
UNIVERSITY OF OSLO
Department of Informatics

Design of a CMDB with
integrated knowledge
management based on
Topic Maps

Master thesis

Fitim Haziri

Network and System Administration

Oslo University College

May 18, 2009

Design of a CMDB with integrated knowledge
management based on Topic Maps

Fitim Haziri

Network and System Administration
Oslo University College

May 18, 2009

Abstract

Configuration management databases have gained popularity in enterprises
due to their role in providing efficient IT Resource and Service Management.
Enterprises are becoming more competitive through increasing of resource uti-
lization to support their business services. Existing configuration management
database implantations are known to have serious problems, introducing se-
curity and maintenance issues. They use a centralized approach implemented
via a complex logical database model. This complexity reduces the possibility
for enterprises to achieve competitive advantage. Apart from this, implement-
ing such a complex model requires time.

There is room for a new logical database model. Cfengine’s approach to
logical database is not as a traditional inventory, but rather as a knowledge-
base semantic web of information that connects various aspects of configura-
tion management. The thesis considers designing of a logical database model,
and its topic map model for Cfengine 3, which is a machine-learning approach.
The developed model is characterized of being easily manageable, easy to im-
plement, extensible, and optimized for updating process.

Acknowledgements

I am grateful for the teaching, encouragement, guidance, and support of my
supervisor Professor Mark Burgess. I want to thank Steve Pepper for his help
in topic maps ontology, and Professor Alva L. Couch for his comments on
my thesis work. Thanks to Associate Professor Harek Haugerud and Kyrre
Begnum for their beneficial discussions.

A special thanks to my family for support and encouragement.

The project idea of designing a Semantic CMDB originates from Professor
Mark Burgess.

i

Contents

1 Introduction 1
1.1 Motivation and research questions 2
1.2 Overview of the Thesis . 2

2 Background and literature 3
2.1 HP CMDB Architecture . 5

2.1.1 Discovery process . 6
2.1.2 Passive discovery . 7
2.1.3 Active discovery . 8
2.1.4 Assessment of agentless model 8
2.1.5 HP CMDB Visualization and mapping 9
2.1.6 Federation . 10

2.2 Cfengine . 10
2.3 IBM CMDB Architecture . 12
2.4 BMC Atrium CMDB . 13

2.4.1 Web services . 13
2.4.2 Summary . 13

3 Comparison of topic maps and entity relation databases 14
3.1 What is ontology ? . 14
3.2 The topic map model . 15

3.2.1 Topics . 15
3.2.2 Topic types . 16
3.2.3 Association . 16
3.2.4 Occurrences . 17
3.2.5 Symbiosis between Promise Theory and Topic Map models 17
3.2.6 Hierarchy and topic maps 18
3.2.7 Extracting data from relational databases and topic maps

19
3.2.8 Navigation . 19
3.2.9 Labeling of topics and synthetic keys 19
3.2.10 Storing of topic maps . 20
3.2.11 Strengths of topic maps model 20
3.2.12 Ability to link topics to each other in a semantic fashion 21
3.2.13 Building Metadata . 21
3.2.14 Linking heterogeneous information in one topic 21
3.2.15 Limitations of Topic maps 21

ii

CONTENTS

3.3 Short introduction to entity relationship modeling 21
3.3.1 Normalization versus Denormalization 22
3.3.2 Lack of semantic capabilities 22
3.3.3 Similarities and differences of CMDB and Data Warehouse 23
3.3.4 Characteristics of standard Data Warehouses 24
3.3.5 Indexing of attributes . 24
3.3.6 Fundamental limitations of entity relation model 25
3.3.7 Determination of primary keys and subject identifiers . . 26

4 Methodology 27
4.1 Development of CMDB model 27

4.1.1 Single CMDB database model 27
4.1.2 Information types, ER-entities, and Topic map 28
4.1.3 The three databases CMDB model 29
4.1.4 Redesigning of location entity 30

4.2 Introduction of boxes . 30
4.2.1 Turning entities into boxes 31
4.2.2 Redesigning of machine box 31
4.2.3 Handling of dual-boot . 32
4.2.4 Tracking of machines and virtual machines 32
4.2.5 Adding of attribute notes into our CMDB model 32
4.2.6 Operating systems and platforms 33
4.2.7 Removal of monitoring data from VM Box 33
4.2.8 Powering of virtual machine and operating system boxes 33
4.2.9 Adding of anomaly detection capability 34
4.2.10 Creation of architecture box 34
4.2.11 Redesigning of machine resources and architecture boxes 35

4.3 Application of Dunbar number to boxes 35
4.3.1 What does Dunbar’s finding mean for the model ? 36

4.4 Introduction of change concept 36
4.4.1 Advancing capabilities of OS box 36
4.4.2 Properties of boxes . 36

4.5 Centralization . 37
4.6 Promise theory . 37
4.7 Timescale and ranking of data . 38
4.8 CMDB as cache . 39
4.9 Fault tolerance . 39
4.10 Polyscopic structuring of information 39

5 Designing of topic maps for CMDB, and Results 41
5.1 Principles of our CMDB model 41
5.2 Mapping of CMDB model to Topic Map model 42

5.2.1 Topic map ontology of our CMDB model 43
5.2.2 Sample . 45

5.3 Results . 46
5.3.1 CMDB: optimized for updating 46

iii

6 Test case, Evaluation, and Discussion 57
6.1 Discussion . 62

6.1.1 CMDB drafts . 63
6.1.2 Non-hierarchical . 64
6.1.3 Characteristics of our CMDB model 65
6.1.4 How does our CMDB model fit with other models ? . . . 66

7 Conclusions 69
7.1 Future work . 69

A 72
A.1 Summary of boxes’ capabilities 72

A.1.1 The machine box . 72
A.1.2 The operating system box 72
A.1.3 The virtual machine box 72
A.1.4 The architecture box . 73
A.1.5 The service box . 73
A.1.6 The PackageInstalled box 73
A.1.7 The PackageDependency box 73

B 74
B.1 Cfengine configuration code for the test case 74

List of Figures

2.1 Class-level relationships modeled in CIM 4
2.2 Comparsion of CIM with other information models [3] 5
2.3 Extraction of data from UCMDB [4] 10

3.1 Topic maps: Schematic representation of topic maps’ features . 18

5.1 The projection metaphor is one of the designing principles of
our CMDB model. 42

5.2 Topic map ontology of our CMDB model 44
5.3 Constructs of the topic map ontology of our CMDB model . . . 45
5.4 The diagram depicts associations of topic ”slogans” with its re-

lated topics. 46
5.5 Schematic representation of updating promisedService table (stan-

dard relational database) . 48
5.6 Schematic representation of updating database boxes (our CMDB

model). 48

iv

LIST OF FIGURES

5.7 The Single CMDB draft designed based on strict application of
relational model principles. 50

5.8 Exclusion of centralizing electronic documents. This CMDB model
does not contain entities for storing documents. They are ac-
cessed via topic map occurrences. 51

5.9 The three databases CMDB model modeled based on the rate
at which data changes. It is consisted of three databases: the
standard relational database (slowly changing data), the People
database (manually-entered data), the VirtualMachine database
(monitoring data) . 52

5.10 The introduction of ”box concept” in our CMDB model. Database
boxes are connected to each other through logical unique values
(common attributes). It is indicated by the colored lines 53

5.11 Splitting of Machine database box into MachineResources and
OperatingSystem database boxes 54

5.12 Removal of monitoring data from the CMDB 55
5.13 The introduction of change concept in our CMDB model. 56

6.1 The ”slogans” topic, its occurrences and associations. From the
occurrences, we specially stress the anomaly detection, since
this feature is not supported by existing CMDB solutions. 58

6.2 vmDax . 59
6.3 vmDax2 . 60
6.4 A track of multiple scaled system variables as the number of

users and processes, free disk space, www connections, ect.,
over the course of a week [18]. 61

6.5 OS . 62
6.6 Topic map, CMDB: grouping of topics 64
6.7 Star model . 67
6.8 Our CMDB . 68

v

Chapter 1

Introduction

Most of existing configuration management database models for system man-
agement are derived from the Common Information Model (CIM). CIM is an
object-oriented management model that provides a common way of represent-
ing information about IT components. CIM defines resources as object classes
which can be further specialized by means of inheritance. CIM contains over
1000 predefined base classes. CIM is indeed a complex model. Understanding
the relationships between classes and adopting CIM to the requirements of an
organization invokes time-consuming efforts. Furthermore, much of the infor-
mation stored in standard classes deals with low level details of resources, and
does not even contain the level of abstraction required to represent IT Service
and Management scope [1].

In object-oriented modeling one is forced to pursue a strict procedure, build-
ing a tree structured model. Behaviors are scattered across this hierarchy. The
object-oriented model (as expressed in languages such as Java and C++) is
rigid. When we add a new element (even though it is just an updated version
of an existing one), we have to update the model as well. Updating of the hier-
archy model with new constructs, at some point it will become unmanageable.
An error in modeling or an incompatibility in enriching the model with new
elements requires redesigning the model.

Different vendors have pursued various approaches in adopting CIM for
their logical database solutions. HP implements only a subset of CIM, and its
core model called Universal CMDB supports more than 200 classes. Mean-
while, IBM widely adopts CIM as its base model. IBM’s version is referred to
as the Common Data Model (CDM). It provides about 1000 classes, subclasses,
and relationships. Meanwhile, our approach is to design a logical database
model, that incarnates certain distinctive characteristics compared to existing
CMDB models. Above all it can be characterized as being simple, easily man-
ageable, independent, extensible, and easy to implement.

These models seem far too complex to maintain and computationally ex-
pensive to use. Part of the trouble seems to be an adherence to object-oriented

1

1.1. MOTIVATION AND RESEARCH QUESTIONS

dogma. So we wish to study alternatives that might avoid the pitfall of object-
oriented modeling.

1.1 Motivation and research questions

Datacenters are dynamic environments, which means that the logical database
must be updated often, to reflect the current state of the network environment.
Taking this fact into account, our motivation was to design a logical database
model that is optimized for updating.

The goal of the thesis was ultimately

• Designing a logical database model that is much simpler than existing logical
database models and simultaneously provides numerous capabilities

To approach this goal we had to answer a number of questions

• Could a semantic approach to knowledge address the complexity issues in tradi-
tional modeling ?

• Is there a simple relationship between topic maps and entity relation model
databases ?

• Can we find an optimal model that will scale to tens of thousands of machines,
common in today’s datacenters ?

1.2 Overview of the Thesis

• In chapter 2 we describe existing CMDB commercial solutions. CMDB
vendors restrict materials on their core solution approach for the public.
Despite this fact, we believe that we managed to touch the main elements
of their approaches.

• Next in chapter 3, we compare features of topic maps and entity relation
databases.

• In chapter 4 we describe the process of development of our CMDB model.

• In chapter 5 we describe the principles of our ultimate CMDB model.
Designed the topic map ontology of the CMDB, and present the results.

• In chapter 6 we present a test case and we evaluate it. Then, we continue
discussing our CMDB drafts. We finish discussion by comparing our
ultimate CMDB model with star data warehouse model.

• In chapter 7 we conclude our research work and suggest future work.

2

Chapter 2

Background and literature

The Common Information Model is built upon an object-oriented (OO) model.
CIM is designed to represent and organize the generic management informa-
tion in an enterprise environment. It can be described using Unified Modeling
Language (UML) diagrams. UML is an open standard language for specify-
ing, visualizing, designing and documenting models [8]. CIM consists of a
schema and a specification. The schema [5] is the actual model, which collects
defined object classes representing enterprise’s physical devices, software etc.
While the specification defines the details for integration with the other man-
agement models [6]. The CIM model consists of over 1000 classes and associ-
ations defining different enterprise’s components [5]. It is continuously under
development, which means that the number of provided classes increases over
time.

A CIM schema consists of three conceptual layers. Th Core model defines
concepts that are applicable to all system managements. Based on selection of
classes vendors made here, they determine how extended the Common schema
would be. The Common schema provides models that describe particular man-
agement areas in a detail manner. They are applicable regardless of technol-
ogy or implementation. The Common model includes, such as application, de-
vices, users etc. They implement very detail scope, e.g. common device model
among other addresses low level concepts such as fans, sensors, etc
The Extension schema is designed to handle technology-specific aspects of man-
agement information. CIM Extension models are specific to environments,
such as operating systems. In addition, vendors can add their own classes
to support their hardware and software products as a part of the CIM model.

CIM is a hierarchical, object-oriented information management model. It
unifies and extends management standards, such as SNMP, CMIP, DMI, etc
using object-oriented design. CIM is independent of technology, implemen-
tation, and does not require any persistent information repository format. It
means that CIM is applicable on all kinds of applications.

This model has some disadvantages. The CIM model is very generic in-
formation model. It covers a wide scope of objects, which makes stored infor-
mation unmanageable. Attributes declared in classes are atomic, this makes
classes complex. Object-oriented property inheritance can make subclasses

3

difficult to understand. Subclasses often inherit unnecessary properties and
behaviors from their superclasses that they do not need for doing their essen-
tial tasks. Not all types of information are suitable to be organized based on the
CIM (Object-Oriented) model. Object-oriented model is hierarchical, meaning
that it defines parent-child relationships. In the CIM model, as displayed in
Figure 2.1, a relationship is modeled as a class that contains two or more ref-
erences. Relationships modeled in CIM handle only class-level relationships
[2].

Figure 2.1: Class-level relationships modeled in CIM

4

2.1. HP CMDB ARCHITECTURE

Figure 2.2: Comparsion of CIM with other information models [3]

A comparison of CIM with other popular information models (DMI, ISO,
SNMP, and OSI management standards), presented in [3], concluded that CIM
is superior, but nevertheless it is characterized as a complex information model.
This complexity is introduced due to the fact that CIM model incorporates an
object-oriented model.
Large CMDB vendors, such as BMC, IBM, and HP adopted the CIM core
model within their CMDB models.

Defination 1 (Configuration management database (CMDB)). A CMDB reflects the
current state of a datacenter’s assets. CMDB is used for the purpose of increasing
support for business services through defining, monitoring, and managing resource
utilization.

Since a CMDB is a logical representation of a datacenter’s assets, we refer to it also as
a logical database.

The fundamental feature of CMDB is that it has to be populated with data
dynamically without interference of human factor. The autonomous popu-
lation distinguishes a CMDB from the traditional databases. The autonomy
notion implies high efficiency in collecting data and a low level of inconsistent
data. Not all of the data can be captured and recorded into the logical database
dynamically. E.g. population the CMDB with data on people or physical lo-
cation takes place manually by authorized people. This means that one must
have at least a copy of manually-entered information physically stored some-
where.

2.1 HP CMDB Architecture

By choosing an object-oriented model, users are forced to confront a rigid
model for CMDB every time they want to add new capabilities. This is both

5

2.1. HP CMDB ARCHITECTURE

a barrier to usage and a source of later trouble. Since object-oriented model
uses a strict hierarchy, an error of modeling is very difficult to correct, because
sub-class relationships are rigid, and an error can cause a cascade of errors
throughout the hierarchy. Maintenance is thus potentially exponentially ex-
pensive.

