytical discussion in section VI.

We implement a prototype and show the results of the

implementation and simulations in section VII, before we

conclude in section VIII.

II. BACKGROUND

In this section we describe different IOV techniques with

a particular focus on SR-IOV. IB addressing schemes are

presented as well.
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A. Network I/O Virtualization

IOV is needed to share I/O resources and provide protected

access to these resources from the VMs. IOV decouples

the logical device, which is exposed to a VM, from its

physical implementation [12], [14]. Currently, there are two

widespread approaches to IOV, both having their advantages

and disadvantages:
1) Software emulation: is a decoupled front-end/back-end

software architecture. The front-end is a device driver placed in

the VM, communicating with the back-end implemented by the

hypervisor to provide I/O access. The physical device sharing

ratio is high and live migrations of VMs are possible with just

a few milliseconds of network downtime [17], but software

emulation introduces additional computational overhead.
2) Direct device assignment: involves a coupling of I/O

devices to VMs, with no device sharing between VMs. Direct

assignment, or device passthrough, provides near to native

performance with minimum overhead. The physical device

bypasses the hypervisor and is directly attached to the VM.

The downside is limited scalability, as there is no sharing;

one physical network card is coupled with one VM. Single

Root IOV (SR-IOV) allows a physical device to appear through

hardware virtualization as multiple independent lightweight

instances of the same device. These instances can be assigned

to VMs as passthrough devices, and accessed as Virtual

Functions (VFs) [3]. The hypervisor accesses the device through

a unique (per device), fully featured Physical Function (PF).

SR-IOV eases the scalability issue of pure direct assignment.

Currently, there is no easy way to live-migrate VMs without a

network downtime in the order of seconds when using direct

device assignment [15].
HPC interconnection networks rely heavily on hardware of-

floading and bypassing of the protocol stack and the OS kernel

to efficiently reduce latency and increase performance [16].

Thus, currently the only option to provide high performance

networking in VMs, is to use a direct device assignment

technique. To still be scalable, we, as others working with

IB and virtualization [4], [6], [9], chose to use SR-IOV to

work with.
Unfortunately, direct device assignment techniques pose a

barrier for cloud providers if they want to use transparent

live migrations for data center optimization. The essence of

live migration is that the memory contents of a VM are

copied to a remote hypervisor. Then the VM is paused at

the source hypervisor, and the VM’s operation is resumed at

the destination. When using software emulation methods, the

network interfaces are virtual so their internal states are stored

into the memory and gets copied as well. Thus the downtime

could be brought down to a few milliseconds [17]. In the case

of direct device assignment like SR-IOV VFs, the complete

internal state of the network interface cannot be copied as it

is tied to the hardware [5]. The SR-IOV VFs assigned to a

VM will need to be detached, the live migration will run, and

a new VF will be attached at the destination. In the case of

InfiniBand and SR-IOV, this process will introduce downtime

in the order of seconds as discussed by Guay et al. [9], [18].

Moreover, with the currently implemented SR-IOV Shared Port

model the addresses of the VM will change after the migration,

causing additional overhead in the SM and a negative impact

on the performance of the underlying network fabric [10].

B. The InfiniBand Addressing Schemes

InfiniBand uses three different types of addresses [7], [19],

[9]. First is the 16 bits Local Identifier (LID). At least one

unique LID is assigned to each HCA port and each switch by

the SM. The LIDs are used to route traffic within a subnet. Since

the LID is 16 bits long, 65536 unique address combinations can

be made, of which only 49151 (0x0001-0xBFFF) can be used

as unicast addresses. Consequently, the number of available

unicast addresses defines the maximum size of an IB subnet.

Second is the 64 bits Global Unique Identifier (GUID)

assigned by the manufacturer to each device (e.g. HCAs and

switches) and each HCA port. The SM may assign additional

subnet unique GUIDs to an HCA port, which is particularly

useful when SR-IOV is used.

Third is the 128 bits Global Identifier (GID). The GID

is a valid IPv6 unicast address, and at least one is assigned

to each HCA port and each switch. The GID is formed by

combining a globally unique 64 bits prefix assigned by the

fabric administrator, and the GUID address of each HCA port.

III. RELATED WORK

Guay et al. [9] migrate VMs with SR-IOV VFs. The vGUID

of the SR-IOV VF is migrated together with the VM, but

the LID address changes. The main goal of their work is to

reestablish the communication after a VM has been migrated

and the LID address has changed, with the intention to

reduce VM migration downtime and avoid reconfiguring the

network. Tasoulas et al. [10] migrate VMs with IB VFs and all

three addresses, and use a caching mechanism to reestablish

connectivity without having to send SA PathRecord queries.

A prototype is used to orchestrate the migration process of the

IB addresses and the SM is restarted in order to migrate the

LID of the VM and trigger the network reconfiguration.

