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Abstract

With the multiplicity usage of computer networking devices called router, it is
becoming common practice for everybody who would like to be online mak-
ing this technology be the most responsible for allowing one of the 20th cen-
tury’s greatest communications developments, the internet, to exist and be-
come very popular in these days. Network management is important and
necessary when dealing with a load of routers from different manufacturers
because they have very different configuration languages which are propri-
etary and completely separate from server configuration. To discover whether
these incompatible languages can be unified into a single open standard that
can be integrated into server management by using promise theory is our goal.

This thesis considers both practical and theoretical parts. It consists of building
a linux router, modeling a set of routing configurations using promise theory
and designing a set of promises for cfengine 3 which can configure the router
directly from the cfengine 3 promise language.
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Chapter 1

Introduction

This chapter serves as an introduction to the subject of the thesis. It gives an
overview of the ideas and motivations behind this project.

1.1 Introduction

The Internet is one of the 20th century’s greatest communications develop-
ments. It allows people around the world to send e-mail to one another in
a matter of seconds, and it lets you distribute and read, among other things
all around the world. We are all used to seeing the various parts of the In-
ternet that come into our homes and offices – the Web pages, e-mail messages
and downloaded files that make the Internet a dynamic and valuable medium.
But none of these parts would ever make it to your computer without a piece
of the Internet that you have probably never seen. In fact, most people have
never stood ”face to machine” with the technology most responsible for allow-
ing the Internet to exist at all: the router. Routers are specialized computers
that send your messages and those of every other Internet user speeding to
their destinations along thousands of pathways.

When you send e-mail to a friend on the other side of the country, how does
the message know to end up on your friend’s computer, rather than on one of
the millions of other computers in the world? Much of the work to get a mes-
sage from one computer to another is done by routers, because they are the
crucial devices that let messages flow between networks, rather than within
networks.

Let’s look at what a very simple router might do. Imagine a small company
that makes animated 3-D graphics for local television stations. There are 10
employees of the company, each with a computer. Four of the employees are
animators, while the rest are in sales, accounting and management. The ani-
mators will need to send lots of very large files back and forth to one another as
they work on projects. To do this, they will use a network. When one animator
sends a file to another, the very large file will use up most of the network’s ca-
pacity, making the network run very slowly for other users. One of the reasons
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1.1. INTRODUCTION

that a single intensive user can affect the entire network stems from the way
that Ethernet works. Each information packet sent from a computer is seen by
all the other computers on the local network. Each computer then examines
the packet and decides whether it was meant for its address. This keeps the ba-
sic plan of the network simple, but has performance consequences as the size
of the network or level of network activity increases. To keep the animators’
work from interfering with that of the folks in the front office, the company
sets up two separate networks, one for the animators and one for the rest of
the company. A router links the two networks and connects both networks to
the Internet.

The router is the only device that sees every message sent by any computer on
either of the company’s networks. When the animator in our example sends
a huge file to another animator, the router looks at the recipient’s address and
keeps the traffic on the animator’s network. When an animator, on the other
hand, sends a message to the bookkeeper asking about an expense-account
check, then the router sees the recipient’s address and forwards the message
between the two networks.

One of the tools a router uses to decide where a packet should go is a rout-
ing table. A routing table is a collection of information, including:

• Information on which connections lead to particular groups of addresses

• Priorities for connections to be used

• Rules for handling both routine and special cases of traffic

A routing table can be as simple as a half-dozen lines in the smallest routers,
but can grow to massive size and complexity in the very large routers that han-
dle the bulk of messages.

A router, then, has two separate but related jobs:

• The router ensures that information does not go where it is not needed.
This is crucial for keeping large volumes of data from clogging the con-
nections of ”innocent bystanders.”

• The router makes sure that information does make it to the intended
destination.

In performing these two jobs, a router is extremely useful in dealing with two
separate computer networks. It joins the two networks, passing information
from one to the other and, in some cases, performing translations of various
protocols between the two networks. It also protects the networks from one
another, preventing the traffic on one from unnecessarily spilling over to the
other. As the number of networks attached to one another grows, the configu-
ration table for handling traffic among them grows, and the processing power
of the router is increased. Regardless of how many networks are attached,
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1.2. PROBLEM DESCRIPTION

though, the basic operation and function of the router remains the same. Since
the Internet is one huge network made up of tens of thousands of smaller net-
works, its use of routers is an absolute necessity.

1.2 Problem Description

When there are too many routers in the network, a problem that would be
discussed is about ”Network Management” which is refered to the activities,
methods, procedures, and tools that pertain to the operation, administration,
maintenance, and provisioning of networked systems. Operation deals with
keeping the network (and the services that the network provides) up and run-
ning smoothly. It includes monitoring the network to spot problems. Adminis-
tration deals with keeping track of resources in the network and how they are
assigned and keep the network under control. Maintenance is concerned with
performing repairs and upgrades to make the managed network to run better.
Provisioning is concerned with configuring resources in the network to support
a given service.

There are several approaches to accomplish the goal of network management
which can be described as

1. Command Line Interface (CLI): a mechanism for interacting with a router
by typing commands to conduct the system using telnet or ssh protocol.

2. Text User Interface (TUI): this way of instructing a device to perform a
given task is referred to as ”entering” a command: the system waits for
the user to conclude the submitting of the text command by pressing the
”Enter” key.

3. Web Graphical User Interface (GUI): more user-friendly and convenient
approach comparing to CLI as contrasts with the use of a mouse pointer.

4. Simple Network Management Protocol (SNMP) [1]: an application-layer
protocol that provides a message format for communication between
SNMP managers and agents. The SNMP agent contains Management In-
formation Base (MIB) variables, a collection of managed objects, whose
values the SNMP manager can request or change through Get or Set op-
erations.

5. YANG [28]: a data modeling language used to model configuration and
state data manipulated by the NETCONF protocol, NETCONF remote
procedure calls, and NETCONF notifications.

Other than SNMP and YANG, the way to deal with a router is relied on a very
specific configuration language from different vendors/router manufacturers
causing it is hard to handle if in the network uses many diffferent kind of
routing products.

12



1.3. MOTIVATION

1.3 Motivation

Different vendors/router manufacturers have very different configuration lan-
gauges which are proprietary and completely separate from server configura-
tion. Our aim is to discover whether these apparently incompatible languages
can be unified into a single open standard that can be integrated into server
management. All the main routing platforms today are based on some flavour
of Unix, so we can imagine that in the future all management will simply
be unix configuration management. We do this by using promise theory - a
generic approach to modelling policy.