HP announced its CMDB solution in 2004, and since then HP has advanced
and modified its CMDB model. The HP Universal CMDB class model is built
upon the CIM (object-oriented) model. HP’s core class model supports more
than 200 common IT constructs and relationships between them. Each class
has a long list of attributes. e.g Unix class has more that 60 attributes. An
instance of a class stores too detail information, in addition information is un-
classified.

HP claims that its CMDB model is customizable, allowing enterprises to
adopt, or evolve their CMDB, according to their needs. HP provides a graph-
ical user interface (GUI) program to modify the CMDB model interactively.
The philosophy that is using object-oriented properties, such as inheritance,
and polymorphism, the HP CMDB reuses existing code to create new classes,
or delete or add new attributes. Nevertheless, users need advanced program-
ming skills in order to modify or extend the HP CMDB schema.

Meanwhile, the flexibility of CMDB model is limited by discovery model.
It is a pure agentless model, which means that its discovering capabilities are
limited, therefore we have a reflection on CMDB model.

2.1.1 Discovery process

Apart from providing Universal CMDB (UCMDB), HP provides also Discov-
ery and Dependency Mapping tool (DDM). Their aim is to discover devices
and applications’ components inside IT infrastructure, populating CMDB with
current configuration information and map relationships of IT components.
The DDM tool utilizes patterns to discover Configuration Items (CI) on the IT
environment. Patterns are kept in a library, they can be altered, deactivated,
deleted, and new patterns can be added to meet the enterprises’ needs.
The Discovery and Dependency Mapping tool support two discovery mecha-
nisms:

• Passive discovery

• Active discovery

HP’s discovery process is referred to as a spiral process, due to the fact
that the outcome of one discovery pattern can initiate another discovery pat-
tern. As an example, the pattern that captures TCP connections from a server
machine will create Configuration Items (CI) for those machines to which the
target server is connected. If the system administrator has activated a discov-
ery pattern for gathering detailed machine information, the creation of the CIs
would invoke the detailed host discovery against those new discovered ma-
chines. The spiral discovery has two stages. The first stage allows the DDM to
learn about related CIs. The example above with TCP connections introduces

6

2.1. HP CMDB ARCHITECTURE

the first type of discovery. This process is known as widening the spiral. The
second stage gathers more detail information about the new discovered ma-
chines. As an example a list of running services and applications. This process
is known as deepening the spiral.

In our opinion, the spiral model introduces drawbacks in the discovery pro-
cess. It discovers machines in series, but the series imply dependency. Thus,
if the server that the DDM has in its list is unavailable, DDM cannot discover
client machines. So, the absence or even temporary unavailability of one com-
ponent will influence the list of the rest of the components. This propagates
the failure in scope and depth.

Defination 2 (Configuration Item). The notion of configuration item (CI) represents
the current configuration state of an entity in the IT environment. Kinds of enti-
ties include: Physical (machine, router etc), Logical (an instance of a software pro-
gram),Conceptual (a business service).

The agentless model is a centralized approach. Its name might sounds ap-
pealing (no need to install agents on machines), but it depends on availability
of agents from other vendors. The agentless model has to be integrated with
different agents designed with various specifics, making very hard to deploy
and maintain. In addition, it does not scale on large networks, and support
the timescale as feature. The agent based model is a decentralized approach,
making it scalable in the large networks. An agent installed on the machines
provides real time data. The agent based model is more secure than agentless
and has richer capabilities.

2.1.2 Passive discovery

Passive monitoring (as its name implies) operates simply just by observing
network traffic. By means of IP accounting, provided by Cisco NetFlow tech-
nology, HP Discovery and Dependency Mapping (DDM) gains access to net-
work flow through a network device such as a router or switch. The data that
it captures is quite minimal, including only IP addresses and standard port
numbers. In case IT services are running on non-standard ports, passive or
active discovery will not discover services unless these changes are entered
manually into the discovering tool. Passive monitoring has huge limitations.
It cannot obtain detailed configuration information, and is limited by the scope
and depth of traffic passing through the observed network devices. It is not
able to observe traffic flow on local machines. As an example, if an Apache
web server is the only client of a PostgreSQL database on the same machine,
the traffic flow between them never passes over network devices, so passive
discovery would never learn of the existence of the PostgreSQL database or
Apache web server. Encrypted traffic cannot be decoded by passive monitor-
ing, it is useless as a discovery aid. IP spoofing can fool passive mapping to

7

2.1. HP CMDB ARCHITECTURE

conclude incorrectly that there are relationships between hosts. This breaks
the entire agentless model, since an active discovery probe uses IP addresses
and port numbers gathered by passive monitoring to query machines.

2.1.3 Active discovery

Active discovery obtains configuration information by running queries against
standard interfaces on service endpoint hosts. It can discover only information
that is accessible over the network -unless local agents are used that continue
to work when offline.

Before active discovery gathers data from the endpoint hosts, HP’s discov-
ering component must be configured with credentials. The discovering com-
ponent requires credentials for every host and application for which we want
to gather information.

HP’s active discovery requires also more configuration to be done on net-
work devices and end hosts. As example is that in order for DDM to discover
configuration information of a switch, it uses the SNMP protocol and ”READ”
instruction for the network device. In addition, the switch must have DDM in
its Access Control List (ACL), otherwise retrieving of configuration informa-
tion will fail. Meanwhile, the procedure on endpoint machines is even more
complex. In addition to logging into machines and applications, personal fire-
wall and applications have to be configured to allow (agentless) DDM to re-
trieve applications’ configuration and other OS specifics.

2.1.4 Assessment of agentless model

The main drawback of agentless models is that they must gain root access to
the hosts in order to collect the most important information. This leads to diffi-
culties in how we manage and maintain secure root, application and database
passwords for every machine. As an example, if a database requires a pass-
word for logging in, the agentless model can not discover the database’s com-
ponents, unless it has the password in its internal database. This is in conflict
with enterprises’ security policies. System administrators do not want to dis-
tribute database passwords on other network devices, since databases contain
highly classified information such as credit card numbers. Distributing pass-
words on different network devices makes passwords more vulnerable, since
malicious people have different places to try. It has been widely proven that
retaining and managing sensitive information is a daunting task, especially
when it is distributed in many places.
The active agentless model has impact on network load, and therefore it can-
not provide a continuous and real time discovery of IT components. Agentless
models can discover only services and applications that are running. They are
not able to discover services or applications that are installed and not running
due to configuration errors, or other issues. The active agentless models are
dependent on running some services on target hosts. The agentless model can-
not control these services, if they are not running or they block remote access,
the active agentless model cannot gather information.

8

2.1. HP CMDB ARCHITECTURE

A fundamental drawback of the active agentless model is that it is difficult,
and costly to integrate with applications and services. To carry out its tasks, the
active agentless model always is dependent on input data, such as passwords,
IP addresses and port numbers. The agentless model does not have timescale
as feature. Consequently, it queries machines for data that already exists in the
CMDB, or the configuration state of machines changes while old data resides
in the CMDB.

2.1.5 HP CMDB Visualization and mapping

One of the key features of a CMDB implementation is the visualization and
mapping model that is applied. A traditional CMDB contains a lot of detailed
information, some of which is quite frequently updated. In order to get bene-
fits of this data, we need a powerful visualization and mapping model, which
will give us the means to extract any kind of information from CMDB. The
visualization of data starts after the CMDB is populated with data.

HP’s visualization and mapping approach is by dragging and dropping
icons that represent the CI types present in the HP Universal CMDB. This drag-
and-drop approach is used to create templates that yield the desired query
results. We use temples to query the HP Universal CMDB, and CMDB replies
by returning all the results that match the criteria described on the template.
The results are displayed graphically as a view, or output to a report. As an
example, a system administrator drags and drops CI icons to create a query to
find all servers running Oracle database. Figure 2.3 shows an example query
and its results for hosts running Oracle database.

9

2.2. CFENGINE

Figure 2.3: Extraction of data from UCMDB [4]

As we can see from the Figure 2.3, HP’s CMDB model provides only what it
has been queried for. It just displays servers running Oracle database, not any
other information that might be related with server or database application.
Creation of simple queries is trivial, however, creating more complex queries
requires detailed knowledge of applications and their dependencies. In addi-
tion, the HP’s solution lacks a full package for describing all applications.

The conclusion that we draw here is that the HP’s query mechanism is
equivalent to relational databases. The result contains only the objects that
match the criteria, it does not provide other objects that have physical or logical
associations with the matched objects. Therefore, HP’s query model is not
intelligent to deliver associated data that we might be interested in.

2.1.6 Federation

IT environments evolve continuously, in relation with enterprises’ business
services. Diversity of business services sometimes requires one to implement
different types of technologies and systems. This diversity of technologies
leads to storing data on different location and technology platforms. Link-
ing together these disparate data source is indispensable, since it facilitates
enterprises to fully leverage existing investments. Federation is a functional-
ity of CMDB that tie together data residing in different systems without the
need to copy or replicate all data from one system to another. Federation helps
customers automate their IT environments and have greater view and control
over multi-vendor IT environments. HP provides federation and reconcilia-
tion capabilities to its products and third party management solutions. Feder-
ation to various data sources can be enabled through the use of the HP Uni-
versal CMDB web-services-based software development kit (SDK). But, the
drawback of this approach is that it is required to write code for federating
data.

2.2 Cfengine

Cfengine is an agent-based configuration management system developed at
Oslo University College. Cfengine provides a framework for researching var-
ious topics in the field of configuration management and system monitoring.

10

2.2. CFENGINE

Cfengine’s characteristics, quoted from [19]:

• Centralized policy-based specification, using an operating system inde-
pendent language.

• Distributed agent-based action; each host agent is responsible for its own
maintenance.

• Convergent semantics encourage every transaction to bring the system
closer to an ideal averagestate, like a ball rolling into a potential well.

• Once the system has converged, action by the agent desists.

The components of cfengine:

Cfengine is a complex program and it consists of several program tools.
These programs (cf-servd, cf-agent, cf-execd, cf-run, cf-key, cf-envd) are in-
stalled on each host under a local directory /var/cfengine/sbin/. The path is
local to each host, and it makes sure that they are available at any time.

cf-serverd: The main task of cf-servd is to make the policy configuration
files accessible to client hosts. It is a center of security for cfengine and should
be locked down as tightly as possible. It enables also the cfengine agent to be
started remotely.

cf-agent: The core of the cfengine program is cf-agent which is a autonomous
configuration agent. Its function is to reconfigure the host to the desired state
based on the policy of the configuration file cfagent.conf. In a large network
this file can become very complex and difficult to administrate, therefore the
system administrator breaks it up into multiple files. cf-agent can be started
through a cf-execd wrapper, a cron timer or manually. From a cron timer it is
common to start cf-agent with option F.

cf-execd: This is a daemon which can be used for controlling cfengine
execution. cf-execd’s default configuration is to execute cf-agent every hour. It
is equivalent to the cron program from Unix/Linux.

cf-monitord: This is a client-side environment daemon which gathers data
about the host and adds the host to certain classes.

cf-know: It is a knowledge management component in which topic map
ontologies can by learned and stored.

cf-promises: It is a syntax and error checking module that validates the
cfengine configuration by describing its impact upon configuration.

cf-runagent: This program simulates the push model by executing cf-
agent remotely. To run cf-agent on target host, the cf-execd daemon is required
to be running.

11

2.3. IBM CMDB ARCHITECTURE

cf-key: Generates public/private keys pairs on the local host. They are
used to establish mutual authentication between server and client. Local hosts
public-private keys and other systems public key are retained under ppkey/
directory.

2.3 IBM CMDB Architecture

IBM widely adopts CIM as its CMDB model. Currently, IBM’s version support
around 1000 classes, subclasses, and relationships [5]. These object classes and
relationships are implemented using Java persistent objects.
A disadvantage of IBM’s solution is that one needs to be a good java program-
mer in order to manipulate objects and relationships.

IBM provides an API named Model Query Language (MQL) for quiring
CMDB. It is expressed in an SQL-like language. The MQL filter introduces
two issues:

• Not all configuration queries can be conducted using this filter

• Delays occur, because it is required that CCMDB translate the expressed
filers into Structured Query Language (SQL) statements.

End-users need to understand the CCMDB schema in order to construct
queries. They must know where exactly the data is stored (in which table),
join tables etc. Consequently, they end up constructing complex queries. The
follwing query is qouted from [13], it searches for IBM machines that run Win-
dows XP as operating system, and have installed Norton Antivirus 1.6:

SELECT *
FROM ComputerSystem
WHERE ComputerSystem.physicalPackage.
manufacturer == ’IBM’
AND OSRunning.OSName == ’Windows XP’
AND exists(OSRunning.installedSoftware.
productName == ’Norton Antivirus 1.6’)

Tivoli Application and Dependency Manager (TADDM) is a software ap-
plication that discovers applications, and maps their relationships and de-
pendencies [6]. The discovery process is again an agentless approach, conse-
quently it has same drawbacks as HP’s agentless approach. Meanwhile, there
is a difference in the way IBM, and HP build their IP databases. IBM’s dis-
covery approach is not vulnerable to IP spoofing (it does not implement HP’s
method of building IP database via monitoring network traffic), since it re-
quires one to enter the IP range manually inside the database.

12

2.4. BMC ATRIUM CMDB

2.4 BMC Atrium CMDB

BMC designed its CMDB by adopting CIM and implementing ITIL recom-
mendations for building CMDB. ITIL define the configuration management
database (CMDB) as a single configuration repository, mirroring the actual
state of IT components.

Before changes are registered in the BMC CMDB Atrium, a user must ver-
ify manually each of the changes, for the purpose of discovering unauthorized
changes. After the change is accordance with policy, then the user sends it
into the Atrium CMDB. e.g. if we update 100 windows machines with the
latest patches, the user has to process all this information. Dunbar’s research
finding exhibits that humans can cope with a limited amount of information
[7]. This means that the users might take wrong decision while analyzing the
stream of information, and consequently Atrium CMDB will not be accurate.

2.4.1 Web services

BMC Discover for Business Processes discovers web services with their prop-
erties, such as the application server that delivers web services (Apache, Jboss),
port number and hosting machine. It also shows dependencies and hosting re-
lationships. But the drawback is that end users are supposed to input the URL
of web services to the discovery process.

2.4.2 Summary

To summarize the drawbacks of active agentless model, we list the following
issues: requirements for storing of sensitive information (passwords) on dis-
tributed network devices, inability to integrate with applications and services,
dependence on services running on target hosts, limited autonomous func-
tionality, does not run continuously and as a consequence, does not provide
the configuration state of hosts in real time, can discover only services and
applications that are running, and does not support the timescale feature.