In general, when a lossless network is reconfigured, routes

have to be recalculated and distributed to all switches, while

avoiding deadlocks. Note that the coexistence of two deadlock

free routing functions, the Rold and Rnew, during the transition

phase from the old to the new one, might not be deadlock

free [20]. Zafar et al. [21] discusses the tools and applicable

methods on IB architecture (IBA), that would allow the

implementation of the Double Scheme [22] reconfiguration

method. The Double Scheme is using Virtual Lanes (VLs) to

separate the new and the old routing functions. Lysne et al. [23]

use a token that is propagated through the network to mark

a reconfiguration event. Before the token arrives on a switch,

traffic is routed with the old routing algorithm. After the token

arrives and forwarded through the output ports of the switch, the

traffic is flowing with the new routing algorithm. The Skyline

by Lysne et al. [24], speeds up the reconfiguration process by

providing a method for identifying the minimum part of the

network that needs to be reconfigured. Sem-Jacobsen et al. [25]
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Fig. 1. InfiniBand SR-IOV Shared Port architecture

use the channel dependency graph to create a channel list that is

rearranged when traffic needs to be rerouted. The rearranging is

happening in such a way, that no deadlocks can occur. Robles-

Gómez et al. [26] use close up*/down* graphs to compute

a new routing algorithm which is close to the old one, and

guarantees that the combination of old and new routing during

transition do not allow deadlocks to be introduced. Bermúdez

et al. [27] are concerned with the long computation time it

takes to compute optimal routing tables in large networks, that

consequently delays the IB subnet from becoming operational.

They use some quickly calculated, but not optimal, provisional

routes and they calculate offline the optimal routes. Since the

provisional and the optimal routes are calculated based on the

same acyclic graph, deadlock freedom is guaranteed. [27],

as well as the rest of the surveyed work, does not consider

reconfiguration of dynamic virtualized environments, and in

particular does not consider nodes and node IDs that move

inside the network.

IV. INFINIBAND SR-IOV DESIGN OVERVIEW

The Shared Port and vSwitch architectures have been

suggested by Liss [13]. Only the former one is currently

implemented in the IB drivers [11]. In this section, we discuss

these two architectures.

A. SR-IOV Shared Port

The Shared Port architecture is illustrated in Fig. 1. The

HCA appears as a single port in the network with a single

shared LID and shared Queue Pair1 (QP) space between the

PF and VFs, but multiple GIDs. As shown in Fig. 1, different

GIDs are assigned to the VFs and the PF, and the special QP0

and QP1 are owned by the PF. These QPs are exposed to the

VFs as well, but the VFs are not allowed to use QP0 (all SMPs

coming from VFs towards QP0 are discarded), and QP1 acts

as a proxy of the actual QP1 owned by the PF. Shared Port

allows for highly scalable data centers that are not limited by

the number of VMs, as the LID space is only consumed by

physical machines and switches in the network.

1A QP is a virtual communication port used by IB applications (consumers)
to communicate [7]. QP0 and QP1 are two special purpose QPs, used for IB
management packets only.
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Fig. 2. InfiniBand SR-IOV vSwitch architecture

One shortcoming of the Shared Port architecture is the

inability to provide transparent live migration, hindering the

potential for flexible VM placement. As each LID is associated

with a specific hypervisor, and shared among all VMs residing

on the hypervisor, a migrating VM will have its LID changed

to the LID of the destination hypervisor. Furthermore, as a

consequence of the restricted QP0 access, an SM cannot run

inside a VM.

B. SR-IOV vSwitch

In the vSwitch architecture (Fig. 2) each VF is a complete

vHCA, meaning that the VM is assigned a complete set of

IB addresses (section II-B) and a dedicated QP space in the

hardware. For the rest of the network and the SM, the HCA

looks like a switch with additional nodes connected to it;

the hypervisor uses the PF and the VMs use the VFs, as

shown in Fig. 2. The vSwitch architecture provides transparent

virtualization, but at the cost of consuming additional LID

addresses. When many LID addresses are in use, more

communication paths have to be computed by the SM and

more Subnet Management Packets (SMPs) have to be sent to

the switches in order to update their Linear Forwarding Tables

(LFTs). In particular, the computation of the communication

paths might take several minutes in large networks [28].

Moreover, as each VM, physical node, and switch occupies

one LID each, the number of physical nodes and switches in

the network limits the number of active VMs, and vice versa.

Recall that the LID space is limited to 49151 unicast LIDs.

Nevertheless, transparent virtualization is a key feature for

virtualized data centers with live migration support.

V. PROPOSED VSWITCH ARCHITECTURE

Transparent virtualization offered by the vSwitch architecture

is important in dynamic virtualized cloud environments. When

live migrations take place, each VM should be able to carry

with it all of its associated addresses to the destination,

something not possible with the Shared Port architecture. In

this section, we propose two alternative implementations of the

vSwitch architecture with different scalability characteristics,

and provide a method for scalable dynamic reconfiguration as

VMs are live migrated with their addresses.

373373373373373373373373373
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Fig. 3. vSwitch - Prepopulated LIDs. Assigned LIDs 1-12.