Since we use promise theory, cfengine is the best tool to handle this task in
order to prove of concept in practice.

1.4 Document Structure

This thesis will be constructed as follow:

Chapter 2, the background chapter, will provide the reader with the appropriate
background information about dynamic routing protocols and selected router
vendors/manufacturers. The goal is introducing the reader to the aspects and
challenges on the research topic.

Chapter 3 explains promise theory, assumptions, relationship to cfengine and
example of how to represent configurations as promises.

Chapter 4 typically presents an approach to modelling routing promises ex-
plaining what different between Cisco/Juniper/Vyatta is and what the agents
and the promise types of routing are.

Chapter 5 shows how to implement a Vyatta linux router and a model for
the set of promises that can be applied to all three platforms.

Chapter 6 contains the conclusion of the thesis. This chapter will discuss in-
teresting element in finding and suggests some future work.

Hereafter follows a Bibliography and Appendix.
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Chapter 2

Background on Routing
Protocols and Vendors

This chapter provides the reader with the appropriate background information
about dynamic routing protocols and selected router vendors/manufacturers.

2.1 Introduction to IP Routing

Routing is the act of forwarding packets toward a given destination from one
network segment or interface to the next. Routing tables are the databases that
routers use to route traffic toward their destination. These tables contain the
network addresses and prefixes can be:

1. learned from dynamic routing protocols such as RIP, OSPF, and BGP.

2. learned statically from static (configured) routing-table entries.

3. learned from the router’s network interfaces.

Each address and prefix in a routing table has a next hop associated with it that
takes the packet one hop closer to its destination. IP packets that a router re-
ceives contains two types of information: the packet data itself (payload) and
information that identifies the packet. In IP packets, the identifying informa-
tion is at the beginning of the packet, in the header. One of these header fields
is the source address, which states the packet’s origin; another, which is key
to the routing tables, is the destination address, which tells where the packet
is going when the router uses standard destination-based forwarding. When
the router is determining the path toward the destination, it checks the rout-
ing table for a route that matches the packet’s destination and then sends the
packet to the next hop associated with that route. If there is no exact match,
the router locates a more general route, selecting the longest match, which is
the route that matches the most bits in the network portion of the address. For
example, if the packet’s destination is 10.0.16.2 and the routing table contains
a route to 10.0.16.2/32, which is the address of the specific host, the packet is
sent using the next hop associated with that route. If the only matching routes
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2.1. INTRODUCTION TO IP ROUTING

in the table are 10.0.0.0/8 and 10.0.16.0/24, the latter route is used because it is
the longest match.

If no match is found in the routing table, the default route of 0.0.0.0/0 is used
if it exists. If no default route is configured or learned, the traffic is dropped.

Routing protocols are broken up into a few different categories, in two senses.
First, we have IGP, or Interior Gateway Protocols. RIP, OSPF, and ISIS are a
few IGP which you may have heard about. These are routing protocols that
deal with intra-domain routing. EGP, Exterior Gateway Protocols, deal with
inter-domain routing, between enterprises. Now defunct, EGP was actually a
protocol, but BGP is now the standard inter-domain protocol.

Second, routing protocols are said to be of two categories in another sense:
link-state, or vector-distance. The vector-distance approach is: ”tell your neigh-
bors about the world.” This means that you will broadcast your entire routing
table, to all your neighbors. The ”vector” is the destination, and the ”distance”
is really a metric, or hop count. Link-state routing protocols ”tell the world
about your neighbors.” The idea is to figure out who is ”up” and broadcast
that information about their link’s state to all other routers. Link-state is very
computationally intensive, but it provides an entire view of the network to all
routers.

Most people prefer link-state protocols because they converge faster, which
means that all of the routers have the same information. Link-state calcula-
tions take a long time though, and happen every time we get an update, so
they cannot be used Internet-wide.

In a Nutshell:

• Routers send packets toward their destination, normally by ship-
ping it toward a router that knows a bit more about the destination
topology.

• Routing is two one-way problems; it is very common for your pack-
ets to take asymmetric routes.

• Link-state: fast convergence, eats CPU. Vector-distance: slow con-
vergence, easier on the silicon.

2.1.1 RIP

The Routing Information Protocol (RIP) [13, 15, 22, 21]; was developed as part
of the ARPANET project and was included in the Unix BSD operating system
in the early 1980s. RIP was widely deployed in the 1980s and became the in-
dustry standard for interior routing. It was standardized by the IETF in 1988,
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2.1. INTRODUCTION TO IP ROUTING

in RFC 1058. This version is referred to as RIP Version 1. RIP Version 2, de-
fined in RFC 2453, added support for Classless Interdomain Routing (CIDR)
and authentication. RIP Version 2 MD5 authentication is defined in RFC 2082.
RFCs 2080 and 2081 define RIPng, which is designed for IPv6 networks.

RIP is the simplest unicast routing protocol in widespread use today. RIP is
very simple, both in configuration and protocol design, so it is widely used in
simple topologies. However, RIP does not scale well to larger networks, where
OSPF are generally more appropriate, because it uses a distance-vector algo-
rithm (also called the Bellman-Ford algorithm) to determine the best route to a
destination. The distance is measured in hops, which is the number of routers
that a packet must pass through to reach the destination. The best route is
the one with the shortest number of hops. In the routing table, the router
maintains two basic pieces of information for RIP routes: the IP address of the
destination network or host and the hop count (metric) to that destination.

Every 30 seconds, devices on a RIP network broadcast RIP route information,
which describes their view of the network topology and generates a lot of traf-
fic on the network. RIP uses two techniques to reduce the amount of traffic:

• Split horizon – A device receives a route advertisement on an interface
but does not retransmit that advertisement back on the same interface.
This limits the amount of RIP traffic by eliminating information that its
RIP neighbor has already learned.

• Poison reverse – If a RIP device learns from an interface that a device is
no longer connected or reachable, it advertises that device’s route back
on the same interface, setting the number of hops to 16, which means
infinite or unreachable. Poison reverse improves the convergence time
on a RIP network.

If you use RIP, you should remember that the protocol itself has some inher-
ent limitations. RIP can be used only in small networks because the maxi-
mum number of hops to a destination is 16. If a RIP device is more than 15
hops away, it is considered to be unreachable. In practice, this is often a seri-
ous limitation. From a route convergence point of view, you should use RIP
only if your network is small, with no devices more than four hops from each
other. If the network diameter is larger than this, the route convergence time
increases to about two to four minutes, which can lead to network instabilities
and routers becoming unreachable. In comparison, OSPF typically converge
in about 40 seconds.