13

Chapter 3

Comparison of topic maps and
entity relation databases

This chapter gives a short comparison between Topic Maps and Entity Re-
lation models. The aim of conducting this evaluation was to highlight the
strengths and weaknesses of these information models, so that we adopt only
their strengths in our CMDB model, and avoid pitfalls.

3.1 What is ontology ?

Our relationships are based on types, which in turn are naming conventions
for sets of entities. How we choose to name groups has an impact on the re-
sulting design. Ontology is the study of naming of concepts. It has its origin
in philosophy. Ontology discusses the categories and relationships of various
modes or being that exist. The ontology concept is broad, which has found
usage in many scientific fields, such as in Artificial Intelligence, Computer Sci-
ence, Software Engineering, Knowledge Engineering etc. Therefore, there are
numerous definitions of ontologies. According to Gruber the ontology term in
context of computer science means [8]:

”Ontology is a description of the concepts and relationships that can exist for an
agent or a community of agents.”

Despite the fact that different scientists of different fields formulate the
meaning of ontology in different contexts, nevertheless there are elements of
similarities. e.g. computer science and philosophy have in common categories,
entities, relationships between entities, events etc. Generally, the differences
between representing the entites is the matter of nature of the fields.

While John Strassner in [9] defines ontologies for network and system ad-
ministration as:

”An ontology is a formal, explicit specification of a shared, machine-readable vo-
cabulary and meanings, in the form of various entities and relationships between
them, to describe knowledge about the contents of one or more related subject domains

14

3.2. THE TOPIC MAP MODEL

throughout the life cycle of its existence. These entities and relationships are used to
represent knowledge in the set of related subject domains. Formal refers to the fact that
the ontology should be representable in a formal grammar. Explicit means that the
entities and relationships used, and the constraints on their use, are precisely and un-
ambiguously defined in a declarative language suitable for knowledge representation.
Shared means that all users of an ontology will represent a concept using the same or
equivalent set of entities and relationships. Subject domain refers to the content of the
universe of discourse being represented by the ontology.”

Defination 3 (Ontology). Ontology is a way of describing the objects that exist.

3.2 The topic map model

Topic maps were originally designed for representing knowledge structures
as traditional book-indices. Possibilities for topic maps include more than be-
ing a digital form of book-indices. Topic maps define the associations between
concepts in indices. The topic map model is an ISO standard for the repre-
sentation and interchange of knowledge [10]. Topic maps have been called as
the ”GPS (Global Positioning System) of the information universe”, as they are
designed to increase navigation in complex information pools. Topic maps fill
the gap between the abstract world and real world, linking together high level
and low level views of information.

Topic Maps collect all various concepts of information and bind them to-
gether in order to describe the relationships among them. Topic maps can tie
together different types of information such as electronic documents, images,
diagrams and databases.

The topic map model is constructed of the three layers: types, topics and
occurrences. Each of them labels a different level of information granularity
[11].

3.2.1 Topics

The topic is the base concept in topic map model. A topic is a representation
of any subject, one wants to discuss regardless of whether it is physical or
imaginary. e.g. a given topic might represent a person, a machine, or an idea.
It is an aggregation of topic properties. In the real world, objects might have
multiple names, e.g. a machine is labeled also as host or computer. The topic
map model handles it, allowing us to capture objects through their synonyms.
This feature is not supported by entity relation and object-oriented models. A
topic in a topic map is the smallest unit of comprehensive knowledge in the
map. In the topic map model the relationship between topics and subjects is
of type one-to-one. It ensures that all knowledge about a particular subject can
be accessed via a single topic.

15

3.2. THE TOPIC MAP MODEL

3.2.2 Topic types

Topics can be grouped into disjoint topic-types, so that we can collate things
according to their intentions. The topic-type is itself a topic, wich serves as a
container. Two different things can have same concept name, but completely
unrelated intentions. Types facilitate one to differentiate between ”rmdir” the
Unix command and ”rmdir” the Unix system-call. One can say that ”rmdir”
the Unix command is an instance of topic type Commands, while ”rmdir” the
Unix system-call is an instance of System Functions.
In the standard topic map model, ambiguous topics are differentiated based on
subject identifiers. Each subject identifier is a string, which is globally unique
for each topic. A subject-identifier facilitates a topic map system to discover
whether two or more topics residing in different topic maps represent the same
subject. This feature is used for merging different topic maps and aggregating
information from various domains.

Cfengine implements a simplified mechanism for identifying ambiguous
topics. The cfengine classes in the topic map act as the disambiguation mech-
anism for topics with the same name existing in two different contexts. e.g.
here is an example of identifying the topic-types using the cfengine classes.

topics:

Commands::

"rmdir"
association => a("is command of", "Unix", "has command");

System_Function::

"rmdir"
association => a("is system call in", "Unix", "has system function");

The relationship between topic type and topic is a class-instance relation-
ship. The second binary association is labeled as superclass-subclass associa-
tion.

3.2.3 Association

The most distinctive part of the topic map model is modeling of relationships
between topics. Topic maps allow one to assert any kind of association be-
tween topics. An association establishes a relationship between two or more
topics. Association between topics can be grouped according to their type.
Topics that have same relationship to a given topic are placed into the same
association group type. This feature enhances the expressive power of topic
map model, making possible navigating huge amount of information. Asso-
ciation type gives information about the nature of relationships between top-

16

3.2. THE TOPIC MAP MODEL

ics. Without this piece of information we do not know the reason the topics
are connected to each other. As example, the association type between the
”slogans” topic and ”Mark” topic is of type Ownership. The association can
be view in either direction. This means that we can say ”Mark” owns the
(machine) ”slogans”, or ”slogans” is owned by ”Mark”. Each associated topic
plays a role in the association. The association role itself is a topic. So, in the
Ownership association ”Mark” plays the role of the owner , whereas the ma-
chine ”slogans” plays the role of ownee . An association might be assigned to a
given scope, constraining the association to be valid only within the assigned
scope.

3.2.4 Occurrences

Occurrences are the resources that are being pointed to. An occurrence might
be anything that can be referred to. e.g. database entries, documents, dia-
grams, description, etc that are somehow relevant to the topic. There are two
types of occurrences, external and internal occurrences. The external occur-
rences reside outside the ontology itself, but they are accessed to via a Uniform
Resource Locater (URL). It corresponds to a page reference in a book index. In-
ternal occurrences reside inside the ontology, and usually they provide a short
description of topics. Occurrences are typed, allowing us to distinguish re-
sources. When a user visits a topic, and wants more information about the
topic, the user will not get only a set of links, but also what makes each link
important. In our CMDB, occurrences such as cpuCount, cpuSpeed, etc are of
type MachineResources.

3.2.5 Symbiosis between Promise Theory and Topic Map models

The topic map model provides a framework to address information overload.
It does not have an operational roadmap for usage. Users themselves design
the structural organization of information. The same approach is implemented
by Cfengine, which also provides a framework without a roadmap [12]. The
topic maps’ ability to connect concepts together independently of hierarchy,
and the strength of Promise Theory to represent these relationships clearly and
simply would allow us to unify various aspects of configuration management.
Topic maps represent the knowledge declared in a set of promises. While
promises describe how to design a topic map, its configuration and maintance
[17]. This is an example of encoding topic maps using Cfengine’s topic map
promises.

topics:

machine::

"slogans"
association => a("promises to deliver", "Apache httpd", "is promised by");

17

3.2. THE TOPIC MAP MODEL

occurrences:

slogans::

"http://webmin.com/slogans_how_to_use.html"
represents => ("Planning");

3.2.6 Hierarchy and topic maps

One of the unique features of topic maps is that it is independent of hierarchi-
cal structure. This means that the topic maps can draw semantic links between
topics residing in different topic-types, see Figure 5.4. This capability distin-
guishes it from the other data models we have discussed. The topic map con-
tains several overlapping semantic links between topic types. It retrieves the
concepts residing on databases and describes and links them together in an se-
mantic manner. A single artifact can by pointed to one ore more topics through
topic occurrences. The topic map model is distinguished by other information
models by existing as a separate layer from the resources, see Figure 3.1.

Knowledge layer

Information layer

motherboardSerialNo osNameosName

distroNameVersionkernelVersionBitsize

oslnstallationDate osLanguagepatchLvel

osLastTimeUpdated xenTechnology

vmvareTechnology virtualization Type

motherboardSerialNO notes motherboa

rdSerialNo osNameosName

istro NameVersionkernelVersionBitsize

oslnstallationDate osLanguagepatchLvel

osLastTimeUpdated xenTechnology

vmvareTechnology virtualization Type

motherboardSerialNO notes motherboa

rdSerialNo osNameosName distroName

VersionkernelVersionBitsize osln stallat

ionDate osLanguagepatchLvel

osLastTimeUpdated xenTechnology

Figure 3.1: Topic maps: Schematic representation of topic maps’ features

In an entity-relation model, the connection between objects is dependent
on so called primary and foreign keys. An object can not connect an another
object if they are not connected through primary-foreign key pairs. Therefore,
locating of a particular object has to go through inter-connected objects.
It is costly also in terms of performance. Meanwhile, in an object-oriented
model, a class recognizes only its parent class, it does not have any knowledge
about other peer classes residing on other side of branches.

18

3.2. THE TOPIC MAP MODEL

In CIM model, in order to connect two different objects we have to create an
association class with two references pointing to each of them, see Figure 2.1.
An object usually has more than one association, so that we have to introduce
for each association a new association class.

3.2.7 Extracting data from relational databases and topic maps

In entity relation databases, end users must know in which databases, the in-
formation is stored. e.g. when they query for the desired information, they
write an SQL query within which they connect tables based on primary-foreign
key pairs. If there is any match it will return a list of records containing de-
tailed information. The end user is supposed to know the database schema.
In the topic map model there is no need to know in which table (database) the
information is located. The end users do not need to know the low level struc-
ture of database model. They get a high-level view of information. The topic
map model, in addition to locating the right information, provides also related
information, see Figure 5.4. It is more convenient to understand a particular
subject if we can relate it to other subjects.

3.2.8 Navigation

Topic maps are powerful in finding information. The information stored in the
database schema will be extracted automatically every time we visit a different
topic. Topic maps provide two mechanisms for locating information, through
searching and associative navigation. Associative navigation yields multitude
redundant paths to navigate information. This feature of topic maps does not
restrict us to navigate information only through strict predefined paths. In
large topic maps it is easier for users to locate requested information through
searching mechanism, than through navigating around the topic maps.

Nevertheless, they might find associative navigation useful in enhancing of
possibility of finding the information. Meanwhile, relational databases have
poor navigation capabilities. They were modeled to use content-based asso-
ciative access based on SQL. Navigation can occur only based on movement
between individual tuples.

3.2.9 Labeling of topics and synthetic keys

In relational databases, it is trivial to create and use synthetic keys for records.
The synthetic key for ”operating system” and its version would be:

idinstall|os|version

and, then the ”idinstall” is substituted for concatenation ”os version”.
”machine”→ ”idinstall” (where ”idinstall” determines ”operating system”

and its ”version”).

19

3.2. THE TOPIC MAP MODEL

Thus, it easy to generate and use synthetic keys in relational databases.

We have to be careful when we define label names for topics. Topics, when
grouped in a class, or split apart, represent something or refer to something on
their own. e.g. the topic ”redhat enterprise linux 5” has relations with topics:

”redhat enterprise linux 5” has vendor ”redhat”
”redhat enterprise linux 5” is a distribution of ”linux”
”redhat enterprise linux 5” is a variant of ”redhat enterprise linux”

But there are more subrelations than that. e.g.
”redhat enterprise linux” is a variant of ”redhat linux”
”redhat linux” is a distribution of ”redhat linux”

However, not all sub-relationships in topic maps make sense, e.g.
”redhat enterprise linux” has version ”5”
The latter does not make sense, because ”5” does not stand for any topics.
It is not always clear how to break up a break up a complex topic into its

reasonable subtopics.

Here is an another example,
”windows XP” is a version of ”windows”
”windows Vista” is a version of ”windows”
”windows” employs ”windows registry”
The latter implies that windows XP and windows Vista have registers.

Meanwhile, we cannot say things like:
”XP” is a version of ”windows”
because XP, on its own, without the Microsoft qualification, is not a topic

by itself.

3.2.10 Storing of topic maps

Topic maps might become complex, they might contain myriad topics and as-
sociations. This size of topic maps will impact performance. Therefore, it is im-
portant to select the right repository approach. Certainly, storing topic maps
in a file is not the right approach, since the entire topic map will then have to
be allocated in memory. Topic maps should be stored in relational databases,
because only the requested topic map portion will be read in memory.

3.2.11 Strengths of topic maps model

According to our assessment the key characteristics of topic map include:

• Ability to link topics to each other in a semantic fashion

• Building Metadata

20

3.3. SHORT INTRODUCTION TO ENTITY RELATIONSHIP MODELING

• Linking heterogeneous information in one topic

3.2.12 Ability to link topics to each other in a semantic fashion

In topic maps, information about resources is conveyed through topics, and
occurrences. Associations add semantic relationships between topics.

3.2.13 Building Metadata

The topic map model is simple, but powerful. With topic map model we can
create metadata and ontology structure with simple means. Metadata is lit-
erally ”data about other data”. In a topic map metadata resides outside of
real data, describing the characteristics of data. Metadata is important espe-
cially when we need to locate useful information from a large amount of in-
formation. The topic map subject centric approach provides us the notion of
representing resources as topics, and occurrences to gather notions of artifacts
residing in different repositories.

3.2.14 Linking heterogeneous information in one topic

Topic maps provide a very flexible and dynamic approach to associating knowl-
edge objects with each other, regardless of their location, and without needing
a model for integration. This phenomenon of bringing different artifacts stored
in different locations or repositories is known as co-location. This capability is
unique for topic maps. There is no need to centralize the entire information in
a single database, or process it.

3.2.15 Limitations of Topic maps

An association type, within local relationships indicates the importance or crit-
icality of a subject. e.g. ”Apache httpd” depends on ”openssl”. This means that
”openssl” has to be configured for ”Apache httpd” to run. Meanwhile, in large
scale, the standard topic model only support the topic relationships and topic
navigation, and does not reflect the importance of topics.

3.3 Short introduction to entity relationship modeling

Entity relationship model is based on strong mathematical foundations [13]. It
describes relationships in two levels:

• relationships between entities that are tables consisting of records

• relationships between attributes within a record

The entity-relation model has dominated the design of database systems
for more than 30 years. One advantage (compared to object-oriented, and
network models) is that it is simpler to understand, and consequently, eas-
ier to design database models. The entity-relation model abstraction fits with

21

3.3. SHORT INTRODUCTION TO ENTITY RELATIONSHIP MODELING

mathematics, but it is not convenient for human. It conveys information in an
unmanageable manner (as a list of records containing detailed information).
Relation models are easy to manage, when they relatively consist of a small
number of entities. When relation model is enriched with additional capa-
bilities, its complexity increases with N plus two (N+2), making the model
unmanageable. This phenomenon is observed also during designing of our
CMDB model.