A. vSwitch with Prepopulated LIDs

Our first approach initializes all available VFs with LIDs,

even those VFs that are not currently used by any VM, as shown

in Fig. 3. In such a scheme, each hypervisor will consume

one LID for itself through the PF and one more LID for

each additional VF. The sum of all the VFs available in all

hypervisors in an IB subnet, gives the maximum amount of

VMs that are allowed to run in the subnet. If we assume

16 VFs2 per hypervisor in the subnet, then each hypervisor

consumes 17 LIDs. Then, the theoretical hypervisor limit for

a single subnet is ruled by the number of unicast LIDs and is:

�Topmost Unicast LID/17�) = �49151/17� = 2891, and

the number of VMs limit is: 2891 ·16 = 46256. These numbers

are actually even smaller since each switch, router, or dedicated

SM nodes in the subnet consume LIDs as well. Note that the

vSwitch does not need to occupy an additional LID as it can

share the LID with the PF.

In a vSwitch architecture with prepopulated LIDs, commu-

nication paths are computed for all the LIDs once, when the

network is booted. When a new VM needs to be started the

system does not have to add a new LID in the subnet, an

action that will cause a complete reconfiguration, including

the time consuming path computation step [21], [31], [27]. All

that needs to be done is to find an available VM slot in one of

the hypervisors and use it. An available VM slot is equivalent

to an available VF. Another gain of this proposed method is

the ability to calculate and use different paths to reach different

VMs hosted by the same hypervisor. Essentially, imitating the

LID Mask Control (LMC) feature to provide alternative paths

towards one physical machine, without being bound by the

limitation of the LMC that requires the LIDs to be sequential.

The freedom to use non-sequential LIDs is particularly useful

when a VM needs to be migrated and carry its associated LID

to the destination.

On the negative side, the initial computation of the paths

will require considerably more time than what it would need

without the prepopulation of all LIDs. In the previous example

with 16 VFs per hypervisor, when no VMs are running, the

initial path computation needs to calculate paths for close to

2Up to 126 VFs are supported on the Mellanox ConnectX®-3 adapters, but
16 are enabled by default [29]. Nonetheless, the max number of VFs may be
even smaller as it depends on the PCI Base Address Registers (BAR) size and
the available system resources [30].
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Fig. 4. vSwitch - Dynamic LID assignment. Assigned LIDs: 1,2,3,5,7,9,11.

3000 LIDs. However, the actual paths to be computed are

based on more than 49000 LIDs. Also, there is a strict limit on

the number of physical nodes in the network and the number

of SR-IOV VFs. The summation of the physical nodes (e.g.

switches, hypervisors, additional SM nodes) and VFs cannot

exceed the unicast LID limit, even if there are no VMs running

on the network. On the other extreme, if all of the VFs are

occupied by running VMs, there is no option for optimizations

by using live migrations, leading to a potentially fragmented

network.

B. vSwitch with Dynamic LID Assignment

Our second approach dynamically assigns LIDs as illustrated

in Fig. 4. With the dynamic LID assignment, the initial path

computation will be substantially reduced. Refer to the example

given in section V-A, when the network is booting for the first

time and no VMs are present, then less than 3000 LIDs will

be used for the initial path calculation and LFT distribution.

However, when using this method and a new VM is created, a

unique free unicast LID has to be used. In this case, a challenge

arises because there are no known paths in the network for

handling the newly added LID and VM. Computing a new

set of paths in order to handle the newly added VM is not an

option in a dynamic environment where several VMs may be

booted every minute. In large IB subnets, computing a new set

of routes can take several minutes, and this procedure would

have to repeat each time a new VM is booted.

Fortunately, since we know that all the VFs in a hypervisor

share the same uplink with the PF, there is no need to compute

a new set of routes. It is only needed to iterate through the

LFTs of all the physical switches in the network, copy the

forwarding port from the LID entry that belongs to the PF

of the hypervisor —where the VM is created— to the newly

added LID, and send a single SMP to update the corresponding

LFT block of the particular switch.

When comparing the LIDs assigned on VMs on each

hypervisor in Fig. 3 and Fig. 4, notice that the LIDs assigned

to the VMs in Fig. 3 are sequential, while the LIDs assigned

in Fig. 4 are spread. As there is no requirement for sequential

LIDs, this layout is a result of VMs being created and destroyed.

In the dynamic LID assignment when a new VM is created,

the next available LID is used throughout the lifetime of the

VM. In an environment with prepopulated LIDs, each VM will

374374374374374374374374374



inherit the LID that is already assigned to the corresponding VF,

and in a network without live migrations, VMs consecutively

attached to a given VF will always get the same LID.

The dynamic LID assignment model can resolve the draw-

backs of the prepopulated LIDs model described in V-A at the

cost of some additional network and runtime SM overhead.

Each time a VM is created, the LFTs of all the physical

switches in the subnet will need to be updated with the newly

added LID associated with the created VM. One SMP per

switch is needed to be sent for this operation. The LMC-like

functionality is also not available, because each VM is using

the same path with its host hypervisor. However, the is no

limitation on the total amount of VFs present in all hypervisors,

and the number of VFs may exceed that of the unicast LID limit.