RIP Version 1 has two additional limitations. First, it uses only classful rout-
ing, so it cannot handle subnet and network mask information. Second, it uses
clear-text password authentication, which is vulnerable to attack. RIP Version
2 was developed to address these two limitations, supporting CIDR and MD5
authentication. However, the hop-count limit of 15 was retained to maintain
interoperability with Version 1.
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2.1. INTRODUCTION TO IP ROUTING

In a Nutshell:

• RIP is a distance-vector interior gateway routing protocol: it uses a
hop count and next-hop router to specify routes.

• RIP Version 1 is uses broadcast and does not support CIDR. RIP
Version 2 is classless and uses multicast.

• Even though it converges slowly and suffers from certain bugs, RIP
is well-suited for small to medium environments.

2.1.2 OSPF

The Open Shortest Path First (OSPF) protocol [14, 23, 24]; is an IGP that routes
packets within a single AS, or domain. The IETF began work on OSPF in
the late 1980s to develop a replacement for RIP, which was the only rout-
ing protocol at the time, because people felt that a stronger routing protocol
was needed and the link-state algorithm looked promising. OSPF was imple-
mented by router vendors in the early 1990s and was eventually standardized
by the IETF in 1997 as OSPF Version 1. The current standard is Version 2, de-
fined in RFC 2328. Much of the OSPF design was lifted from IS-IS, which is
an ISO routing-protocol standard developed at the same time. OSPF was de-
signed specifically for TCP/IP and explicitly supports IP subnetting and the
tagging of externally derived routing information. OSPF also provides for the
authentication of routing updates. RFC 2740 defines OSPF for IPv6.

OSPF is a link-state protocol and uses link-state advertisements (LSAs) to de-
scribe the network topology. Each OSPF router generates LSAs that describe
the topology it sees and floods the LSAs throughout the domain. As a result,
each router ends up with a link-state database that describes the same network
topology. Once the router has the complete network topology, it runs the Di-
jkstra SPF calculation to determine the shortest path to each destination in the
network. The calculation results in destination/next-hop pairs that are placed
in the OSPF routing database. Each router performs the SPF calculation in-
dependently, and the result is that each OSPF router has an identical routing
database (though each router has different next hops for the destinations).

People use OSPF when they discover that RIP just is not going to work for
their larger network, or when they need very fast convergence. OSPF is the
most widely used IGP. When we discuss IGPs, we are talking about one rout-
ing domain, or Autonomous System (AS). Imagine a medium-sized company
with multiple buildings and departments, all connected together and sharing
two redundant Internet links. All of the buildings on-site are part of the same
AS. But with OSPF we also have the concept of an Area, which allows further
segmentation, perhaps by department in each building.

17



2.1. INTRODUCTION TO IP ROUTING

Perhaps the most important reasons for OSPF’s popularity are that it is both an
open standard and a mature protocol. Virtually every vendor of routing hard-
ware and software supports it. This makes it the routing protocol of choice in
multivendor enterprise networks. It is also frequently found in ISP networks
for the same reasons.

To understand the design needs for areas in OSPF, we need to know how OSPF
works. There is some terminology including:

• Router ID - In OSPF this is a unique 32-bit number assigned to each
router. This is chosen as the highest IP address on a router, and can be
set large by configuring an address on a loopback interface of the chosen
router.

• Neighbor Routers - Two routers with a common link that can talk to
each other.

• Adjacency - A two-way relationship between two neighbor routers. Neigh-
bors don’t always form adjacencies.

• LSA - Link State Advertisements are flooded; they describe routes within
a given link.

• Hello Protocol - This is how routers on a network determine their neigh-
bors and form LSAs.

• Area - A hierarchy. A set of routers that exchange LSAs, with others in
the same area. Areas limit LSAs and encourage aggregate routes.

To get this information distributed, OSPF does three things.

First, when a router running OSPF comes up it will send hello packets to
discover its neighbors and elect a designated router (DR). The hello packet
includes link-state information, as well as a list of neighbors. Providing infor-
mation about your neighbor to that neighbor serves as an ACK, and proves
that communication is bi-directional. OSPF is smart about the layer 2 topol-
ogy: if you’re on a point-to-point link, it knows that this is enough, and the
link is considered ”up.” If you’re on a broadcast link, the router must wait for
an election before deciding if the link is operational.

The election vote can be stuffed, with a priority ID, so that you can ensure
that your beefiest router is the DR. Otherwise, the largest IP address wins. The
key idea with a DR and backup DR (BDR) is that they are the ones to gen-
erate LSAs, and they must do database exchanges with other routers in the
subnet. So, non-designated routers form adjacencies with the DR. The whole
DR/BDR design is used to keep the protocol scalable. The only way to ensure
that all routers have the same information is to make them synchronize their
databases. If you have 15 routers, and want to bring another one up, then you
would have to form 15 new adjacencies. If you centralize the database, with
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a backup (just in case), then adding more becomes an easy to manage linear
problem.

The database exchange is part of bringing up adjacencies after the hello pack-
ets are exchanged, and it is very important. If the databases are out of synchro-
nization, we could risk routing loops, blackholes and other dangers. The third
part of bringing up an adjacency is Reliable Flooding, or LSA exchange.

The details of an LSA, as well as a more advanced discussion of areas will
not be discussed here. For now, just know that area zero is special, and if you
have multiple areas, they must all touch area zero. This is also called the Back-
bone Area. There are different types of areas in OSPF, and it can get really
absurd when you throw in virtual Links to allow two areas to speak without
hitting area zero.

OSPF defines several different types of areas. The core of an OSPF network
is the backbone area, which is the area 0 (written as the 32-bit 0.0.0.0). All ABRs
are attached to the backbone area, as are any networks that have an area ID of
0.0.0.0. The backbone area is a transit area that distributes traffic between other
areas. The routers that make up the backbone must be physically contiguous.
If they are not, you create OSFP virtual links so that the backbone routers ap-
pear to be contiguous.

In a straightforward OSPF network, all areas connect directly to the backbone
area. All these areas, including the backbone, are referred to as regular areas.