3.3.1 Normalization versus Denormalization

The entity relation model spreads information across multiple relations. The
aim of normalization is to remove redundant data. This is very critical to
transaction processing, because otherwise, transactions can violate integrity
constraints by contradicting data in one place with data in another place.

Therefore, the entity relation model has been used for designing databases
for Online Transaction Processing (OLTP). Normalization enabled by entity-
relation modeling. The purpose of normalization is to organize information
into more reliable structures, mitigating update anomalies, so that data consis-
tency is retained. Despite the fact that normalization addresses a critical issue
for many database implementations, it also introduces three major drawbacks:

• The model becomes more complex (the number of relations increases).

• New relations often do not match objects in ”real world”, leading to fragmenta-
tion of real objects into multiple relations.

• The system performance decreases significantly (because of join operation).

Typical fully normalized relational databases can read a few hundred records
per second [14]. This poor database performance occurs because of join depen-
dencies that exists in the model. A disadvantage of entity relation model is join
dependencies. In addition to affecting database performance, it makes it more
difficult for end users to understand and being able to use database schema.

The inverse process of normalization is denormalization. It is used in many
strategic database implementation to boost system performance, and reduce
the complexity of database schema. Denormalization techniques are widely
applied in data warehousing implementations for data mining transaction.
The aim of the data warehouse is to be more competitive through analyzing
enterprise data for taking decisions. Typical denormalized relational databases
can perform aggregation at 10.000 records per second [14]. To reduce complex-
ity and increase performance we have excluded the application of normaliza-
tion in our CMDM model.

We do not need it because our CMDB is not the authoritative source of
data. Our CMDB will function as a cache.

3.3.2 Lack of semantic capabilities

The entity relation model provides only one construct, for modeling objects
and relationships between these objects. e.g. in order to model relationship of

22

3.3. SHORT INTRODUCTION TO ENTITY RELATIONSHIP MODELING

type many-to-many between Machine and Person objects, we have to create
three entities, two of them represent the objects, while one represents the re-
lationship between these objects. The entity relation model does not provide
a facility to differentiate entities that represent the objects and entities repre-
senting the relationships, or differentiate between different types of relation-
ship that exist between entities. Technically, the entity relation model labels
relationships between objects in a semantic manner, such as owns , adminis-
trates etc, whereas in the relational databases this powerful capability cannot
be achieved.

3.3.3 Similarities and differences of CMDB and Data Warehouse

The term Data Warehouse originally was invented by Bill Inmon, who de-
scribed it the following way:

”A warehouse is a subject-oriented, integrated, time-variant, and non-volatile col-
lection of data in support of management’s decision making process ”.

• Subject-oriented: Data provides information about enterprise’s busi-
ness processes.

• Integrated: Data is collected into a data warehouse from various sources
and structured to a common format.

• Time-variant: Data in a data warehouse is accompanied by a time pa-
rameter. It is critical piece of information for Data Warehouse.

• Non-volatile: New data is added into a data warehouse and remains for
eternity. This allows enterprises to get a consistent view of the business.

Our CMDB and Data Warehouse are similar in the sense that they ad-
dress common goals.

• Competitive advantages

• Data Warehouse: enterprises obtain previously unavailable, unknown
information, e.g. information on customers, trends, and demand.

• CMDB: enterprises will be able to deliver IT services at lower cost.

Increased efficiency/productivity of enterprise decision-makers

• Data Warehouse: decision-makers can conduct substantive, accurate,
consistent analysis.

• CMDB: IT management can drive process automation.

23

3.3. SHORT INTRODUCTION TO ENTITY RELATIONSHIP MODELING

The most common schema of Data Warehouse is the star schema. The star
schema is a logical structure, which has a fact relation in the center, congaing
factual data, and is connected to dimension relations containing reference data.
The dimension relations are denormalized. The fact relation contains the data,
dimension relations contain description of data. In star schema, the fact rela-
tion and dimension relations are connected through primary-foreign key rela-
tionships.

Despite the fact that our CMDB behave like a Data Warehouse they are also
characterized as being two different technologies.

3.3.4 Characteristics of standard Data Warehouses

Data Warehouse depends on online transaction processing (OLTP): Data
Warehouse fetches constantly a copy of transaction data from OLTP.

Long term project: Enterprises can retrieve the benefits of investments in
Data Warehousing implementation after at least five years.

Incompatible sources: Information has to be collected from a multitude
of incompatible sources into a common format, which provides a consistent
picture of the enterprise.

Data cleaning: Different programmers have designed OLTPs with differ-
ent criteria, therefore ”data cleaning” has to occur before transaction data ends
up in the Data warehouse.

Here we list the characteristics of our CMDB compared to Data Warehouses

• Population of CMDB with data takes place dynamically. The process will be
completed within a reasonably short period of time.

• There is no need to perform ”data cleaning”.

• CMDB serves as a cache and will be recreated on demand. (It is like a search-
engine)

3.3.5 Indexing of attributes

Relational databases read records from physical tables in a sequential man-
ner. This approach has impact on databases’ performance, especially in cases
where there is a tremendous amount of information stored in a databases.

24

3.3. SHORT INTRODUCTION TO ENTITY RELATIONSHIP MODELING

Searching for data through primary keys will actually not render significant
performance problems, because tables are by default indexed by their primary
keys. However, in many cases, it is not convenient to search for data via pri-
mary keys, since they are complex. Meanwhile searching for data through
common attributes is much easier, but they are not indexed by default and
consequently the respond time can be much longer.

There are situations where we need to search for occurrences via common
attributes. e.g. we might query the CMDB to find all machines that have Pen-
tium 3 as processor. Therefore, to enhance the response time, we might index
attributes that we are supposed to search through.

Meanwhile, indexing of common attributes is not without cost. It is re-
quired to update these indices along with records. Therefore, indexing every
single attribute is not a good idea. The adequate approach is to identify at-
tributes that most likely are going to be used for searching for occurrences,
and then index only those.

E.g. for the MachineResources database, we suggest indexing only the
hostname attribute, whereas for Architecture database we would index the
following attributes: motherboardArchitecture, cpuModel, hddModel, ram-
Model.

3.3.6 Fundamental limitations of entity relation model

Entity relation models are generally good for storing simple ”flat” data which
fits to entity relation model. This is also the main limitation of entity relation
model. It does not handle documents, diagrams, etc. The entity relationship
model forces data to reside in a rigid information model. In a business envi-
ronment the need for adding additional capabilities is increasing. This means
it is required to update the rigid schema. This process is very difficult if it is
required to redesign schema frequently. Changes made on schema has to be
reflected to application interface.

Even though enterprises are inclined and are capable of adjusting the database
schema in order to meet new requirements, they are unable to implement these
modifications, because redesigning the information systems is costly in terms
of time and money (Taylor, 1992).

Data interchange is a problem also for data warehouse technologies. Before
populating of data warehouse from relational databases, ”data cleaning” must
occur. Programmers are supposed to observe the information structure on all
relational databases, then write program that will give all information same
structure, before they end up in data warehouse database.

In relational database, information can be stored only after the schema
is designed. This means that information structure that is not supported by
database schema cannot be added, unless the updating of schema take place.
e.g. before we add information about operating system, its physical table must
exist. Meanwhile, in topic maps we can update their schema while they are in
operation. Therefore, minor database schema updates can be avoided, through
updating toic maps.

25

3.3. SHORT INTRODUCTION TO ENTITY RELATIONSHIP MODELING

Entity Relation model cannot handle subjects with the same name. It is an
argument that Entity Relation model is not powerful to represent every ”real
object”. On other side topic maps can denote alternative names for subjects.

3.3.7 Determination of primary keys and subject identifiers

In entity relation model, the determination of primary keys for entities has to
go through a process. Overall primary keys should be unique within an entity
and functional. Selecting of a non-key as a key, leads to incompleteness (two
updates with the same key overwrite one another). In our first CMDB draft,
for machine entity we selected as primary key just a string labeled machineID.
Later on, we raised the question how do we control it, since CMDB has to
be populated with data dynamically. Thus, even though the selected key was
unique, it was not functional. Therefore, we changed it to motherboardSerialNo ,
because this value, in addition to being unique for a particular machine, could
be fetched automatically by a cfengine agent. Meanwhile, in topic maps, top-
ics can have an identifier, which is labeled as subject-identifier. It can be any
string, but for convenience it is standard to write it as an http address.

26

Chapter 4

Methodology

We aim then, to look for a new model of CMDB with minimal complexity and
use Topic Maps’ semantic model to link items and classifiers together in a more
flexible way. In the absence of a recognized methodology, we proceed by trial
and error, gradually exposing errors and flaws in the modeling.

4.1 Development of CMDB model

During the process of development of a logical database (CMDB) model, we
have sketched different versions of CMDB models. The requirement of design-
ing a logical database model, which provides certain distinctive characteristics
compared to existing models, led to development of various drafts for CMDB
models. The first three CMDB data models were designed based on principles
Entity Relation model (ER) and Topic maps. The forth and fifth drafts were
designed based on the principles of boxes and Topic maps.

Development of logical database model has gone through different stages.
Based on their structure and capabilities, the drafts for a logical database model
are listed below.

• Single CMDB database model

• Information types, ER-entities, and Topic map

• The three databases CMDB model

• Introduction of box concept

• Application of Dunbar number

• Introduction of change concept

4.1.1 Single CMDB database model

The simplest view one can have of a CMDB is that it is a database that stores
a huge amount of information. It is up to designers to organize this data log-
ically inside the database. Bearing this fact in mind, we started to model our

27

4.1. DEVELOPMENT OF CMDB MODEL

logical database using standard ER-model. Each object type was represented
as an entity and its attributes. Drawing of relationships between entities al-
most always results in introduction of inter-entities (because of many-to-many
relationship). Every time we added a new object, this corresponded to adding
at least two entities to our CMDB model. As an example, when we added
software entity to our model, and we drew its relationship to the machine en-
tity, we were forced to introduce an another entity between them, in order to
depict what applications were installed on various machines. It means that
our CMDB model was growing with N plus 2 , every time we added a new
element. N is number of entities

The single CMDB (first draft of CMDB) could be populated automatically
with configuration information. However, there is a major drawback. Popula-
tion of the single CMDB must occur in a particular order. So, before a machine
reports services it promises to providedServices entity, it has first to report to ma-
chine and service entities. Otherwise the reporting attempt will fail if foreign
keys do not match its related primary keys in machine and service entities.
To make sure that reporting process would be successful, inter-entities, such
as providedServices have to populated last. This serial dependency affects also
collecting of information. One prefers to report data to the logical database in
proportion to the rate at which data changes. Data that remain static or change
slowly can be communicated infrequently, such as a machine’s resources or
hardware description. Whereas data that might change often should be com-
municated more often, such as service status. This is not possible in single
CMDB, because of ER-relationships between entities.

The strict application of the Entity Relation model’s rules made our logical
database model quite complex in breadth and depth. Every time we added
new elements to model, it was reflected in additional complexity. Inter-entities
contributed to complexity in both breadth and depth. While information’s
atomic properties affected complexity in depth.

4.1.2 Information types, ER-entities, and Topic map

A datacenter has several types of information, stored in different places. Ac-
cordingly, we raised the question,

What types of information are appropriate to store in relation database, and what
types in topic map ?

Raising this question has facilitated us to highlight some drawbacks of our
logical database model. In the previous logical database draft, electronic docu-
ments, such as contracts, reports, etc were modeled based on principles of the
ER-model. This was also one of the reasons that those models became compli-
cated. For some of document types, such as contracts, we were compelled to
add two entities to logical database. Nevertheless, this was not the end. In-
formation was supposed to be extracted from original source through special
programs and put into the databases. When the user read one of these files an

28

4.1. DEVELOPMENT OF CMDB MODEL

another program read the database and created the required contents as a file.
Furthermore, we could not escape entering some data manually into the CMDB,
such as information on third parties, suppliers etc. This form of handling doc-
ument files is offered by CMDB vendors today. The ER-model is very poor
model for handling document files, it is required to process information resid-
ing on documents at various stages.

According to our analysis, the topic map is adequate for storing small
amount of data, and pointing to electronic documents. A topic map using se-
mantic associations can link any topic to any type of data structure, including
files, and there is no need to process any information. Here lies the strength of
the topic map. It is created for managing the meaning of information, rather
than processing of information. Topic maps allow us to make different in-
terpretations about same information. If we take, for example, database ta-
bles ”Machine” and ”Person”, we can link concepts according to our needs.
machine: ”slogans” is owned by ”Mark” or machines: ”nexus”, ”dax”, ”vax”
are maintained by ”Danny”. This flexibility does not exist in the standard ER
model. Recall from our single database model. Between Machine and Person
entities, we introduced the Maintainer entity. It represents a limitation as to
what type of information we can store on it.

Meanwhile, ER-entities are adequate for storing huge amount of informa-
tion discovered automatically or manually. We type data manually into People
and Location, therefore we use an ER-model, since it is more reliable to store
manual entered data on ER-entities. These findings are applied in designing
our third logical database draft.

4.1.3 The three databases CMDB model

Virtualization has brought changes to datacenters. It has changed the way we
manage resources. Virtualization detection and monitoring capabilities were
not supported by single database CMDB.

Adding virtualization capabilities to our logical database model will enrich
it. We had mainly two purposes for supporting virtualization. We wanted to
track deployment of running virtual machines and monitor certain parameters
of them, such as utilization of resources. This type of information would help
us to draw resource management decisions. e.g. resources of a machine that
are being used heavily would be excluded from deployment of new virtual
machines. Because it would degrade the performance of the machine.

Extension of our logical database with virtualization support, led to re-
designing of single CMDB model. Now, we store data that changes at different
rates. Precisely, we reflected this new requirement in the new logical database
draft. According to this criterion, we have three types of information.

• manual changes

• slowly changing (automatically discovered)

29

4.2. INTRODUCTION OF BOXES

• quickly changing (automatically discovered)

The idea was to store each type of information in a separate database. Con-
sequently, the new logical database model consisted of three databases. The
Person database stored information on employees. This information changes
very rarely. A second slowly changing database is intended to store hardware
and software configuration information. The contents of this slow changing
database change only when we adjust hardware or install patches and security
updates. Configuration information is stored on standard ER database. It con-
sisted of 10 entities linked together through ER relationships. Configuration
information is considered to change slowly. The virtualization database apart
from storing information where virtual machines are deployed and resources
they have been given, it stores also information on resource utilization.

4.1.4 Redesigning of location entity

One of the questions our logical database answers is how to display physi-
cal location of machines. In the single CMDB model, location were named
straightforwardly, e.g. room100. In the new approach, we mirror the room
structure of a datacenter. Machines in datacenter’s room are arranged accord-
ing to an order, where first is assigned a row, then a rad number, and finally
a position. Adding the building and room labels, the final physical location
address of a machine on CMDB would be, e.g. headquarter room100 4 3 5.
This labeling approach helps us to find machines rapidly in a datacenter. But
it does not work for laptops, since they do not have a fixed location. Redesign-
ing of the identification attribute changed relationships between Location and
Machine entities from one-to-many, to one-to-one.