Of course, not all of the VFs are allowed to be attached on

active VMs simultaneously if this is the case, but having more

spare hypervisors and VFs adds flexibility for disaster recovery

and optimization of fragmented networks when operating close

to the unicast LID limit.

C. Dynamic Reconfiguration with vSwitches

In a dynamic cloud environment, live migrations should be

supported and be scalable. When a VM is migrated and carries

its addresses to the destination, a network reconfiguration is

necessary. Migration of the virtual or alias GUIDs (vGUIDs),

and consequently the GIDs, do not pose a significant burden as

they are high level addresses that do not affect the underlying

IB routing. For the migration of the vGUID, an SMP has to

be sent to the destination hypervisor in order to set the vGUID

that is associated with the incoming VM, to the VF that will be

assigned to the VM when the migration is completed. However,

migration of the LID is not that simple, because the routes

have to be recalculated and the LFTs of the physical switches

reconfigured. Recalculation of the routes needs a considerable

amount of time in the order of minutes on large subnets, posing

scalability challenges that may render VM migrations unusable.

The vSwitch has the property that all the VFs of an HCA

share the link with the PF. Our topology agnostic dynamic

reconfiguration mechanism utilizes this property in a novel

way to make the reconfiguration highly efficient in dynamic

environments. The LID reconfiguration time is minimized by

completely eliminating the path computation, and drastically

reducing the path distribution. The method differs slightly for

the two proposed vSwitch architectures, but the basis is the

same, and as presented in algorithm 1 involves two steps:

a Update of the LIDs in the participating hypervisors:

one SMP is sent to each of the hypervisors that participate

in the live migration, instructing them to set/unset the LID

to the corresponding VF.

b Update of the LFTs on the physical switches: one or a

maximum of two SMPs are sent on one or more switches,

forcing them to update their corresponding LFT entries

to reflect the new position of the migrated VM.

1) Reconfiguration with Prepopulated LIDs: For the vSwitch

architecture with Prepopulated LIDs, paths exist for all of the

LIDs even if VMs are not running. In order to migrate the LID

Algorithm 1 Migrate VM and reconfigure the network.

1: procedure UPDATELFTBLOCK(LFTBlock, Switch)
2: // If the LFT block needs to be updated send SMP on the switch to
3: // update the LFTBlock. When Swapping LIDs (V-C1), 1 or 2 of all
4: // the LFT Blocks may need to be updated per switch. When copying
5: // LIDs (V-C2), only 1 of all the LFT Blocks may need to be updated
6: // per switch.

7: if LFTBlock in Switch needs to be updated then
8: Send SMP on Switch to update LFTBlock
9: end if

10: end procedure

11: procedure UPDATELFTBLOCKSONALLSWITCHES
12: /* Iterate through all LFTBlocks on all Switches
13: * and update the LFTBlocks if needed. */

14: for LFTBlock in All LFTBlocks do
15: for sw in All switches do
16: UPDATELFTBLOCK(LFTBlock, sw)
17: end for
18: end for
19: end procedure

20: procedure MIGRATEVM(VM, DestHypervisor)
21: Detach IB VF from VM
22: Start live migration of VM to the DestHypervisor
23: /* Reconfiguration of the network is following */
24: // The migration procedure of the LID address slightly
25: // differs in V-C1 and V-C2.
26: /* Step described in enumeration V-C-a */

27: Migrate the IB addresses of VM
28: /* Step described in enumeration V-C-b */

29: UPDATELFTBLOCKSONALLSWITCHES

30: end procedure

31: procedure MAIN

32: MIGRATEVM(VM to be Migrated, toHypervisor)
33: end procedure

and keep the balancing of the initial routing, what needs to be

done is to swap two LFT entries on all switches; The entry

of the LID that is assigned to the VM, with the LID of the

VF that is going to be used at the destination hypervisor after

the live migration is completed. If VM1 with LID 2 in Fig. 5

needs to be migrated from hypervisor 1 to hypervisor 3, and

VF3 with LID 12 on hypervisor 3 is available and decided to

be attached to VM1, the LFTs of the upper left switch in Fig. 5

should be changed as shown. Before the migration LID 2 was

forwarded through Port 2, and LID 12 was forwarded through

Port 4. After the migration LID 2 is forwarded through Port

4, and LID 12 is forwarded through Port 2. In this case, only

one SMP needs to be sent for this update because LFTs are

updated in blocks of 64 LIDs per block (further explained in

section VI), and both LID 2 and 12 are part of the same block

that includes the LIDs 0 - 63. If the LID of VF3 on hypervisor

3 was 64 or greater, then two SMPs would need to be sent

as two LFT blocks would have to be updated: the block that

contains LID 2 (the VM LID) and the block that contains the

LID to be swapped that is bigger than 63. The same swapping

procedure is used to update all the switches that need to be

updated (as explained in more detail in section VI).

2) Reconfiguration with Dynamic LID Assignment: For the

vSwitch architecture with Dynamic LID assignment, the path

of a VF follows the same path as the path of the corresponding
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Fig. 5. LFT Updates - LID Swapping. LIDs in the LFT tables are forwarded
through Ports.