OSPF stub areas are areas through which or into which AS external advertise-
ments are not flooded. A stub area receives detailed or summarized routing
information about other areas but receives no information about external ASs.
It can receive a default summary from an ABR to reach external ASs. Because
a stub area has no external routes, it cannot connect to an external area (that is,
it cannot contain an ASBR) and you cannot redistribute routes from another
protocol into the stub area. You might use stub areas when much of the topo-
logical database consists of AS external advertisements because it reduces the
size of the topological databases and therefore the amount of memory required
on the internal routers in the stub area. Another restriction on stub areas is that
you cannot create a virtual link through them.

Not-so-stubby areas (NSSAs) are a variant of stub areas that allows a stub area
to connect to an external network. This allows external routes originated by
ASBRs within the areas to be flooded in Type 7 LSAs and then leaked into
other areas. However, external routes from other areas are not flooded into the
NSSA.

Finally, there also are different types of routers in OSPF.

• ABR - An Area Border Router is a router that is in area zero, and one or
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more other areas.

• DR, BDR - A Designated Router, as we said, is the router that keeps the
database for the subnet. It sends and receives updates (via multicast)
from the other routers in the same network.

• ASBR - The Autonomous System Boundary Router is very special, but
confusing. The ASBR connects one or more AS, and exchanges routes be-
tween them. The ASBR’s purpose is to redistribute routes from another
AS into its own AS.

In a Nutshell:

• OSPF is a fast-converging, link-state IGP.

• OSPF forms adjacencies with neighbors and shares information via
the DR and BDR using Link State Advertisements.

• Areas in OSPF are used to limit LSAs and summarize routes. Ev-
eryone connects to area zero, the backbone.

2.1.3 BGP

The IGPs, RIP and OSPF maintain the mapping for the topology within a sin-
gle administrative domain or AS, along with the set of best paths between
systems within the domain. Each AS uses one or more common IGPs and com-
mon metrics to determine how to route packets within the AS. The adminis-
tration of an AS appears to other ASs to have a single coherent interior routing
scheme and presents a consistent picture of what destinations are reachable
through it.

To handle inter-AS routing, IGPs use an EGP. EGPs keep track of how rout-
ing domains are connected to each other and the sequence of domains that
must be crossed to reach a particular destination. Although a number of EGPs
were developed in the late 1980s, the Border Gateway Protocol (BGP) is the
only one currently being used on IP networks and the Internet. Version 1 of
BGP was introduced in 1989, and the current usage, Version 4, is defined in
RFC 1771 and has been in use since 1995.

BGP [12] is the routing protocol that holds the Internet together, providing
the mesh-like connectivity of Internet service provider (ISP) networks. ISPs
use BGP to connect to each other, forming the virtual backbone of the Internet.
Large enterprises also sometimes use BGP to connect to their ISPs, as well as
to connect portions of their internal corporate network.

BGP uses a path vector algorithm to determine network topology and paths
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to destinations. This algorithm defines a route as a pairing between a desti-
nation and the attributes of the path to that destination. It considers multiple
attributes of the path in order to choose the best route to the destination. In
comparison, a distance-vector protocol uses a single distance metric to choose
the best route. BGP routing updates carry path information, which is a full list
of the transit ASs that must be crossed between the AS receiving the update
and the AS that can forward the packet using its IGP. BGP uses this list to elim-
inate loops in the path because a router can check the list of ASs to see whether
a route has already passed through it. BGP treats each AS equally when con-
sidering the path, no matter how big or small it is. BGP does not know how
many routers or what type of links are in an AS.

The key features of the protocol are the notion of path attributes and aggrega-
tion of network layer reachability information (NLRI). Path attributes provide
BGP with flexibility and expandability which are partitioned into well-known
and optional. The provision for optional attributes allows experimentation
that may involve a group of BGP routers without affecting the rest of the In-
ternet. New optional attributes can be added to the protocol in much the same
fashion as new options are added to the Telnet protocol, for instance.

One of the most important path attributes is the AS-PATH. AS reachability
information traverses the Internet, this information is augmented by the list of
autonomous systems that have been traversed thus far, forming the AS-PATH.
The AS-PATH allows straightforward suppression of the looping of routing in-
formation. In addition, the AS-PATH serves as a powerful and versatile mech-
anism for policy-based routing.

In a Nutshell:

• BGP is the routing protocol to handle inter-AS routing, unlike RIP
and OSPF.

• BGP uses an algorithm that cannot be classified as either a pure
distance vector, or a pure link state.

• BGP by itself is very complicated. No one understand it clearly. To
be expert in BGP, you need to know BGP Attributes very well.

2.2 Router Vendors/Manufacturers

2.2.1 Cisco Systems, Inc.

Cisco Systems, Inc. [16] is a multinational corporation company with a huge
amount of employees all around the world. The company headquarter is in
San Jose, California. Cisco designs and sells networking and communications
technology and services under five brands, namely Cisco, Linksys, WebEx,
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IronPort, and Scientific Atlanta. Everybody should know that Cisco is the
largest vendor in the market these days. It is said that Cisco was not the first
company to develop and sell a router, but it was one of the first to sell com-
mercially successful multi-protocol routers, to allow previously incompatible
computers to communicate using different network protocols. Moreover, a
reputation of Cisco brand is very high. For someone who would like to do a
career in networking computer, might have at least one of Cisco Career Certi-
fications to be quilified.

2.2.2 Juniper Networks, Inc.

Juniper Networks, Inc. [17] is an information technology company where the
headquarter is located in Sunnyvale, California and founded in 1996. The
company designs and sells Internet Protocol network products and services.
Juniper also partners with Nokia Siemens Networks, Ericsson, and Alcatel-
Lucent to provide IP/MPLS network solutions to customers. Juniper might
be the second largest routing vendor after Cisco as they have been competing
for a market share to each other for the whole time. The Juniper Operating
System (JUNOS) was developed based on FreeBSD, a Unix-like free operating
system descended from AT&T UNIX via the Berkeley Software Distribution
(BSD) branch. To have the Juniper to be a case study, would be an advantage
for a future work on this field especially for the cfengine.

2.2.3 Vyatta Inc.

Vyatta Inc. [20] manufactures the open source software routers and firewalls.
Their main product is a Linux distribution with specialized networking appli-
cations and functionality, and management interfaces for those applications
based on XORP [27], or Extensible Open Router Platform, an open source
routing software suite. In my opinion, XORP requires someone to download
the code, compile it on a linux machine, and then integrate a lot of different
parts. Vyatta taking on that job, by pulling things together into a more user-
friendly distribution. Furthermore, the differences between Vyatta and XORP
are huge. XORP is simply a routing stack that runs on Unix-like systems. Vy-
atta is a complete system with numerous other features (firewall, VPN, DHCP,
VLANs, etc., etc.) that are not part of XORP. Vyatta also integrates the features
into a system. Their product is also intended and marketed as a replacement
for Cisco with a strong emphasis on cost and the flexibility inherent in an open
source, Linux-based system running on commodity x86 hardware by provid-
ing a Cisco Replacement Guide on their website which shows various Cisco
products and the comparable Vyatta/x86 solutions. [18]
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Chapter 3

Introduction to Promise Theory
and Cfengine

We are looking for a way to manage routing in a vendor-independent manner.
In this chapter we look at a model using promises that allows us to describe
routing independently of any technology.