We tried to introduce a new approach in organizing information in the
logical database model. The configuration information database inherited all
drawbacks from its predecessor. We needed a new approach to address the
complexity and dependencies of logical database model. So, the question was:

How do we overcome the standard entity relationships and simultaneously retain
the logical database connectivity ?

4.2 Introduction of boxes

Dependency makes a system vulnerable to failure, difficult or perhaps impos-
sible to scale, or difficult to extend afterwards, since those might be in conflict
with existing components. A dependent system does not have broad appli-
cation to different business types. It is applicable only to particular systems
within the designed frames. To overcome dependencies between entities and
reduce complexity we have introduced the box concept.

Boxes are built using some of the principles of ER-model, but do not mimic
the entire structure of ER-model. The cornerstones of ER-model, ER-relationships

30

4.2. INTRODUCTION OF BOXES

between entities and information’s atomic property are not implemented by
boxes. The latter, boxes handle in a flexible manner. Consequently, a box is not
a complete product of ER-model. It is distinguished by its simplicity. There are
no ER-relationship types between boxes. The other attribute that distinguishes
a box from an ER-entity is that the box is independent from its related boxes.
Meanwhile, in ER-model relationships between entities are dependent on pri-
mary key and foreign key infrastructure. When we enter a record on an entity,
the foreign key, must match the primary key that corresponds to its related
entity, otherwise the attempt will fail.

Boxes preserve the strengths of the ER-model. More precisely they pre-
serve primary key and information’s atomic property when it is appropriate.
A primary key is an identifier of a record residing on a box. This identifier
is used in order to eliminate data redundancy in our boxes. Elimination of
data redundancy is fundamental property of any kind of databases, including
logical databases (CMDB). In addition, if the database stores huge amount of
information, it will impact system’s performance. Boxes are flexible in han-
dling information’s atomic property. Information that stands unique will be
kept atomic. As an example, the amount of memory a machine has. Whereas,
pieces of information that complement each other will be concatenated. As an
example, distribution name and distribution version of an operating system
yield more information when they have been merged. This method of pro-
cessing information has an another positive effect on boxes. They will become
shorter in length.

4.2.1 Turning entities into boxes

Ahead ourselves we had a complicated and constraint logical database model.
It was built upon the strict principles of entity relation model. The issue was
how to overcome these hurdles, so that we have a simple model, but rich in
capabilities. To avoid treatment of inter-entities (dependencies) we added ma-
chine’s entity identification key to main entities such as Service, Software, and
Virtualization. The impact was awesome, no dependencies, no complications,
easily understandable and manageable CMDB model. The new formed units,
we labeled database boxes. The identification key of Machine database box
lies also on Service, Virtulalization and Software boxes. The identification key
of the latter was placed in Package database box. Now, we have logical con-
nections between database boxes.

4.2.2 Redesigning of machine box

Introduction of boxes has reduced the breadth and length complexity of log-
ical database model significantly. However, the machine box remained very
complex in length. It contained 44 different variables. The machine box stored
different types of information, from machine’ resources and hardware details
to operating system details. To reduce the complexity of the machine box, we
started to classify information. We could add an additional hard disk drive

31

4.2. INTRODUCTION OF BOXES

to a machine, without having to know kernel version of operating system.
Therefore, we split the machine box into MachineResources and OperatingSys-
tem boxes.

4.2.3 Handling of dual-boot

Splitting of Machine box into MachineResources and OperatingSystem boxes re-
duced the complexity of handling a huge amount of information significantly.
The MachineResources box (as the name implies) is designed to hold mainly re-
sources’ metrics for machines. Whereas the OperatingSystem box is designed
to contain details on operating systems installed on machines. One issue that
the OperatingSystem box did not address was dual-boot. To address this issue
we concatenated motherboard serial number together with operating system
name. Concatenation of these two pieces of information yields unique identi-
fication for each of operating system instances installed on a machine.

4.2.4 Tracking of machines and virtual machines

During the process of development of CMDB model, we considered that it is
a good idea to add timeStamp attribute on boxes, especially on Machine and
Virtual machine database boxes. Every time there is an update in the logical
database, the exact updating time will be recorded on timeStamp field. This
new capability would allow us to track machines and virtual machines that
were reporting to CMDB and those that have stopped reporting. If a server is
not accessible through the network, we can swiftly find out if there is a con-
nection failure just by referring to the timeStamp attribute. It would show us
the last time the server reported to the logical database. If it is up to date, then
there might be some misconfiguration, or the firewall prevents reaching the
server.

4.2.5 Adding of attribute notes into our CMDB model

One of the issues that CMDB authors highlight is determining the scope and
level of CIs. The flood of information introduces delays, and might result in a
failure to achieve specified objectives. In the logical database we store config-
uration information at the level at which it is manageable. Positively, we store
data that is needed to support the enterprise’s business services.

The notes attribute is added into CMDB model to support various types of
information on entities. This makes our CMDB model extensible introducing
the second dimension on database boxes. The common attributes will hold the
most important configuration information of an entity, while the notes field
will contain everything else that cfengine agent discovers. Occurrences of the
notes field will be linked back to the topic map layer, forming a fully embed
topic map index.

32

4.2. INTRODUCTION OF BOXES

4.2.6 Operating systems and platforms

Operating systems can not run on all hardware architectures. e.g. Solaris is
constrained to run on SPARC, x86, x86-64 platforms. It is important to provide
this information to end users. This type of information will be stored on topic
maps, due to the fact that this information is generic for all machine architec-
tures and is easier to refer. This is manually entered information, therefore
storing this type of information in OperatingSystem box is not adequate, be-
cause it will be removed when CMDB recreation occurs.

4.2.7 Removal of monitoring data from VM Box

In previous draft, the VirtualMachine box was designed to store static data and
monitoring data. In fact, this database box would store two types of informa-
tion, more precisely static data (as the name implies this data changes slowly),
and monitoring data, (which changes quite frequently). Monitoring data is
plotted on timeseries graphs, and in order to obtain approximately real data,
we have to measure the environment frequently enough.

This is certainly not an appropriate solution for centralizing monitoring
data on a database. In order to obtain approximately real timeseries data, we
have to update the database at the rate that timeseries data changes. This is
very difficult, because updating of a centralized databases is costly. In addi-
tion, we have to repeat this procedure for hundreds of machines. Therefore,
it was natural to exclude monitoring variables from the VirtualMachine box.
Separation of static data and monitoring data is also fully in accordance with
principles of our CMDB model. According to our CMDB model different types
of data should be stored on different boxes. Monitoring data will be stored on
reports locally in each machine, and handled through topic maps.

In the new design, the virtual machine box stores only static data, more
precisely cpu, disk and memory resources that virtual machines have received.
In addition, the virtual box keeps track of running virtual machines and links
each om them to its physical machine. Redesigning of VM box reduced the
complexity on length. From 25 elements it contained in previous draft, now it
contains only 13 elements.

4.2.8 Powering of virtual machine and operating system boxes

Despite the fact that we introduced significant changes to VM box, it still lacks
some important capabilities. VirtualMachine box did not support discovery
of inactive virtual machines. This is a weakness of the VirtualMachine box,
because the datacenters might retain inactive virtual machines, which they
activate on demand. The new version of virtual machine will keep track of
virtual machines in a datacenter regardless of their running state. The updated
VM box provides information where the virtual machines are deployed and
how long they have been in operation. The predecessor version of VM box did
not support discovery of inactive virtual machines.

33

4.2. INTRODUCTION OF BOXES

At the planning stage of designing theVirtualMachine box, we had as a pur-
pose of tracking only virtual machines from Xen-technology. Meanwhile, con-
sidering the fact that vmWare has got a broad deployment in datacenters, we
decided that our model should support vmWare virtual machines as well. To
indicate the kind of virtual technology for virtual machines, we added the at-
tribute vmBranchTechnolgy on VirtualMachine box.

In predecessor version of OperatingSystem box only paravirtualization type
is supported. Due to the fact that our initial approach supported only Xen
virtualization technology. Xen technology is known to run virtual machines
on paravirtualization mode. Since we have expanded VirtualMachine box to
support vmWare technology, and it runs virtual machines in full virtualiaztion
mode, we had to add this information on OperatingSystem box. To store infor-
mation on virtualization type implemented, we placed the virtualizationType on
OperatingSystem box.

4.2.9 Adding of anomaly detection capability

Observing of machines and virtual machines running status through the timeS-
tamp attribute was a decent feature. We could swiftly find out whether ma-
chines were reporting to the logical database. Nevertheless, this was a straight-
forward approach, we either know that a machine is reporting or not report-
ing. It does not contain any evidence for machine’s anomalies. This means
that machines report to logical database, but not at regular times. Thus, we
have limited information, since we do not know if there is something delaying
machines from reporting to logical database. Therefore, we were interested
in capturing this evidence, due to the fact that it facilitates us to heal anoma-
lies, so that machine’s resources utilizes in more efficient manner. We replaced
timeStamp with deltaT attribute. We specify explicitly the timeframe that ma-
chines or virtual machines should report to logical database. If the reported
time exceeds the timeframe, it means that the machine suffers from anoma-
lies. This would followed with an alert issued by Cfengine . This capability
is unique to our logical database model. It is not provided by other CMDB
vendors.

4.2.10 Creation of architecture box

Our model organizes information into different boxes, based on the type of
information. By observing the current draft of machine resource box we noted
that two pieces of information were not supposed to belong to this box ac-
cording to principles of our model. The attribute formfactor shows the type
of machine, e.g. laptop, desktop, or mainframe, whereas the attribute vendor-
Product shows the manufacturer of machine. Meanwhile, we as users most of
the time are interested in knowing the capacities of a server, and it may not be
useful knowing whether the machine is produced by HP or Dell. Therefore,
these attributes along with serial numbers of machine’s components such as
cpu, disk and memory are placed in a new box, named Architecture.

34

4.3. APPLICATION OF DUNBAR NUMBER TO BOXES

4.2.11 Redesigning of machine resources and architecture boxes

After completing the logical database model, we concluded that the machine
resource box should store only resources’ metric and other information that
directly determine the performance of machines. Meanwhile, attributes that
are stored such as cpu model, display model, etc were moved to Architecture
box. This was the right thing to do, since these types of information naturally
reside on Architecture box. So we have made a clear-cut distinction between
resources’ capacities and their hardware description. We excluded also war-
rentyExpirationDate attribute from the machine resource box, because we ac-
cess this information from contract documents through topic map occurrences.

4.3 Application of Dunbar number to boxes

The introduction of box concept added some unique capabilities to our logi-
cal database model. Boxes address some well known issues, such as, balance
between depth and breadth, make the CMDB model extensible, and account-
ing for human constraints in processing huge volumes of information. The
latter means that a box offers only what we are interested in. If we are in a
MachineResources box, it displays only the machine’s core hardware resources.

The size of boxes is determined based on the findings of British anthropol-
ogist Robin Dunbar, who writes [7]:

”Humans have a cognitive limit of approximately 150 on the average number of
individuals with whom coherent personal relationships could be maintained” .

His findings are based on the size of neocortex, the bigger the neocortex,
the bigger social group a species can maintain. According to Dunbar, attempts
to cross the threshold unavoidably result in social group fission. Translating
Dunbar’s principle to processing of information, it means that humans lose
oversight capability over huge volumes of information. What makes Dun-
bar’s findings interesting to our model is that he has divided the number 150
into multiple groups based on the importance of relationships. The core so-
cial grouping consists of 3-5 individuals. It is the group from which a person
would seek advice or help when he is in crisis. The following group is referred
as a sympathy group. It has 12-20 individuals, with whom we retain special
ties. The third group is referred to as bands. These groupings are formed by
30-50 individuals and are unstable. We rendered Dunbar’s findings into boxes’
size to be within the core and sympathy groups. Findings of Dunbar are of par-
ticular importance, since they allowed us to model boxes’ size in proportion
with human’s limitations. This would facilitate human to process information
effectively and consequently take the right decision. Statistics shows that hu-
mans ignore messages in cases when they are confronted with huge amount
of information.

35

4.4. INTRODUCTION OF CHANGE CONCEPT

4.3.1 What does Dunbar’s finding mean for the model ?

This means that the model should generally remain within the predefined
frames, in order that human can understand and apply it efficiently. This
means that adding new elements into the model continuously will make the
model at some point complex to understand and maintain and even useless.
In order to be rich in features and simultaneously simple, the model should
discuss mainly important aspects of the object in question.

4.4 Introduction of change concept

It was necessary to introduce the change concept into the database boxes, since
they store information that changes at different rates. This new approach clas-
sifies information stored in database boxes further. This would allow us to
communicate data to database boxes at proportion with the rate at which data
changes.

4.4.1 Advancing capabilities of OS box

The previous logical database drafts supported only descriptive information of
operating systems installed on machines. The OperatingSystem box was fairly
narrow. It stored information such as the name of operating system, its ver-
sion, the distributor etc. The power of operating system box started to enlarge
when we added virtualization and security capabilities. Regarding security
issues, at the beginning the OperatingSystem box provided information on ser-
vice pack version or more generally patch level, and last time security patches
were installed on machines. Keeping this software updated is critical in protec-
tion against malicious codes. Meanwhile, to enhance the strength of operating
system box further, we add also firewall capability. The OperatingSystem box
was supposed to provide information on firewall status.

The idea was to strengthen the operating system box, so it offers a security
package. Reviewing of principles of information model led to defining more
accurate criteria for organising data on boxes. According to new principles,
slowly changing data and monitoring data should be kept separate. Conse-
quently, we moved firewall capability to a Service box.

4.4.2 Properties of boxes

A box represents a certain view of an object. A box is not a container of ”ev-
erything”. It is the storing space for ranked information of a projection. This
means that boxes contain the amount of information that human brain can
cope with. Inside the boxes can be stored automatically discovered configu-
ration information or manually entered information. It is not recommended
to store electronic documents. In our CMDB model documents are handled
through the topic map model.

Boxes are manageable, and provide powerful capabilities. Boxes provides
only information that users need, they would not provide information that

36

4.5. CENTRALIZATION

users are not interested in. If a user wants to view capacities of a server, he
would not be overwhelmed with lateral information such as displaying the
last time the operating system was updated or a distribution’s version. Boxes
handle large number of occurrences. Boxes allow us to balance the complexity
of our model in regard to breadth and depth. Population and updating of the
logical database is independent of any predefined sequence.