PF of the hypervisor where the VM is currently hosted. When

a VM moves, the system has to find the LID that is assigned

to the PF of the destination hypervisor, and iterate through all

the LFTs of all switches and update the path for the VM LID

with the path of the destination hypervisor. In contrast to the

LID swapping technique that is used in the reconfiguration

with prepopulated LIDs, only one SMP needs to be sent at all

times to the switches that need to be updated, since there is

only one LID involved in the process.

VI. ANALYSIS OF THE RECONFIGURATION MECHANISM

In this section we analyze our novel reconfiguration proce-

dure and compare it with a traditional reconfiguration method,

a method that would initiate a full network reconfiguration for

each network change.

A. Traditional Reconfiguration Cost

The time, RCt, needed for a full traditional ReConfigration

method is the sum of the time needed for the Path Computation,

PCt, plus the time needed for the LFTs Distribution, LFTDt,

to all switches, as shown in equation 1:

RCt = PCt + LFTDt (1)

The computational complexity of the paths is polynomially

growing with the size of the subnet, and PCt is in the order

of several minutes on large subnets3 [28].

After the paths have been computed, the LFTs of the switches

have to be updated. The LFT distribution time LFTDt grows

linearly with the size of the subnet and the amount of switches.

The LFTs are updated on blocks of 64 LIDs so in a small

subnet with a few switches and up to 64 consumed LIDs,

only one SMP needs to be sent to each switch during path

3Topology and chosen routing algorithm can have very diverse effects on
the time needed to compute the paths.

distribution. On the other extreme, in a fully populated IB

subnet with 49151 LIDs consumed, 768 SMPs per switch are

needed to be sent during path distribution.

The SMPs can use either directed routing or destination

based routing. When using directed routing, each intermediate

switch has to process and update the headers of the packet with

the current hop pointer and reverse path before forwarding the

packet to the next hop [7]. In the destination based routing, each

packet is forwarded immediately. Naturally, directed routing

adds latency to the forwarded packets. Nevertheless, directed

routing is used by OpenSM for all SMPs. This is necessary for

the initial topology discovery process where the LFTs have not

been distributed yet to the switches, or when a reconfiguration is

taking place and the routes towards the switches are changing.

Let n be the number of switches in the network; m the

number of all LFT Blocks that will be updated on each switch,

determined by the number of consumed LIDs; k the average

time needed for each SMP to traverse the network before

reaching each switch4; and r the average time added for each

SMP due to the directed routing. Assuming no pipelining, if

we break the LFT distribution time LFTDt further down we

get equation 2:

LFTDt = n ·m · (k + r) (2)

From equation 1 and 2, we get equation 3:

RCt = PCt + n ·m · (k + r) (3)

In large subnets PCt � LFTDt, even though the LFTDt

becomes larger when more LIDs, and consequently more LFT

Blocks per switch m are used, and when more switches n are

present in the network. The n · m part in equation 2 and 3

defines the total number of SMPs that needs to be sent for the

reconfiguration.

B. Reconfiguration Cost when Live Migrating with vSwitches

Using traditional reconfiguration techniques would render

VM migrations unusable. In large subnets, the PCt in equa-

tion 3 becomes very large and dominates RCt. If a live

migration triggered a full traditional reconfiguration, it would

take several minutes to complete.

In our reconfiguration mechanism when vSwitches are used,

we eliminate PCt since we use the already calculated paths

to swap or copy LID entries in the LFT of each switch.

Furthermore, there is no need to send m SMPs per switch,

because when a VM is migrated only one or a maximum of

two LIDs are affected depending on which of the proposed

vSwitch schemes is used, regardless of the total number of

LFT blocks. As a result, only m′ ∈ {1, 2} SMPs are needed

to be sent to the switches for each migration (m′ = 2 if the

two LID entries are not located in the same LFT block when

the LIDs are prepopulated, otherwise m′ = 1). Also there are

certain cases that 0 < n′ < n switches will need to be updated.

4Switches closer to the SM can be reached faster as they traverse less
intermediate switches and cables.
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Consider the case that VM1 was migrated from Hypervisor 1

to Hypervisor 2 in Fig 5. If LID 2 was swapped with any of

the LIDs in hypervisor 2 (6, 7 or 8), then the upper left switch

would not need to be updated at all, because the initial routing

already routes LID 2 and LIDs 6, 7 and 8 from the same port

(Port 2). In particular for this example n′ = 1, because only

the lower left leaf switch would need to be updated.

Eventually, the cost vSwitch RCt of our reconfiguration

mechanism is the one specified in equation 4, and in large

subnets, vSwitch RCt � RCt.

vSwitch RCt = n′ ·m′ · (k + r) (4)

One additional improvement possible to implement for our

reconfiguration technique is the utilization of destination based

routing for the SMP packets. When VMs are migrated, we

know that the routes for the LIDs belonging to switches will not

be affected. Therefore, destination based routing can guarantee

proper delivery of SMPs to the switches and r can be eliminated

from equation 4, giving us the final equation 5.

vSwitch RCt = n′ ·m′ · k (5)

Equation 5 assumes no pipelining of the LFT updates. In

practice, pipelining is used by OpenSM when updating the

LFTs blocks of the switches. Consequently the time needed

for our dynamic reconfiguration mechanism is even less and

depends on the pipelining capability of the SM node.