3.1 Promise Theory

Promise theory begins with the idea of completely autonomous agents (com-
ponents) some of which might be able to communicate or interact through the
promises they make to one another. Promise theory is quite a new theory to
describe and understand behaviour of systems for what can be happened in a
network of entirely components.[7, 3, 6]; Rather than assuming the belief that
”only that which is programmed happens”, it takes the opposite viewpoint:
”only that which is promised can be predicted”. The components in Promise
theory are honestly autonomous. That means they decide their own behavior,
cannot normally be forced to do something against its will, but can voluntarily
cooperate with one another. Every agent has its own viewpoints and under-
stands it based on its own information. For instance: a network interface that
has its own private IP address, netmask and broadcast address, will usually
see a different set of packets than another which is configured differently.

In computer science, most models are based on the idea of state machine, or
chage of state. We use the idea of promise to talk about properties without
having to talk about actions. When we talk about promises behavior, we do
not refer to just what we see happening at the moment, but what we expect
to happen in the future because we can ensure that a system will behave in
predictable ways. Expected behaviour is declared by agents in advance. As a
result, we can predict the behaviour from the declarations or ”promises”.

It is important to have a clear concept when modeling. It is defined by Mark
Burgess for talking about promises and the behaviour of agents form here [9]:
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• Behaviour - The observable properties and actions exhibited by an agent.

• Agent - Any component or entity that has autonomous or independent
be- haviour and/or information.

• Promise - A voluntary declaration made by one agent (the promiser) to
another agent (the promisee) about a fact or actions which the promiser
believes the promisee has not (yet) observed.

• Command - A message requesting that an agent perform an action.

• Obligation - A feeling of compulsion to make a promise.

• Action - An event during which a single agent (and its private resources)
change from one state to another.

• Configuration - An arrangement or pattern formed by several indepen-
dent states.

These are quite abstract, but it is usually an advantage in modelling general
concepts. The most important at least you need to know is most theories of
computer science assume that commands that are issued are complied regard-
less of whether they triump. In promise theory, no agents are obliged to make
a promise.

According to an agent definition, every part of a system which can give a
promise, receive a promise or evaluate the value of a promise independently
should be a agent. The main idea is to reduce a system to its basic components.
This could lead to a large number of agents, but we try to keep it simple and
do not introduce agents that we do not need to refer to. Some agents will make
the same promises as others that we might not concern about different agents
in a group that all behave the same, but some agents might need to be separate.

Promises are made by agents. We write a promise

Promiser
body
−→ promisee (3.1)

For example:

a1
b

−→ a2 (3.2)

The body of the promise contains a description of what the promise is about
(type of promises) which we can tag bodies b for simplicity. For instance:

• Promise to tell my current status.

• Promise to log all changes.

• Promise to process a batch file.
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We assume for simplicity that the promise types do not overlap with one an-
other. There is no problem if an agent makes two promises of different types
to another agent, e.g. promising to log all changes and promising to process a
batch file. Nor is there a problem in making two completely identical promises,
e.g. promising to tell the current status and promising to tell the current sta-
tus (this is the same thing). However, we shall not make two promises of the
same type with different constraints, e.g. promising to response a request in
10 ms and promising to response a request in 20 ms. This is a contradiction, or
we shall say broken promise. So, to summarize, repeating the same promise
twice is okay. Promises are idempotent: repetition confirms but they dont add
up cumulatively.

Promises are not transitive in general. If a promises b to a’ and a’ promises
b’ to a”, then it is not true that a has promised anything whatsoever to a”. We
write it down like this:

a
b

−→ a′
b′

−→ a′′ (3.3)

We should be careful not to confuse promises with communication on a point-
to-point between two agents. We can make a promise with body +b to be a
specification to give behaviour from one agent to another, while a promise
with body -b is a specification of what behaviour would be received by one
agent from another also (see table 3.1 or from here [9]).

Symbol Interpretation

a
+b
−→ a’ Promise from a to a’ with body b

a’
−b
−→ a Promise to accept b

va(a
b

−→ a’) The value of promise to a

va′(a
b

−→ a’) The value of promise to a’
⊕ Combination of promises in parallel
⊗ Combination of promises in series

Table 3.1: Summary or promise notation

With reference to a value of promise, if a promise is valuable, it is a reason
why a promise will be kept. If a promise has a negative value, it might be kept
unless it is exchanged something in return.

3.2 Cfengine

Cfengine [2, 10]; is a policy-based server/client configuration management
system written by Mark Burgess at Oslo University College. Its primary func-
tion is to provide automated configuration and maintenance of computers,
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from a policy specification. It is available for all major UNIX and UNIX-like
operating systems, and it also run under recent Windows operating systems
via the Cygwin UNIX-compatibility environment/libraries.

Cfengine consists of a number of components, separate programs that work
together. The major components of cfengine are:

• cfagent - This is a program which actually interprets policy promises
and implements them in a convergent way, which is specified in a file
update.conf and cfagent.conf. This program can also use data generated
by the statistical monitoring engine cfenvd and it can fetch data from
cfservd running on local or remote hosts.

• cfexecd - This is a program which can execute cfagent and logs its out-
put. It can either be run in daemon (standalone) mode or in non-daemon
mode using a crontab on a UNIX-like system according to policy setting
in cfagent.conf.

• cfservd - This is a deamon which deals with two purposes. One is to act
as a file server for the other cfengine hosts to which would like to copy
files and the other purpose is to listen a request from the other cfengine
hosts to start cfagent on receipt of a connection from cfrun. Its configu-
ration file is cfservd.conf.

• cfrun - This is a command used to initiate cfagent on other cfengine
hosts. We might say cfrun contacts remote hosts and requests that they
run cfagent.

• cfenvd - This is a deamon used to collect statistics about resource usage
on the hosts which it runs. The resource usage, for example, are users,
load, processes and sockets.

One of the main innovations of cfengine is the idea that changes in computer
configuration should be carried out in a convergence and voluntary cooperation.