4.5 Centralization

The logical database is a centralized facility. We draw a line on what type
of information will be centralized, and what type of information will be held
locally on the machines. Static data and slow changing data we register to
logical database. Meanwhile frequently changing data (monitoring data) we
don’t centralize. It is too costly to centralize monitoring data to a database. In
addition, a datacenter has thousands of machines. Monitoring data is stored
on local machines. We retrieve this data from the local machines through topic
map occurrences on demand, see Figure. Monitoring data that is not needed
will not be created or maintained, since it consumes resources. When we need
monitoring data we request the local machine to generate it. This approach
requires that we have to wait until the requested monitoring data is generated.

4.6 Promise theory

Promise theory was invented to model the behaviors of agents [15]. The funda-
mental assumption of promise theory is that objects participating in exchang-
ing information or behaviors are truly autonomous agents. They decide their
own behavior, external factors cannot drive them to other behaviors. Interac-
tion between the agents are determined based on voluntary cooperation. The
convergence feature is characteristic to promise theory. Convergence is an ap-
proach for achieving steady state behavior in a stochastic environment.

Defination 4 (Promises) A promise is a directed link that consists of two autonomous

agents and a promise body, expressed a1
b→ a2. Agent a1 (promiser) offers a behavior,

while agent a2 (promisee) utilizes it. The promise body b describes the nature and
constrain of the promise. A promise is expected to be kept and verified.

There must be interactions between agents for successful accomplishment
of exchange of promises. Promises made by agents are of two types, promises

to offer a behavior, or provide something (expressed a1
+b→ a2), and promises

to use the promiser’s behavior or accept something (expressed a1
−b→ a2).

The information model, we developed for logical databases is compatible
with promise theory. Each box promises a type of information and the rate at

37

4.7. TIMESCALE AND RANKING OF DATA

which information changes. The machine resources box promises to deliver
information mainly on machine resources, and that data changes quite slowly.
The operating system box promises other promises. It promises to deliver in-
formation mainly on operating system and that its data changes a bit faster
compared to information promised by machine resource. Promise theory al-
lows us to make a schedule for capturing configuration information. Config-
uration information that remains static or change slowly would be commu-
nicated seldom to logical database. Whereas information that changes often
would be communicated frequently to logical database.

4.7 Timescale and ranking of data

One of the distinctive features of our CMDB model compared to existing CMDB
solutions, is that it supports timescale. It allows us to communicate configura-
tion information to logical database at proportion with the rate at which con-
figuration information changes.

We register the static information to logical database only once, and when
we recreate the logical database. Meanwhile, slowly changing data, we com-
municate to logical database not so often. Monitoring data such as resource
utilization, uptime, etc is stored locally in each machine. This type of infor-
mation is not communicated to the logical database, since it is too costly to
centralize monitoring data. We try to communicate information to the logical
database only when there is something new. Therefore, we emphasize that
timescale approach is an efficient way of collecting information.

One of the criteria of our CMDB model in organizing the information is
the rate information changes. Information that changes at different rates are
placed into two different boxes. This helps us to rank the data by how of-
ten they change. Information stored in Location and Person database boxes
does not change, these stay static for (relatively) long times. Description infor-
mation of hardware remains unchanged during the lifecycle of the machines,
therefore it belongs to first rank.

Information stored in the MachineResources box changes slowly and is placed
on second rank. This type of information needs to be updated generally when
we add/remove physical components, virtualize the machine, populate the
MachineResources box with additional components etc. Information on operat-
ing system changes a bit faster compared to machine resources. This type of
information is ranked in third place. This type of information changes when
we install patch levels, security patches, add Xen virtualization module to ker-
nel, etc.
It is flexible to configure virtual machines. We can configure virtual machines
with various parameters, depending on our needs. Consequently, this type
of information is supposed to change faster. Information stored on services
box needs to be updated often. The Service box contains among other informa-
tion about service availability status. In a datacenter, there are many services
running on different machines. Services, such as web, or firewall might go
down due to misconfiguration or other issues. To obtain the availability status

38

4.8. CMDB AS CACHE

of services we are enforced to monitor this data continuously within certain
intervals and report their status to the logical database.

4.8 CMDB as cache

Our primary source of data are machines, which means that we can recreate
the CMDB any time and no problem emerges. Even though a machine has
been disconnected from the network, we would not lose the knowledge about
the existence of that machine. Machines reside in policy configuration file as
promises. Topics representing the machines that do not point to occurrences
of the MachineResources database box will be listed, allowing us to locate them
swiftly. Our CMDB serves as a temporary cache. We dot backup the cache
data, it can be regenerated at any time. The cache data will be used for search-
ing.

4.9 Fault tolerance

Our CMDB is not vulnerable to misconfiguration of machines. In case that a
bunch of machines were configured to report to logical database constantly,
this not will affect the logical database in terms of its integrity. The logical
database will remain consistent and will not grow in size. Only the updating
of existing data will take place.

4.10 Polyscopic structuring of information

Polyscopic modeling was developed at the University of Oslo (Dahl et al.,
1972, Karabeg 2003a). The polyscopic information model organizes informa-
tion hierarchically and modularly. We developed principles of our CMDB
model independently of the polyscopic model. Meanwhile, observing some
of similarities that exist between these models, we have listed principles of
poliscopic model. Simultaneously, we have highlight differences that exist be-
tween two. The principles of polyscopic information model, quoted from [16]:

• Information has multiple aspects, some of which are subtle or hidden.
The most relevant aspects must be provided (horizontal abstraction).

• Information is a function of the way of looking or scope. The scope is
coherent if it represents a single level of detail and angle of looking (or
intuitively, if it reflects a single viewpoint on the metaphorical moun-
tain). Each information module must be associated with a single coher-
ent scope (coherence).

• The knowledge of the scope is crucial for proper understanding (intu-
itively, one must know where on the metaphorical mountain one is stand-
ing when looking at a piece of information). Each information module
must be associated with a clear and correct representation of the scope
(orientation).

39

4.10. POLYSCOPIC STRUCTURING OF INFORMATION

• The scope determines the view (intuitively, the scope is the control knob
given to the reader to switch between views). The reader must given the
capacity to select the view by changing the scope (navigation).

One important issue that the polyscopic information model does not ad-
dress is classification of information. A polyscopic model contains unclassified
information. The main concern of the polyscopic model is that the view has to
be coherent. As we have discussed in our principles of CMDB model, a view
contains a lot of information of different ranking. Consequently, it causes in-
formation overload. This issue is not addressed by the polyscopic information
model. Apart from this the rate of information within a view is not modeled.
Polyscopic model does not give any guide on how projected views should be
connected to each other.

40

Chapter 5

Designing of topic maps for
CMDB, and Results

5.1 Principles of our CMDB model

From the previous discussion, we can identify some principles for the design
of a CMDB. We may consider a machine projected into different boxes, reflect-
ing the information it offers. The angle of projection determines the contents
of a box. Each projection forms a box, which stores only a type of information.
So, inside the MachineResources box is recorded only the resources of machines.
While description information about the hardware is stored in an another box
labeled Architecture. Projection allows us to classify information into different
boxes. Boxes are connected together through the object’s identification key. It
it a string that is unique for each object. For machine object we have selected
motherboard serial number as identification key, since it is unique for each
machine. The box concept is accompanied by a change concept. It is a character-
istic of a box. The change concept allows us to keep related information into
separate boxes. Pieces of information such as, the amount of memory card and
memory card model is about the same object, precisely memory object. How-
ever, the change concept distinguishes them from rate at which they change.
The memory card model information is static and is placed on Architecture
box, whereas the amount of memory card information might change if we up-
grade the machine, therefore this piece of information belongs to an another
box. Slowly changing information and static information are placed into two
different boxes.

An object might be complex, e.g. the machine is a complex object. A projec-
tion yields a view of the object, which itself contains a long list of information
of different ranking. e.g the operating system projection among other con-
tains information about shells it supports, filesystem it can process, modules
it has mounted, etc. This diversity of information within a view or box render
information overload. To remedy information overload of a view, we apply
Dunbar’s findings. On boxes we store only information, which is important
to us. Information that is native is excluded from boxes. This would allow
humans to process information in an efficient way.

41

5.2. MAPPING OF CMDB MODEL TO TOPIC MAP MODEL

OperatingSystem

motherboardSerialNo osName
osName
distroNameVersion
kernelVersionBitsize
oslnstallationDate
osLanguage
patchLevel
osLastTimeUpdated
xenTechnology
vmvareTechnology
virtualizationType
motherboardSerialNo
notes

MachineResources

motherboardSerialNo
hostName
cpuCount
cpuSpeed
hddTotalSize
hddCount
ram
networkCardCount
networkCardSpeed
ipAddress
domain
isMachineVirtulized
deltaT
notes

Service

motherboardSerialNo serviceName Version
serviceType
serviceCriticallity
serviceStatus
serviceAvailabilityStatus
motherboardSerialNo
notes

Figure 5.1: The projection metaphor is one of the designing principles of our
CMDB model.

In our CMDB model, we introduced the notes field in database boxes to
avoid the need for redesigning the CMDB model. If there is new thing we
want to add to CMDB, we put it in notes field. Its contents will be organized
in topic map structure. This would allow us to link occurrences back to topic
map ontology forming a fully integrated index.

5.2 Mapping of CMDB model to Topic Map model

Our final CMDB model is consisted of nine database boxes. Each database box
stores a different type of information. In the topic map model, the approach
was to model each database box as a topic-type, see Figure 5.4. We consider
this phenomena as a simple relationship between topic maps and database
boxes. While, each record of a database box represented an instance of corre-
sponding topic-type. Occurrences of database boxes are a given type.

For designing the topic map ontology for our CMDB we have selected
GTM (Graphical Notation for Topic Maps) as a modeling language. As its

42

5.2. MAPPING OF CMDB MODEL TO TOPIC MAP MODEL

name implies, GTM was created specifically for modeling topic map ontolo-
gies. GTM provides different node shapes for representing different topic
maps constructs. This rich representation of constructs allowed us to design
the topic map ontology for our CMDB fast and easy. Foreign topic maps de-
signers can easy understand the structure and elements of our CMDB topic
map ontology.

Despite the fact that there have been efforts in enhancing the capabilities
of UML including designing ontologies, UML [17] lacks some fundamental
abilities such as:

• representing of relationships such as ”is similar to”

• representing formal semantics of sets

• representing synonyms, antonyms, homonyms, etc.

• ability to draw multiple relationships of an entity to each other.

5.2.1 Topic map ontology of our CMDB model

In our CMDB topic map ontology we represent constructs: topic-types, topic-
type associations (association types), role types, name types, occurrence types.
The Figure 5.3 points out the topic map’s constructs.

43

5.2. MAPPING OF CMDB MODEL TO TOPIC MAP MODEL

Figure 5.2: Topic map ontology of our CMDB model

The topic-type association indicates that instances (topics) of these topic-
types can draw association links of a given association type between each
other. Topic maps are a type of semantic network containing topics and as-
sociations describing the relationships between subjects. Topic map ontology
in the Figure 5.3 precisely indicates the network oriented structure of topic
maps. A topic can point to different occurrence types. To keep the figure clear
we removed the links between Topic types and occurrence types. But in the
test case we indicated the relationships between topics and occurrences, See
Figures 6.1, and 6.3

44

5.2. MAPPING OF CMDB MODEL TO TOPIC MAP MODEL

Figure 5.3: Constructs of the topic map ontology of our CMDB model

Figure 5.3 shows that the instances of topic-types Person and Machine es-
tablish relationships of type Ownership. Instances of the topic-type Person
plays the role of ”owner”, while the instances of topic-type Machine palays
the role of ”ownee”.

5.2.2 Sample

This sample is designed from the topic map ontology of our CMDB model. The
MachineResources database box in the topic map model is mapped to a Ma-
chine topic-type. It has occurrences of type machineresources, and synonyms
”computer” and ”hostname”. While the record of the ”slogans” machine in
topic map is an instance of the Machine topic-type. The ”slogans” topic is the
end point, meaning that there are no topics of type ”slogans”.
A topic acts as an autonomous agent, it decides itself what associations will
establish with other topics. The number of associations a topic can establish is
unlimited. Associations must reflect the state or relation of the object, which a
topic represents with other objects.

45

5.3. RESULTS

Location Person Machine Architecture OperatingSystem ApplicationService Package VirtualMachine

x86

linux

ubuntu

redhatroom1_2_5_3

mark

webservice

jboss

apache httpd openssl

vmDax

slogan

Figure 5.4: The diagram depicts associations of topic ”slogans” with its related
topics.

Rectangles depict topic-types (they are also topics), while circles depict in-
stances of a particular topic-type. Topics were disposed under a given topic-
type to indicate their scope. The colored lines between topics indicate different
association types that exist between topics. ”slogans” of topic-type ”Machine”
is the topic in focus. It establishes an association of type Ownership with the
topic ”Mark” of topic-type Person. Whereas, with topic ”x86” of topic-type
Architecture, the ”slogans” establishes an association of type hasMotherboard
. Topic maps are very rich with expressiveness, they can draw links beyond
topic-types. The association between ”slogans” and ”Mark” goes beyond topic
types. While, the association between ”linux” and ”ubuntu” is within a topic-
type. Topic maps are referred to as a subject-centric model, since the focus of
the model is the subjects.

5.3 Results

5.3.1 CMDB: optimized for updating

Optimization is carried out with regard to increasing the efficiency of a system.
A system might process different types of events, which occur at different and
incomparable rates. It is crucial to consider this fact when designing a model
for a given system. Frequent events are most important events to consider
when designing a model, because they put most of the burden on the system.
The state of components of a datacenter’s environment changes often. This

46

5.3. RESULTS

means that the CMDB has to be updated often as well. Therefore, our CMDB
is designed with purpose of optimizing updating.

An analogy of database optimization, but with aim of enhancing read per-
formance is implemented in the Lightweight Directory Access Protocol (LDAP).
LDAP is an authentication system that is queried to read credentials during the
authentication process for a user. By contrast, adding of new users (updating)
is a rare event.

Standard relational databases are optimized for searching data. Mean-
while, updating is costly, due to the fact that the updating can require adding
data on more than one table. In addition it searches for matching data values
between related tables.

In entity relation model, one models services running on machines using
three entity relations, precisely machine entity, service entity and promisedSer-
vice entity. When we register new machines and their services they promise
to deliver, the insertion process has to be proceeded according to the principle
that inter-table has to be populated last. This implies dependency. In addition,
it introduces the database performance issue. The insertion or updating mech-
anism reads records sequentially in the Machine and Service tables in order to
fulfill primary-foreign key matching criteria.

The update for promisedService table is of order:

O(M + M + N + logQ) = O(M + N + logQ) (5.1)

where (M + M) is for checking machines twice (promiser and promisee).
N accounts for checking Services once. logQ accounts for checking for dupli-
cates in promisedService itself, and it logQ becuase the check is indexed.

47

5.3. RESULTS

Figure 5.5: Schematic representation of updating promisedService table (stan-
dard relational database)

The orange area indicates traversing of records within the tables for pur-
pose of matching the right values, before adding or updating occurs in the
promisedService table.