C. Deadlock Freedom

As discussed in section III, much work has already been

done on deadlock-free dynamic reconfiguration. Deadlocks can

occur even if two routing functions, the Rold and Rnew, are

deadlock free individually, but coexist during the transition

phase from the old to the new routing function. A common way

of analyzing a deadlock-free algorithm is with the Directed

Acyclic Graphs (DAG) and the Up*/Down* algorithm [26].

When a packet flows through the network, it can go Up through

the DAG, but once it goes Down it cannot go Up again in

order to guarantee the deadlock freedom. However, this method

assumes that a node ID remains at the same position at all times,

and with proper handling, a new routing can be calculated so

it can coexist with the old one without introducing deadlocks.

In the case of live migration, however, a node ID is allowed

to move. A moved node is a node that has been removed

from one location in the network, and appeared at a different

location without changing the ID of the node. This case cannot

be handled as if a node goes down and another node comes

up at a different location in the network, because in this case

the two nodes would have different IDs.

One way to reduce the chances for a deadlock to occur, is

to drain the communication queues with flows towards the

migrating-VM by signaling the peer nodes [18]. Although

the likelihood for a deadlock will be very low, still if a new

communication channel needs to be established, the new peer

does not know that it has to wait for the live-migration to

complete before sending the connection establishment request,

since it did not receive the signal, and a deadlock could

occur. Moreover, the application and the live migration will be

further slowed down because the live migration cannot start

until the peers and the VM-to-be-migrated have drained their

queues. Another way would be to iterate through all of the

switches that needs to be reconfigured once the migration has

started, and before the actual reconfiguration happens set the

corresponding LID of the VM participating in the live-migration

to be forwarded through port 255 of the switches. This method

would force packets flowing towards this LID to be dropped

at those switches. Afterwards, the reconfiguration could be

applied. This is essentially a partially-static reconfiguration

that drops the traffic only towards the migrated VM instead of

“freezing” the whole network while reconfiguring. This method

would prolong the reconfiguration time as it would add to

equation 5 another n′ SMPs (1 SMP per switch that needs to

be updated, to invalidate the LID of the migrated VM before

the actual reconfiguration), and would probably force more

packets than needed to be dropped.

In the current implementation of our dynamic reconfiguration

method, deadlocks could possibly occur when swapping LIDs

and they will be resolved by IB timeouts, the mechanism

which is available in IBA. Improved handling of deadlock-free

dynamic reconfiguration in the context of live migration is left

for future work.

D. Reconfigure Limited Number of Switches

In the proposed dynamic reconfiguration method, the recon-

figuration procedure will iterate through all of the switches as

shown by algorithm 1 and depending on the existing LFTs,

not all of the switches may need to be updated as described

in section VI-B.

This is a deterministic method that guarantees that the initial

load balancing will be kept, but it may not be optimal, as

there are situations where we can safely reconfigure much less

switches without affecting the balancing of the initial routing.

A special case is the case of live migration of a VM within

a leaf switch. In this special case regardless of the network

topology, only the leaf switch needs to be updated. In Fig. 6,

if VM3 moves from Hypervisor 1 to Hypervisor 2, only switch

1 needs to be updated. Hypervisor 1 and Hypervisor 2 are both

connected on switch 1, so any local changes will not affect the

balancing of the rest of the network, nor the rest of the nodes

hosted by the leaf switch, since a leaf switch is non-blocking.

However, the deterministic method may update more switches.

Consider the example that the initial routing algorithm had

calculated that traffic from Hypervisor 4 towards Hypervisor 1,

follows path P1 through switches 12 → 9 → 5 → 3 → 1, and

traffic towards Hypervisor 2 follows path P2 through switches

12 → 10 → 6 → 4 → 1. If the dynamic LID assignment model

is implemented as one can see in Fig. 6, traffic towards VM3

would follow P1 towards Hypervisor 1 before the migration,

and follows P2 towards Hypervisor 2 after the migration. In

the worst case, all switches may be updated while only one

switch needs to be updated; the leaf switch.
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Fig. 6. vSwitch - LFTs Update on Limited Switches. Matching color of arrow and box highlighting switches, illustrates how many switches need to be
updated on a minimum reconfiguration when a VM is live migrated in different parts of the network.

Furthermore, if we limit the number of switches that needs

to be updated, we can efficiently support multiple parallel

migrations and reconfigurations at different parts of the network

simultaneously. In the case of live migrations within leaf

switches we could have as many concurrent migrations as

there exists leaf switches, without introducing interference.

By using the combined skyline [24] of the parts of the

network that will be affected by the reconfiguration, a topology-

agnostic minimum part of the network that needs to be reconfig-

ured can be found. Nonetheless, the minimum reconfiguration

has to be handled with care, in order to avoid degrading the

load balancing of the network if the reconfiguration spans

more switches than a single leaf switch. As illustrated in

Fig. 6, when a VM is moved far from the source hypervisor,

from an interconnection point of view, more switches will

have to be updated. As a consequence, less concurrent live

migrations are allowed in order to ensure that the migrations

and reconfiguration will both complete without interfering with

other migrations and reconfigurations.