Convergence means that each change operation made by the agent should have
the character of a fixed point. Rather than describing the steps needed to make
a change, cfengine describes the final state in which one wants to end up. The
agent then ensures that the necessary steps are taken to end up in this ”policy
compliant state”. Thus, cfengine can be run again and again, whatever the ini-
tial state of a system, and it will end up with a predictable result.

Voluntary cooperation is a cooperative solution based on indiviual autonomy.
It means that no cfengine component is capable to receive information which it
has not clearly asked for itself. According to this idea, it allows strong security,
easy adaptability and resilience to change environments.

With regard to the most recent version of cfengine, cfengine 3 is a complete
rewrite of cfengine front-end. It is said on the cfengine website [4] that the
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aim of cfengine 3 is to remove the limitations from the organically grown of
cfengine 2. Convergence, however, is still central to the design and function-
ing of cfengine since cfengines goal is to bring the system to a state of stable
equilibrium and to thereafter maintain it in that state. Tool like cfengine are
maintenance systems, not really like change management systems. Mainte-
nance is a process of small changes or corrections to a model. Models that talk
about change management tend to forget everything after every change, but
maintenance is necessary to repair the system or return it to its intended state
like cfengine does.

Cfengine 3’s new language [11, 8]; is an implementation of the theoretical
model developed at Oslo University College over the past four year, known
as ”promise theory”. Promises were originally introduced by Mark Burgess
as a way to describe cfengine’s model of autonomy. From the idea that all the
parts of the system are independent policy decision points. The most visible
component of cfengine 3 is the new language interface comparing to cfengine
2.

Figure 3.1: Compare cfengine 2 and 3 language interface

Cfengine is developed based on promises. A promise is madefrom one
autonomous entity to another. Two essential things to make promises to the
system are promise object (or promiser) and recipient (or promisee). Thus we
can imagine a promise as an arrow from one entity to another.

"promiser" -> "promisee"

After that, we distinguish different promises from one another by defining the
promise body, which is a label on the arrow describing something about what is
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being promised. We write this down as follow:

subject => decision/constraint

A single promise might consist of many subdivisions. In cfengine 3, they use
the term promise bundle to describe this and also simply list related promise
bodies after the promiser, making a general pattern of a statement in cfengine
3 looks like Figure 3.2 [5]:

Figure 3.2: The general form of a statement in cfengine 3

Cfengine arranges promises into ”bundles”. However, sometimes a deci-
sion or a given constraint might involve with many attributes that are grouped
together. In this case, these are grouped into a ”body” which is simply an ag-
gregate of subsubject, choice pairs [5].

Figure 3.3: ”Body”, function-like in cfengine 3

We should not think of bundles as private functions in the sense of an ob-
ject programming language, although they can have private variables. The
promise within do not act on private workspace, but they can act on any part
of the system on which the agent is running. For ease of understanding, the
organization is absolutely formal and merely cosmetic. We used all these con-
cepts to design a cfengine promise routing language.
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Chapter 4

Modelling Routing Using
Promises

Promises fit the way routers work quite well - autonomous behaviour, config-
ured at a point. We now want to use promises to model a routing scenario and
compare it to vendor languages.

4.1 Commonalities and Differences between Cisco, Ju-

niper and Vyatta

The project itself concerns both practical and theoretical skills. In order to do
some experiments, we need to have a clear concept in theory before doing
some practical works. To achieve this idea, we started by creating a simple
network scenario to compare and find commonalities and differences aspects
between various vendors who provide routing products. Due to resource con-
straints, we made a decision to choose routers from reliable vendors in the
market these days: Cisco Systems, Inc, Juniper Networks, Inc. and Vyatta. (The
reason to make this decision is mentioned in Chapter 2.2.)

A research scenario is simple and straightforward. It consists of three routers
connected to each other like a triangle, as illustrated in Figure 4.1.
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Figure 4.1: A simple research scenario

Router 1 has three network interfaces, which a network interface 2 connects
to Router 2’s network interface 1 and a network interface 3 connects to Router
3’s network interface 1. In the same way, Router 3 has three network interfaces
connected to router 1 and 2. Only Router 2 has two network interfaces. Router
2’s network interface 2 is connected to Router 3’s network interface 2.

Router 1 IP Address Subnet Mask

Interface 1 192.168.0.1 255.255.255.0
Interface 2 172.16.20.1 255.255.255.0
Interface 3 172.16.30.1 255.255.255.0
Loopback 10.0.1.1 255.255.255.0

Router 2 IP Address Subnet Mask

Interface 1 172.16.20.2 255.255.255.0
Interface 2 10.9.1.2 255.255.255.0
Loopback 10.0.2.2 255.255.255.0

Router 3 IP Address Subnet Mask

Interface 1 172.16.30.3 255.255.255.0
Interface 2 10.9.1.3 255.255.255.0
Interface 3 192.168.1.3 255.255.255.0
Loopback 10.0.3.3 255.255.255.0

Table 4.1: Summary of all routers’ network interfaces for the research scenario

After that we implemented the network according to the information in
Table 4.1 using static route, RIP, OSPF and BGP. There were 6 cases have been
studied, being expressed by:
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4.1.1 Static route network

A static route network is a network which there is no dynamic routing proto-
col implemented. A routing table is created by simple adding it line by line.
We manually configured the routers following a Figure 4.1 and told the routers
about to which interfaces or next-hop IP addresses to forward the traffic. We
implemented by using these commands regarding each vendor product to
make a routing table in the router 2 to forward traffic to network 192.168.0.0/24
by the next-hop IP address 172.16.20.1.

• Cisco:
Cisco@R2(config)# ip route 192.168.0.0 255.255.255.0 172.16.20.1

• Juniper:
Juniper@R2# set routing-options static route 192.168.0.0/24 next-hop 172.16.20.1

• Vyatta:
Vyatta@R2# set protocols static route 192.168.0.0/24 next-hop 172.16.20.1

The outcome of the command was the same for all. For any traffic, if the des-
tination network is 192.168.0.0 with subnet mask 255.255.255.0, forward the
traffic to an next-hop address which its IP address is 172.16.20.1.

All configurations for static route networks are located in Appendix A.

4.1.2 RIP network

A RIP network is a network which is used a dynamic routing protocol called
RIP to make a routing table and route traffic. Instead of manually defining a
way to route traffic, RIP will deal with this task by its own.