Updating of some part of a CMDB (e.g. monitoring) is a frequent event. In
order to boost its performance we excluded inter-tables which connected main
tables. In our CMDB model, the main tables were labeled as database boxes.
They were linked together through an unique value (ref. figure 6.4). Non-
application of primary-foreign key mechanism in our CMDB model impacts
searching performance. As an important mechanism of standard relational
databases, it has been optimized for extracting information from databases. It
does not introduce huge problems (querying of CMDB is not frequent) com-
pared to the significance of optimizing dynamic updating of CMDB.

Figure 5.6: Schematic representation of updating database boxes (our CMDB
model).

As we can see from the Figure 5.6 the order of adding or updating data in
our database boxes is O(1).

48

5.3. RESULTS

From the standard relational model, we observe that in order to find host-
name of machines running Domain Name Service (DNS), it is required to per-
form two join operations (between Machine and promisedService; promised-
Service and Service). The searching process includes examining records of all
three tables.

The searching order then would be:

O(M ∗ N + N ∗ S) (5.2)

.
M accounts for machines (Machine table), N accounts for machines promis-

ing services (promisedService table), and S accounts for services (Service ta-
ble). M*N is because of the searching between the Machine and promisedSer-
vice tables. While N*S accounts for searching between promisedService and
Service tables. Then, we add the performance of these operations.
As in updating process, the Service table (S) does not impact searching perfor-
mance significantly. It is due to the small number of records the Service table
contains.

Meanwhile, in our CMDB model, It is required only one join operation
(between Machine and Service). They are connected through the unique value
labeled motherboardSerialNo. In the Machine box it used as a primary key,
whereas in Service box it is just a common attribute, added for purpose of
connecting database boxes. The searching process involves reading of both
database boxes, which means that in worse case searching order would be

O(M ∗ N) (5.3)

where M accounts for machines (Machine database box), and N accounts
for services (Service database box).

To enhance the searching performance, we index the common identifi-
cation attribute residing in Service database box. This makes querying our
CMDB approximately as efficient as the standard relational databases.

e.g. in order to find all machines running DNS we write the SQL query:

select machine.hostname
from machine, service
where machine.motherboardSerialNo = service.motherboardSerialNo
and service.serviceType = ’DNS’

As we can see from the SQL query the motherboadSerialNo attributes are
used to join the database boxes.

49

5.3. RESULTS

Figure 5.7: The Single CMDB draft designed based on strict application of
relational model principles.

50

5.3. RESULTS

Figure 5.8: Exclusion of centralizing electronic documents. This CMDB model
does not contain entities for storing documents. They are accessed via topic
map occurrences.

51

5.3. RESULTS

Figure 5.9: The three databases CMDB model modeled based on the rate at
which data changes. It is consisted of three databases: the standard relational
database (slowly changing data), the People database (manually-entered data),
the VirtualMachine database (monitoring data)

52

5.3. RESULTS

Figure 5.10: The introduction of ”box concept” in our CMDB model. Database
boxes are connected to each other through logical unique values (common at-
tributes). It is indicated by the colored lines

53

5.3. RESULTS

Figure 5.11: Splitting of Machine database box into MachineResources and
OperatingSystem database boxes

54

5.3. RESULTS

Figure 5.12: Removal of monitoring data from the CMDB

55

5.3. RESULTS

Figure 5.13: The introduction of change concept in our CMDB model.

56

Chapter 6

Test case, Evaluation, and
Discussion

This test scenario was created in order to demonstrate the behaviors of our
CMDB in real implementation. In the discussion section we have discussed
the characteristic features of our CMDB model. An interesting point is made
by comparing it with the star data warehouse model.

57

Figure 6.1: The ”slogans” topic, its occurrences and associations. From the
occurrences, we specially stress the anomaly detection, since this feature is not
supported by existing CMDB solutions.

The Figure 6.1 displays all information of the ”slogans” topic. The types
of information include occurrences, the associations and other topics of type
Machine. Occurrences are typed; this allows us to understand what the data is
about. This means that we can just refer to the occurrence type to see if we are
interested in that type of information. From the occurrence operating system
type, we observe that the ”slogans” machine has been virtualized in paravir-
tualization mode. While in the association section (in addition to other asso-
ciations) were listed the virtual machines that the ”slogans” machine hosts. If
we visit one of these topics we will get the semantic and descriptive informa-
tion (occurrences) on that topic. In this scenario we visited the ”vmDax” topic,
and we were moved to a different point in the topic map.

58

Figure 6.2: vmDax

The red arrow indicates the directed topic(s) of the topic in question. From
the Figure 6.2 we can observe that the ”slogans” machine in addition to host-
ing ”vmDax”, it also hosts ”vmCat” and ”vmVox”. The semantic association
allows us to know more about the topic. Here among other we get information
about the architecture and owner of the machine.

59

Figure 6.3: vmDax2

From the Figure 6.2 we can view that the ”vmDax” virtual machine has
two types of occurrences, namely the virtual resources (residing in the CMDB),
and monitoring data residing in the virtual machine. By selecting the link of
monitoring data, we retrieve this information from the remote vmDax, see
Figure 6.4. This is one of the unique features of our CMDB solution. In the
literature research we found no existing CMDB solutions to provide such a
capability.

Keeping the monitoring data in the local agents was quite important ap-
proach implemented in our CMDB model. Since, the centralization of the
monitoring data of a datacenter’s environment is not a clever approach, be-
cause the amount of information is enormous.

The Figure 6.2 captures also an important aspect of our CMDB approach.
In topic map we stored information on operating system such as the hardware
architecture supported, distributions or versions they have. Refer Figure 6.5 to
view relations of ”windows” with its versions. In this example, the direct re-
lations of the ”Linux” topic indicate the hardware architectures that instances
of Linux operating system can run on, and its distributions. This was the right
approach to pursue; here we list the arguments for this decision:

• Our CMDB model became simpler

• Our CMDB will be re-created automatically, whereas they were manually en-

60

tered data

• they were static data and small in quantity

Figure 6.4: A track of multiple scaled system variables as the number of users
and processes, free disk space, www connections, ect., over the course of a
week [18].

61

6.1. DISCUSSION

Figure 6.5: OS

Our topic map CMDB solution allows one to interpret the data according
to their needs. In the Figure 6.5 is shown that ”Danny” provides support for
”windows”. While in the Figure 6.2 is shown that the ”slogans” machine is
owned by ”Mark”. Occurrences of these topics representing different subjects
reside in the CMDB schema, but using the promise approach one can build a
semantic topic map layer in a convenient and flexible manner.

To express the semantic relationship of a topic, and point to its occurrences
one needs to add only a single line in the policy configuration file. The follow-
ing Cfengine’s topic map promise adds the topic ”Danny” into the topic map
layer.

Person::

"Danny" association => a("provides support for", "windows", "supported by");

6.1 Discussion

Enterprises possess different types of information, starting from configuration
information to contracts, documentations, manuals, reports, monitoring data
etc. This diversity of information and the manner it is obtained has influenced

62

6.1. DISCUSSION

us in drawing the principles for modeling our CMDB model. The compilation
of principles for modeling our CMDB has led us to design a model with unique
characteristics.

Our CMDB model is designed based on ”intersecting” of the entity rela-
tion model, and topic maps model. They are two different design information
technologies, which have their own strengths and weaknesses in certain areas.
It was important to exhibit the features of these models so that we could reflect
their strengths in our CMDB model, and avoid pitfalls.

6.1.1 CMDB drafts

The single CMDB model was completely built within principles of entity-
relation model. It became complicated and provided constrained capabilities.
The single CMDB model was built up of twelve different entities and sup-
ported only six types of services. The process of collecting data was not ef-
ficient. This approach seemed inefficient in extending further capabilities to
CMDB. This type of CMDB model is offered by vendors today.

Exclusion of electronic documents from being modeled in entity relation
model, was the first step towards simplifying of our CMDB model. But the
impact was minimal, and consequently the CMDB draft remained complex.

In the three databases CMDB model, we tried to introduce a new approach
in designing our CMDB model. We separated data into different databases
based on the rate at which data change. This made the three databases CMDB
a bit more efficient in collecting data. One major problem with this CMDB
draft is that the configuration information (slowly changing data) database
inherited all drawbacks of its precursor CMDB drafts.

The introduction of box concept in our CMDB model addressed important
issues such as dependency (inter-tables), breadth and depth complexity, and
optimized updating process of our CMDB. The problem with this CMDB draft
was that the Machine database box contained unclassified information, apart
from introducing depth complexity.

Splitting of Machine database box into MachineResources and OperatingSys-
tem database boxes was conducted for purpose of classifying information into
different database boxes. This would allow us to communicate data to database
boxes that the rate they change. The side effect of this step was that the depth
complexity of Machine database box was reduced. A major issue with this
CMDB model was inclusion of monitoring data. It is very expensive to cen-
tralize monitoring data, or impossible in large scale networks.

Monitoring data are excluded from being stored in the CMDB. They are
generated on demand and stored in the local machines. The generated reports

63

6.1. DISCUSSION

are accessed through topic map occurrences. This approach removed bottle-
necks in our CMDB. In this draft we added the notes field in order to make our
CMDB model extensible. Occurrences of notes field are linked back to topic
map forming a fully integrated index. This CMDB draft supports anomaly
detection capability, which is indicated by the deltaT attribute residing on the
MachineResources and VirtualMachine database boxes. In OperatingSystem
database box we added the capability of storing the firewall status. The flaw
in this CMDB draft was that the MachineResources database box contained
some unclassified information, namely, static and slow changing data.

Features of the ultimate version are discussed in section 6.1.3.

6.1.2 Non-hierarchical

Topic map model is rich in capabilities. It provides a framework for design-
ing the information in hierarchical and non-hierarchical fashions. Using the
flexibility of topic map, the information in our CMDB model is organized in
a ”flat” fashion, meaning that there is no hierarchy. Instead of constructing
hierarchical structures, related concepts are grouped together in a semantic
manner.

Figure 6.6: Topic map, CMDB: grouping of topics

This feature is not found in traditional CMDB models. They organize in-
formation in hierarchical structure. This approach is characterized of splitting
objects apart into different branches. This introduces the problem of adding
additional capabilities later on, since they have separated properties and be-
haviors that they might need. To include the new capabilities they have to
redesign the model.

IBM tries to avoid this problem for its CMDB solution by retaining different
types of constructs into different containers. Attributes are stored separately

64

6.1. DISCUSSION

from classes with the purpose of being able to reuse in any number of class def-
initions [5]. In addition, accessing of objects in hierarchical structure is costly.
The journey of accessing the information has to go through neighbors.

6.1.3 Characteristics of our CMDB model

Our ultimate logical database model incarnates the best practices of process
development . Here we list the unique features that our CMDB model pos-
sesses:

• Simple to understand:

We have compiled the principles for our CMDB model followed by a
metaphor, which makes it very easy to understand. See section 5.1.

• Classification of configuration information:

This feature is rather important, since it enables cfengine agent to com-
municate the configuration information in an efficient manner. So, the
static configuration information is communicated only once, because they
do not change. Therefore, can say that there is a correlation between the
information theory and database boxes in the sense that information that
does not not change makes no sense to retransmit. There is no new in-
formation in the transmitted message.

• Database boxes reflect human limitations with regard to processing of
information:

Here we applied the researching results of British anthropologist R. Dun-
bar who gave the threshold of human in maintaining reliable relation-
ships with individuals. This was rather important since Dunbar exhibits
limitation of human in processing information. The fundamental prin-
ciple that many scientists highlight is that in the CMDB should not be
stored information that is unmanageable. Precisely, this was taking into
account during the design of our CMDB model.

• Extensible:

We can attach a new database box into the model, and it will not affect
the rest of CMDB. This is achieved due to each of database boxes is in-
dependent. Our CMDB model is also extensible through the notes field.
The latter approach was quite important since it removed the need of
redesigning the model.

• Easy to update:

Considering the fact that in the large scale and dynamic networks there
is a lot of configuration information that need to keep track of CMDB.
This really means that we have to update the CMDB frequently. Our ap-
proach was unique in addressing this issue, by optimizing our CMDB
model for updating process No one else has optimized CMDBs for pur-
pose of boosting the updating process. In addition, the configuration

65

6.1. DISCUSSION

information will be communicated to the CMDB at the rate they change.
(Timescale is a feature of our CMDB.)

• Scalable:

database boxes are scalable, inside these can be stored large amount of
information.

In literature we have found that one of the reasons that CMDB implementa-
tions fail is due to collecting of detailed information [19]. They cannot manage
this information, and consequently do not provide a ROI (Return Of Invest-
ment). It is wrong to store information, which is unmanageable. It will only
make the CMDB more complex. Meanwhile, our CMDB is characterized of
storing information at the granularity which human are able to process effec-
tively. Another issue that we exhibit from literature section is that existing
CMDB solutions do not recognize the timescale feature. While cfengine learn-
ing approach does support this feature. It communicates data in real time and
at proportion with the rate data changes.

Database boxes of our CMDB consist virtually of two dimensions. The
configuration information of first rank resides in appropriate attributes, while
the notes filed contains other configuration information that cfengine agent
discovers. The introduction of the notes field was important approach, since
it eliminates having empty fields in the database boxes. There is mapping
between the configuration item and the attribute field. In cases where the con-
figuration item does not exist in all instances of a give entity type, then it is
moved to the notes field. But the real power of the notes fields lies in the
fact that it makes our CMDB model extensible without having to redesign the
model. Occurrences of the notes filed will be designed in the topic map struc-
ture and linked to the topic map layer.

6.1.4 How does our CMDB model fit with other models ?

It was an interesting approach to view our CMDB model against other database
models, relate with them and observe the similarities and differences that exist
among them. Considering the fact that our CMDB solution will function as a
data warehouse it was natural to compare it with data warehouse models.

The star model is the most common model for constructing of the data
warehouses. An example star model for property sales is shown in Figure 6.7.
The star model is consisted of a central table called the fact table, and a set
of small table called dimension tables. The fact table can be extremely large,
since it holds the ”facts” that is going to be analyzed. While the dimension ta-
bles contain descriptive information used as the constraints in data warehouse
queries.

In our CMDB model we can install the MachineResources database box at the
center of the model connecting it by other database boxes through an unique

66

6.1. DISCUSSION

Figure 6.7: Star model

logical value forming a star-like model, see Figure 6.8. Unlike to the data ware-
house star model, the facts in our CMDB model are scattered in other database
boxes as well.

The other similarity between these two models is that there is always one
join operation between the central agent, and its satellite agents. An impor-
tant aspect of these two models is that they are not complex in breadth and
depth. As we can see from the Figure 6.7 the fact table (the most important
one) contains only the values which will draw the business picture of the en-
terprise. The same approach was pursued in designing of our CMDB model
by including only the aspects that are strongly linked to increasing efficiency
in the operation of the datacenters, so that they become more competitive in
the market.