VII. VSWITCH EMULATION AND SIMULATION RESULTS

In this section we present the testbed we used in our

experiments, and the experiments we carried out for evaluating

the efficiency of our proposed vSwitch architecture.

A. Testbed

Our testbed consists of 3 SUN Fire X2270 servers with 4

cores and 6 GB RAM each; 4 HP ProLiant DL360p Gen8

servers with 8 cores (two CPUs) and 32 GB RAM each; 2

HP ProLiant DL360p Gen8 servers with 4 cores and 32 GB

RAM each; and 2 InfiniBand SUN DCS 36 QDR switches.

The OpenStack Grizzly cloud environment is deployed on

Ubuntu 12.04, and a CentOS 7.0 image is used for the

virtual machines. The three SUN Fire servers are used as

the OpenStack Controller, Network and Storage nodes. The HP

machines serve as OpenStack compute nodes. The OpenStack

management network is based on Ethernet, while IB is used for

the VMs. All compute nodes are equipped with the Mellanox

ConnectX®-3 VPI adapters and SR-IOV enabled Mellanox

OFED V2.3 drivers. The same version of Mellanox OFED is

also installed on the CentOS virtual machines.

B. vSwitch Emulation

Currently, the IB Shared Port architecture is the only archi-

tecture supported by hardware, so we emulated the vSwitch

environment with prepopulated LIDs that we described in

section V-A. We also implemented our dynamic reconfiguration

method based on LID swapping in OpenSM. Due to the Shared

Port implementation, all the VMs share the same LID, so we

had to limit the number of VMs allowed to run on a compute

node to one for the emulation. If we run more than one VM per

node, the connectivity will be broken for all other VMs sharing

LID with the migrating VM. Also, a VM that is migrated, can

only be moved to an OpenStack compute node where no other

VMs are running. We modified OpenStack to allow IB SR-IOV

VFs to be used by VMs and when a live migration is triggered

the following four steps are executed:

1) The SR-IOV VF is detached from the VM and the live

migrations starts.

2) OpenStack signals OpenSM with information about the

VM that is migrated and the destination compute node

that will host the VM.

3) OpenSM reconfigures the IB network by swapping the

LID of the source and destination compute nodes and

transferring the GUID to the destination compute node.

4) When the migration is completed, OpenStack attaches

the SR-IOV VF that holds the GUID the VM had at the

source compute node.

The live-migration traffic and OpenSM signaling is flowing

over Ethernet, while the VMs communicate by IB. The purpose
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Nodes Switches LIDs Min LFT Blocks/Switch Min SMPs Full RC Min SMPs LID Swap/Copy Max SMPs LID Swap/Copy

324 36 360 6 216 1 72

648 54 702 11 594 1 108

5832 972 6804 107 104004 1 1944

11664 1620 13284 208 336960 1 3240

TABLE I
NUMBER OF REQUIRED SMPS TO UPDATE LFTS OF ALL SWITCHES FOR THE FAT-TREE TOPOLOGIES USED IN FIG. 7

2−Levels Fat−Tree
324 Nodes

2−Levels Fat−Tree
648 Nodes

3−Levels Fat−Tree
5832 Nodes

3−Levels Fat−Tree
11664 Nodes

0.
01

2

0.
01

7

0.
14

2

0.
01

2

0

0.
04 0.
06

0.
63

0.
04

5

0

16
.5

18
.8

1

12
3

38
59

0

67 71

62
5

39
14

5

0

Path computation time for different routing algorithms
on a Fat−Tree topology with a varied number of Nodes

T
im

e 
(s

ec
on

ds
)

Number of Nodes

Fat−Tree
Min−Hop
DFSSSP
LASH
LID Copying/Swapping

Fig. 7. IBSim Path Computation Results

of the emulated setup was to evaluate the feasibility of our

dynamic reconfiguration method.

C. Simulations

Ibsim was used to simulate different IB subnets in OpenSM,

in order to calculate the time it takes for different routing

algorithms to compute the routing tables. The path computa-

tions were executed on the 8-core machines of our testbed.

The results are presented in Fig. 7. We simulated four regular

Fat-Tree topologies based on 36-port switches and as one

can see, when the network grows larger, the path calculation

time corresponding to PCt in equation 3, skyrockets. PCt is

polynomially increasing with the size of the subnet. It takes

0.012s for the fat-tree routing algorithm to compute the routing

for 324 nodes, while for a 36 times larger subnet with 11664

nodes and 1620 switches, it takes 67 seconds; ∼5583 times

more time. DFSSSP, a topology agnostic routing algorithm

needs 0.142 seconds for 324 nodes, while it needs 625 seconds

for the subnet with 11664 nodes; ∼4401 times more time.