We implemented RIP version 2 for all routers to ensure that RIP would
work perfectly without any classless inter domain routing (CIDR) problems.
This was an example how to implement RIP network depending on different
vendor products. As the result, the 2nd router broadcasts its information to
all interfaces and when the network is converged, it would have a fine routing
table, ready to operate.

• Cisco:
Cisco@R2(config)# router rip
Cisco@R2(config-router)# version 2
Cisco@R2(config-router)# network 172.16.20.0
Cisco@R2(config-router)# network 10.9.1.0

• Juniper:
Juniper@R2# set policy-statement advertise-rip-routes term 1 from protocol di-
rect
Juniper@R2# set policy-statement advertise-rip-routes term 1 from protocol rip
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Figure 4.2: A RIP scenario

Juniper@R2# set policy-statement advertise-rip-routes term 1 then accept
Juniper@R2# set protocol rip
Juniper@R2# edit group rip-group
Juniper@R2# export advertise-rip-routes
Juniper@R2# set neighbor fe-0/0/0
Juniper@R2# set neighbor fe-0/0/1

• Vyatta:
Vyatta@R2# set policy policy-statement EXPORT CONNECTED term 1 from
protocol connected
Vyatta@R2# set policy policy-statement EXPORT CONNECTED term 1 then
action accept
Vyatta@R2# set protocols rip interface eth0 address 172.16.20.2
Vyatta@R2# set protocols rip interface eth1 address 10.9.1.2
Vyatta@R2# set protocols rip export EXPORT CONNECTED

Cisco, typically enable RIP for an interface by associating its IP address with
a network, but Juniper and Vyatta are different. To have RIP systems commu-
nicate with the rest of the network for Juniper and Vyatta routers, we need to
enable RIP on each interface which is directly connected to a RIP neighbor and
then create a policy to share routes with its neighbors and learn routes from
them.

All routers’ configurations for RIP networks are located in Appendix A.
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4.1.3 Single-area OSPF network

A single-area OSPF network is a network which is used a dynamic routing
protocol called OSPF to make a routing table and route traffic. It is called a
single-area OSPF because it has only one OSPF area. (See the explanation of
OSPF in Chapter 2.1.2.)

Figure 4.3: A single-area OSPF scenario

• Cisco:
Cisco@R3(config)# router ospf 100
Cisco@R3(config-router)# network 172.16.30.0 0.0.0.255 area 0
Cisco@R3(config-router)# network 10.9.1.0 0.0.0.255 area 0
Cisco@R3(config-router)# network 192.168.1 0.0.0.255 area 0

• Juniper:
Juniper@R3# set router-id 10.0.3.3
Juniper@R3# edit protocols ospf
Juniper@R3# set area 0.0.0.0 interface lo0 passive
Juniper@R3# set area 0.0.0.0 interface fe-0/0/0
Juniper@R3# set area 0.0.0.0 interface fe-0/0/1
Juniper@R3# set area 0.0.0.0 interface fe-0/0/2

• Vyatta:
Vyatta@R3# set policy policy-statement EXPORT CONNECTED term 1 from
protocol connected
Vyatta@R3# set policy policy-statement EXPORT CONNECTED term 1 then
action accept
Vyatta@R3# set protocols ospf4 router-id 10.0.3.3
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Vyatta@R3# set protocols ospf4 area 0.0.0.0 interface eth0 address 172.16.30.3
Vyatta@R3# set protocols ospf4 area 0.0.0.0 interface eth1 address 10.9.1.3
Vyatta@R3# set protocols ospf4 area 0.0.0.0 interface eth2 address 192.168.1.3
Vyatta@R3# set protocols ospf4 export EXPORT CONNECTED

The basic setup for configuring a single OSPF area was straightforward. For
Cisco, we enabled OSPF on a router by defining an OSPF process (100 in this
case) and assigning an address range to an area. However we enabled the pro-
tocol on all router interfaces that would participate in the OSPF domain and
specify to which area the interfaces should belong in for Juniper and Vyatta.
(Area 0 in Cisco equals to area 0.0.0.0 in Juniper and Vyatta.)

All routers’ configurations for single OSPF area networks are located in Ap-
pendix A.

4.1.4 Multi-area OSPF network

A multi-area OSPF network differs from a single-area OSPF network only
there are more than one OSPF areas in the network. The setup for config-
uring is moderately similar. We slightly changed the OSPF area from area 0 in
Cisco or area 0.0.0.0 in Juniper and Vyatta to another area number leading to
the interfaces works in different OSPF areas.

Figure 4.4: A multi-area OSPF scenario

• Cisco:
Cisco@R3(config)# router ospf 100
Cisco@R3(config-router)# network 172.16.30.0 0.0.0.255 area 0
Cisco@R3(config-router)# network 10.9.1.0 0.0.0.255 area 1
Cisco@R3(config-router)# network 192.168.1 0.0.0.255 area 1
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• Juniper:
Juniper@R3# set router-id 10.0.3.3
Juniper@R3# edit protocols ospf
Juniper@R3# set area 0.0.0.0 interface lo0 passive
Juniper@R3# set area 0.0.0.0 interface fe-0/0/0
Juniper@R3# set area 0.0.0.1 interface fe-0/0/1
Juniper@R3# set area 0.0.0.1 interface fe-0/0/2

• Vyatta:
Vyatta@R3# set policy policy-statement EXPORT CONNECTED term 1 from
protocol connected
Vyatta@R3# set policy policy-statement EXPORT CONNECTED term 1 then
action accept
Vyatta@R3# set protocols ospf4 router-id 10.0.3.3
Vyatta@R3# set protocols ospf4 area 0.0.0.0 interface eth0 address 172.16.30.3
Vyatta@R3# set protocols ospf4 area 0.0.0.1 interface eth1 address 10.9.1.3
Vyatta@R3# set protocols ospf4 area 0.0.0.1 interface eth2 address 192.168.1.3
Vyatta@R3# set protocols rip export EXPORT CONNECTED

All routers’ configurations for multi-area OSPF are located in Appendix A.

4.1.5 iBGP network

An iBGP network is a network which is used a dynamic routing protocol called
BGP to make a routing table and route traffic especially inside the same Au-
tonomous System (AS). The BGP protocol requires that all iBGP peers within
an AS have a connection to one another to create a full-mesh of iBGP peering
connections.

We assigned all router to AS 65000. Since BGP does not provide reachabil-
ity information, you must make sure that each iBGP peer knows how to reach
other peers. To be able to reach one another, each peer must have some sort
of Interior Gateway Protocol (IGP) route, such as a connected route, a static
route, or a route through a dynamic routing protocol such as RIP or OSPF,
which tells them how to reach the opposite router. In this case, we do not need
that as all network interfaces are directly connected. For an unconnected area,
we did static route.