In the standard entity relation models, and traditional CMDB models we
are accustomed to see tables and classes containing large number of elements
deviating from achieving the intended goals. As an example, IBM’s CMDB
version stores detailed configuration information for components. This type
of information cannot be utilized for enhancing the business success, on the
contrary it introduces cost, since the configuration information has to be main-
tained.

A distinctive characteristic of our CMDB model in relation to the star data
warehouse model is that the edge database boxes can be connected to each

67

6.1. DISCUSSION

Figure 6.8: Our CMDB

other. This is achievable because we used an univaral unique key to link them.
This is a flexibility that our CMDB model possesses. As an example we can
extract information from the database boxes such as the Service and Package-
Installed for purpose of finding packages required to set up apache httpd ser-
vice.

68

Chapter 7

Conclusions

The aim of this master thesis was to design a Semantic CMDB model for
Cfengine 3. Traditional CMDB solutions are built based upon hierarchical data
models. These models are complex in structure, and the implementation pro-
cess invokes serious efforts. The hierarchical modeling approach follows a
strict procedure. Behaviors will be separated into different branches. An error
in modeling or an incompatibility in adding new elements requires to redesign
the model.
One should not constrain his view when designing models. Viewing of the
entities’ aspects from different perspectives allowed us to understand more
about their phenomenons. This facilitated us to adjust our approach in rela-
tion to the nature of the phenomena.

Our research work has shown that the models do not need to be complex
in order to provide rich capabilities. We succeed to design a CMDB model
which is characterized of being simple and simultaneously provides numerous
capabilities. The test case showed that the pursued approach is promising in
the real implementation.

Our approach towards CMDB was radical compared to existing CMDB
solutions. Given the limited time we had for this revolutionary CMDB design,
we know that the model will change. This CMDB model will be improved in
the future as we understand more.

7.1 Future work

One aspect of our CMDB model that needs to be addressed is structuring of
the notes fields. The function of notes fields is to build a fully integrated topic
map index. This would be achieved through linking the notes’ occurrences to
the knowledge layer. The work that remains is to determine a pattern that will
distinguishes topics along with their occurrences and associations.

The final piece is the implementation of the designed CMDB model in
Cfengine 3.

69

Bibliography

[1] Martin Sailer Michael Brenner, Markus Garschhammer and Thomas
Schaaf. Cmdb - yet another mib? on reusing management model con-
cepts in itil configuration management, 2006.

[2] N. Karnik A. Kunmar. Moving from data modeling to process modeling
in cim. Technical report, ibm.com, 2005.

[3] V. Tosic and S. Dordevic-Kajan. The common information model (cim)
standard - an analysis of features and open issues. Technical report, 1999.

[4] HP. An insider’s view to the hp universal cmdb. Technical report, 2008.
4AA-1-5976ENW.

[5] R. Baker N. Ayachitula L. Shwartz M. Surendra C. Corley M. Benan-
tar H. Madduri, S. S. B. Shi and S. Patel. A configuration management
database architecture in support of ibm service management, 2007.

[6] ibm. Deployment guide services: Ibm tivoli application dependency dis-
covery manager v7.1, 2008.

[7] R. Hill w. Zhou, D. Sornette and R.I.M. Dunbar. Discrete hierarchical
organization of social group sizes. In Proceedings of the royal society, page
439, 2004.

[8] T. R. Gruber. A translation approach to portable ontologies, chapter Knowl-
edge Acquisition, pages 199–220. 1993.

[9] J. Strassner. Handbook of Network and System Administration, chapter chap-
ter, Knowledge Engineering Using Ontologies. Elsevier Handbook, 2007.

[10] Steave Pepper. Encyclopedia of Library and Information Sciences, chapter
chapter, Topic Maps. CRC Press, 2009.

[11] Steve Pepper. The tao of topic maps, 2000.

[12] Mark Burgess. Knowledge management and promises, 2009.

[13] Peter P. Chen. Entity-relationship modeling: Historical events, future
trends, and lessons learned.

[14] Th. Connolly and C. Begg, editors. Dataabse Systems, page 1209. Univer-
sity of Paisley, 2005. ISBN 82-579-4155-7.

70

BIBLIOGRAPHY

[15] Mark Burgess. An approach to understanding policy based on autonomy
and voluntary coorperation, 2005.

[16] Rolf Guescini Dino Karabeg and Tommy W. Nordeng. Flexible and ex-
ploratory learning by polyscopic topic maps, 2005.

[17] Omg, unified modeling language, version 1.5, 2003.

[18] Sigmund Straumsnes Hrek Haugeud. Simulation of user-driven com-
puter behavior, 2001.

[19] Buff Scott. Practical advice on implementing your configuraton manage-
ment database, 2008.

71

Appendix A

A.1 Summary of boxes’ capabilities

So our model consists of a number of boxes containing information. Let us
describe the contents of these boxes systematically.

A.1.1 The machine box

From a complex container with 44 different elements at the beginning, we have
turned it to a small and powerful box with only 12 elements. Here we list the
main capabilities of machine resources box:

• Machine’s resources

• Information whether machine is virtualized

• The network machine is connected to

A.1.2 The operating system box

The operating system box provides the most useful capabilities. Here we sum-
marize some of them.

• Description of operating system

• Patch level and security updates

• Virtualization type implemented

• Virtualization technology running

• Anomaly detection

A.1.3 The virtual machine box

The virtual machine box serves as an inventory of virtual machines on a data-
center. Here we list the main views that are available for virtual machine box.

• Where virtual machines are deployed

• Resources that they have been given

72

A.1. SUMMARY OF BOXES’ CAPABILITIES

• To which virtualization technology they belong

• Details of anomalies

• License compliance

A.1.4 The architecture box

The architecture box would be used mainly for purposes of:

• Ordering machine’s components from the vendors

• Determining the proper components when upgrading machines or running spe-
cial programs

A.1.5 The service box

The service box provides this information.

• Service types the machine promises to deliver (web, dns, email)

• The technology that is installed to deliver the service (apache, jboss)

• The criticality of service (high, middle, low)

• The status of service (installed, not installed)

• The availability status of service (active, non-active)

A.1.6 The PackageInstalled box

• Packages installed on machines, including its vendor and version

A.1.7 The PackageDependency box

• Dependencies of installed packages, including their vendor and versions

73

Appendix B

B.1 Cfengine configuration code for the test case

##
#
Knowledge base / ontology
#
##

body common control
{
bundlesequence => {

"tm" ,
"manual_entries"

};

version => "1.1";
}

##

body knowledge control

{
graph_output => "true"; # override -g
graph_directory => "/var/www/graphs";

build_directory => "/var/www/";
#id_prefix => "cfengine";

sql_server => "localhost";
sql_database => "cf_topic_map";
sql_owner => "root";
sql_passwd => "kos17"; # No passwd
sql_type => "mysql";

74

B.1. CFENGINE CONFIGURATION CODE FOR THE TEST CASE

query_output => "html";
query_engine => "index.php";

style_sheet => "cf_enterprise.css";

html_banner => "<div id=\"top\"> <div id=\"search\">
<form method=\"post\" action=\"$(query_engine)\">

<p><input class=\"searchfield\" type=\"text\" name=\"regex\" /></p>
</form>

</div>
</div>";

html_footer => "<div id=\"footer\">Copyright © Cfengine AS</div>";

}

##
The Map
##

bundle knowledge tm

{
vars:

#
Association bank
#

"own[f]" string => "owns";
"own[b]" string => "is owned by";

"moth[f]" string => "has motherboard";
"moth[b]" string => "is a component of";

"plat[f]" string => "supports instance of";
"plat[b]" string => "runs on platform";

"same[f]" string => "is related to";
"same[b]" string => "is related to";

75

B.1. CFENGINE CONFIGURATION CODE FOR THE TEST CASE

"dis[f]" string => "is a distribution of";
"dis[b]" string => "has distribution";

"virt[f]" string => "hosts";
"virt[b]" string => "is hosted by";

"prom[f]" string => "promises to deliver";
"prom[b]" string => "is promised by";

"sim[f]" string => "has service type";
"sim[b]" string => "is a kind of";

"dep[f]" string => "depends on";
"dep[b]" string => "is required by";

"loc[f]" string => "is located at";
"loc[b]" string => "holds";

"vers[f]" string => "is a version of";
"vers[b]" string => "has version";

"ven[f]" string => "has vendor";
"ven[b]" string => "released";

"sup[f]" string => "provides support";
"sup[b]" string => "support is provided by";

"run[f]" string => "runs instance of";
"run[b]" string => "runs on";

#
Some related topics form a promise "group by association"
#

"linux_distros" slist => { "suse", "ubuntu", "fedora", "redhat", "debian",
"slackware", "gentoo" };

"linux_platforms" slist => { "x86", "MIPS", "x64", "SPARC", "DEC Alpha", "Itanium",
"PowerPC", "ARM", "m68k", "PA-RISC", "s390", "SuperH", "M32R" };

"solaris_2_platforms" slist => { "sun4c" };

"solaris_10_platforms" slist => { "SPARC-32", "SPARC-32", "x86-32","x86-64" };

76

B.1. CFENGINE CONFIGURATION CODE FOR THE TEST CASE

"slogan_vms" slist => { "vmDax", "vmVox", "vmCat", vmVera };

"apache_webservers" slist => { "vmDax", "dardania", rex, vmVox };

"webservices" slist => { "apache_httpd", "jboss", "tomcat" };

"app_Service_Dep_openssl" slist => { "apache_httpd", "cfengine", "DNS" };

"windows_versions" slist => { "Windows XP", "Windows Vista",
"Windows Server 2003", "Windows NT" };

"redhat_enterprise_linux_5_on_machines" slist => { "slogan", "dardania", dax };

topics:

##
untyped topics are foundation
##

Put these here as short cuts from the front page

Start::

"Categories";

Categories::

"Machine";
"Person";
"Architecture";
"Application_Service";
"Operating_System";
"Virtual_Machine";
"Package";
"Location";

##
typed topics
##

Vendor::
"Sun";

77

B.1. CFENGINE CONFIGURATION CODE FOR THE TEST CASE

"Microsoft";
"redhat";

Person::

"Mark Burgess";
"Alva Couch";
"Fitim Haziri";
"Steve Pepper";

"Danny"
association => a("$(sup[f])","windows","$(sup[b])");

"Robert"
association => a("$(sup[f])","redhat","$(sup[b])");

Machine::

"atlas"
association => a("$(own[b])","Mark Burgess","$(own[f])");

"dardania"
association => a("$(own[b])","Fitim Haziri","$(own[f])");

"slogan"
association => a("$(own[b])","Mark Burgess","$(own[f])");

"eternity"
association => a("$(own[b])","Mark Burgess","$(own[f])");

"najsus"
association => a("$(own[b])","Alva Couch","$(own[f])");

"rex"
association => a("$(own[b])","Steve Pepper","$(own[f])");

"$(redhat_enterprise_linux_5_on_machines)"
association => a("$(run[f])","redhat enterprise linux 5","$(run[b])");

Operating_System::
"redhat";
"Linux";
"Solaris 2.0";
"Solaris 10";

"GNU/Linux"
association => a("$(same[f])","Linux","$(same[b])");

"$(linux_distros)"

78

B.1. CFENGINE CONFIGURATION CODE FOR THE TEST CASE

association => a("$(dis[f])","Linux","$(dis[b])"),
comment => "Linux distro $(linux_distros)";

"windows"
association => a("$(ven[f])","Microsoft","$(ven[b])");

"$(windows_versions)"
association => a("$(vers[f])","windows","$(vers[b])");

"redhat enterprise linux 5"
association => a("is variant of","redhat enterprise linux","is variant of");

"redhat enterprise linux"
association => a("is variant of","redhat linux","is variant of");

"redhat linux"
association => a("is distobution of","redhat","has distribution");

Architecture::

"$(linux_platforms)"
association => a("$(plat[f])","Linux","$(plat[b])");

"$(solaris_2_platforms)"
association => a("$(plat[f])","Solaris 2.0","$(plat[b])");

"$(solaris_10_platforms)"
association => a("$(plat[f])","Solaris 10","$(plat[b])");

Virtual_Machine::

"$(slogan_vms)"
association => a("$(virt[b])","slogan","$(virt[f])");

Application_Service::

"jboss";
"tomcat";

79

B.1. CFENGINE CONFIGURATION CODE FOR THE TEST CASE

"webservice"
association => A("$(sim[f])","@(webservices)","$(sim[b])");

"apache_httpd"
association => A("$(prom[b])","@(apache_webservers)","$(prom[f])");

"postfix"
association => A("$(prom[b])","vmDax","$(prom[f])");

"DNS"
association => A("$(prom[b])","vmDax","$(prom[f])");

Package::
"openssl"
association => A("$(dep[b])","@(app_Service_Dep_openssl)","$(dep[f])");

Location::

"room20_3_4_1"
association => a("$(loc[b])","slogan","$(loc[f])");

"room20_3_4_2"
association => a("$(loc[b])","eternity","$(loc[f])");

"room20_3_4_3"
association => a("$(loc[b])","dardania","$(loc[f])");

}

##

bundle knowledge manual_entries

{
occurrences:

Mark_Burgess::

"mailto:mark@iu.hio.no"

represents => { "Email Address" };

"http://www.iu.hio.no/~mark"

80

B.1. CFENGINE CONFIGURATION CODE FOR THE TEST CASE

represents => { "Home Page" };

slogan::

"cpuCount: 2, cpuSpeed: 2GHz, HardDisk: 300GB, hddCount 2,
Memory 3GB, networkCardt: 1, networkSpeed: 1Gbit/s, machine virtulized: True,
hasAnomaly: False"

represents => { "machine resources" },
representation => "literal";

"InstallationDate: 20-03-2009, Language: English, patchLevel: 3_5,
LastTimeUpdated: 21-04-2009, virtualizationTech: xen,
virtualizationType: paravirtualization"

represents => { "operating system" },
representation => "literal";

"Motherboard: x86, Processor: IntelCore 2 Duo, formfactor: Laptop,
vendorProduct: Dell Latitude E4300"

represents => { "architecture" },
representation => "literal";

vmDax::
"Memory: 500-1024MB, cpu: 2, cpuSeed: 1GHz, HardDisk: 80,
Licence: xxx-xxx-xxx, hasAnomaly: False"

represents => { "virtual resources" },
representation => "literal";

"http://os11.vlab.iu.hio.no/vmDax_monitoring.gif"
represents => { "Monitoring data" },

representation => "url";

Robert::
"sittingPlace: R53, mob. 999-999, tlf.: 666-666, email: robertetmaildotcom"

represents => { "contact info" },
representation => "literal";

}

81

B.1. CFENGINE CONFIGURATION CODE FOR THE TEST CASE

###
Bodies
###

body association a(f,name,b)

{
forward_relationship => "$(f)";
backward_relationship => "$(b)";
associates => { $(name) };
}

###

body association A(f,name_list,b)

{
forward_relationship => "$(f)";
backward_relationship => "$(b)";
associates => { @(name_list) };
}

82