LASH needed 39145 seconds for the big subnet with 11664

nodes. With a traditional reconfiguration method, the path

computation has to be repeated each time a live-migration is

happening and LIDs are changing position in the network. Our

proposed topology agnostic reconfiguration method eliminates

this step. For any topology, and independent of the routing

algorithm utilized for the initial path computation, zero time

is spent in path recalculation. Thus, live-migration is made

possible in vSwitch-enabled IB subnets regardless of the size.

In addition, a full reconfiguration will have to update the

complete LFT on each switch and as the network is growing,

more switches have to be updated and more SMPs per switch

are needed to be sent, as explained in section VI-A. For the

same four networks that we simulated in Fig. 7, one can see

how many LIDs are consumed and the minimum number of

SMPs needed for a full reconfiguration in Table I. Note that

the amount of consumed LIDs in a subnet rules the minimum

amount of LFT blocks needed to be used on each switch, but

not the maximum. Consider the example that we use only

three LIDs in a network with one switch and two nodes. If

one of the nodes uses the topmost unicast LID, which is

49151, then the whole LFT table on the switch will have to

be populated, meaning that 768 SMPs will need to be sent

on the single switch — instead of the one that would need to

be sent if the two nodes and the switch were using LIDs in

the range 1-3. Our reconfiguration method depending on how

far a VM is migrated, from an interconnection perspective,

will need to send a minimum of only one SMP if the VM

is migrated within the same leaf switch, or a maximum of

2 ∗NumberOfSwitches SMPs in the extreme case that all

of the switches will need to be updated with two SMPs each,

as explained in sections VI-B and VI-D. In particular, for the

subnet with 324 nodes in Table I, a full reconfiguration would

have to send at least 216 SMPs, while a worst case scenario with

our reconfiguration method will send a max of 72 SMPs, 33.3%

of the min number of SMPs required for a full reconfiguration,

or 66.7% improvement. For the subnet with 11664 nodes, a full

reconfiguration would have to send at least 336960 SMPs, while

a worst case scenario with our reconfiguration method will

send a max of 3240 SMPs, 0.96% of the min number of SMPs

required for a full reconfiguration, or 99.04% improvement.

The best case scenario for our reconfiguration mechanism is

subnet size-agnostic, and will only send one SMP. As the

subnet size increases, the savings from our reconfiguration

mechanism increases correspondingly.

VIII. CONCLUSION

In this paper, we proposed and analyzed two vSwitch im-

plementations of the vSwitch SR-IOV architecture for IB, with

different scalability characteristics, and the intent to overcome

the shortcomings posed by the Shared Port architecture in

virtualized data centers. We also proposed and implemented in

OpenSM an accompanying scalable method for dynamically

reconfiguring the IB network, when live migrations of VMs

are part of the data center.

The first of the proposed implementations involves prepop-

ulation of the LIDs in the available VFs, even when not

all VFs are attached to VMs. The initial path computation

time in the underlying IB network will increase with such

an implementation, because different routes will have to be

calculated for each physical node and each VF. Also, the

maximum number of VFs plus physical nodes in the network

379379379379379379379379379



cannot exceed the max number of unicast LID defined by the

IBA, even if the VFs are not in use. However, better traffic

balancing can be achieved.

The second of the proposed implementations suggest dy-

namic LID assignment as VMs are created. Then the path

computation time is only bound by the number of the

physical nodes in the network. This method offers simpler

implementation and faster initial network configuration, giving

greater flexibility for very large IB subnets, but it compromises

on the traffic balancing. There is no limitation on the amount

of the available VFs in an IB subnet, but the number of active

VFs plus the physical nodes in the network cannot exceed the

max number of unicast LID defined by the IBA at any time.

When a VM needs to be migrated, our topology agnostic

reconfiguration mechanism will swap in the LFTs of the

switches the LID of the VM, with the LID held by the VF at

the destination hypervisor for the first of the proposed methods.

In the latter one the same path with the one used by the

hypervisor that hosts the VM will be used. Our reconfiguration

mechanism minimizes the time needed for reconfiguring the

network, as the need for path re-computation is eliminated.

Moreover, the amount of required reconfiguration SMPs sent

on switches is vastly reduced, and for certain scenarios, the

difference is from several hundred thousand SMPs down to a

single one.
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[27] Aurelio Bermúdez, Rafael Casado, Francisco J Quiles, and Jose Duato,

“Use of Provisional Routes to Speed-up Change Assimilation in InfiniBand
Networks,” in Parallel and Distributed Processing Symposium, 2004.

Proceedings. 18th International. IEEE, 2004, p. 186.
[28] Jens Domke, Torsten Hoefler, and Wolfgang E Nagel, “Deadlock-free

oblivious routing for arbitrary topologies,” in Parallel & Distributed

Processing Symposium (IPDPS), 2011 IEEE International. IEEE, 2011,
pp. 616–627.

[29] Mellanox Technologies, “Mellanox OFED Linux User’s Manual,”
[Online; accessed 30-January-2015].

[30] Mellanox Technologies, “Mellanox Firmware Tools (MFT) User Manual,”
[Online; accessed 30-January-2015].
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