• Cisco:
Cisco@R1(config)# router bgp 65000
Cisco@R1(config-router)# network 192.168.0.0
Cisco@R1(config-router)# network 172.16.20.0 mask 255.255.255.0
Cisco@R1(config-router)# network 172.16.30.0 mask 255.255.255.0
Cisco@R1(config-router)# neighbor 172.16.20.2 remote-as 65000
Cisco@R1(config-router)# neighbor 172.16.30.3 remote-as 65000

• Juniper:
Juniper@R1# set routing-options autonomous-system 65000
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Figure 4.5: An iBGP scenario

Juniper@R1# set routing-options router-id 10.0.1.1
Juniper@R1# set protocols bgp group internal-within-AS65000 type internal
neighbor 172.16.20.2
Juniper@R1# set protocols bgp group internal-within-AS65000 type internal
neighbor 172.16.30.3

• Vyatta:
Vyatta@R1# set protocols bgp bgp-id 10.0.1.1
Vyatta@R1# set protocols bgp local-as 65000
Vyatta@R1# set protocols bgp peer 10.0.2.2 as 65000
Vyatta@R1# set protocols bgp peer 10.0.2.2 local-ip 10.0.1.1
Vyatta@R1# set protocols bgp peer 10.0.2.2 next-hop 10.0.1.1
Vyatta@R1# set protocols bgp peer 10.0.3.3 as 65000
Vyatta@R1# set protocols bgp peer 10.0.3.3 local-ip 10.0.1.1
Vyatta@R1# set protocols bgp peer 10.0.3.3 next-hop 10.0.1.1

See Appendix A. for iBGP configurations for all routers.

4.1.6 eBGP network

External BGP is the method that different Autonomous Systems (ASs) use to
interconnect with one another. eBGP usually takes place over WAN links,
where there may be a single physical path between eBGP peers. For instance,
Figure 4.6. There are three ASs trying to connect to each other.

Instead of refering to the same AS number, we assigned the neighbor inter-
faces to another AS number.
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Figure 4.6: An eBGP scenario

• Cisco:
Cisco@R1(config)# router bgp 65000
Cisco@R1(config-router)# network 192.168.0.0
Cisco@R1(config-router)# network 172.16.20.0 mask 255.255.255.0
Cisco@R1(config-router)# network 172.16.30.0 mask 255.255.255.0
Cisco@R1(config-router)# neighbor 172.16.20.2 remote-as 65001
Cisco@R1(config-router)# neighbor 172.16.30.3 remote-as 65002

• Juniper:
Juniper@R1# set routing-options autonomous-system 65000
Juniper@R1# set routing-options router-id 10.0.1.1
Juniper@R1# set protocols bgp group session-to-AS65001 type external neigh-
bor 172.16.20.2
Juniper@R1# set protocols bgp group EBGP2 peer-as 65001
Juniper@R1# set protocols bgp group session-to-AS65002 type external neigh-
bor 172.16.30.3
Juniper@R1# set protocols bgp group EBGP3 peer-as 65002

• Vyatta:
Vyatta@R1# set protocols bgp bgp-id 10.0.1.1
Vyatta@R1# set protocols bgp local-as 65000
Vyatta@R1# set protocols bgp peer 172.16.20.2 as 65001
Vyatta@R1# set protocols bgp peer 172.16.20.2 local-ip 172.16.20.1
Vyatta@R1# set protocols bgp peer 172.16.20.2 next-hop 172.16.20.1
Vyatta@R1# set protocols bgp peer 172.16.30.3 as 65002
Vyatta@R1# set protocols bgp peer 172.16.30.3 local-ip 172.16.30.1
Vyatta@R1# set protocols bgp peer 172.16.30.3 next-hop 172.16.30.1

See Appendix A. for eBGP configurations for all routers.
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We found that different vendors have different ideas and different approaches.
So that we looked into some basic charateristics which can be found on their
products. We observed and presented it as shown in Table 4.2.

RFC Cisco Juniper Vyatta

Software Type Cisco IOS JUNOS JUNOS-like (XORP)
Opensource No No Yes
Installation No No Yes

Static route - Yes Yes Yes
RIP 2453 Yes Yes Yes
OSPF 2328 Yes Yes Yes
BGP 1771/4271 Yes Yes Yes

NAT 2766 Yes Yes Yes
VRRP 3768 Yes Yes Yes
Access lists Yes Yes Yes
Route maps Yes Yes Yes
VPN IPSec 4301 Yes Yes Yes
VPN SSL No Yes/No No/Linux

FTP client 959 Yes Yes Yes
TFTP client 1350 Yes Yes Yes
TELNET server 854 Yes Yes Yes
SSH server 4251 Yes/No Yes/No Yes
HTTP server 2068 Yes Yes Yes

DHCP server 2131 Yes Yes Yes
DHCP relay Yes Yes Yes
NTP server 1305 Yes/No Yes/No No/Linux
NTP client 1305 Yes Yes Yes
SNMP 3412/1157 Yes Yes Yes

ping Yes Yes Yes
traceroute Yes Yes Yes

Table 4.2: Comparision of some characteristics for Cisco, Juniper and Vyatta

It is to say that some major characteristics of all specific vendors are fairly
similar which can be applied to use instead of each other. These are short
descriptions for the keywords we used according to the table.

• Yes: The protocol is supported.

• No: The protocol is not supported.

• Yes/No: Available on specific products only.

• No/Linux: Not supported on Vyatta router but it can be enabled at the
Linux level. For instance; OpenVPN can be used to build SSL VPNs on
Linux, likewise ntp and ntp-server can be used to build NTP server on
Linux for Vyatta.

39



4.1. COMMONALITIES AND DIFFERENCES BETWEEN CISCO, JUNIPER
AND VYATTA

One advantage of Cisco routers beyond the others is Cisco router supports
more routing protocols than Juniper routers and Vyatta software routers be-
cause Cisco has created two routing protocols called Interior Gateway Rout-
ing Protocol (IGRP) [25] and Enhanced Interior Gateway Routing Protocol
(EIGRP) [26]. Both routing protocols can only be used and understood by
Cisco products. For example if you uses either IGRP or EIGRP to be a main
routing protocol to route all traffic inside your network and you would like to
add more routers to the network, you have no chance to use products from the
others vendors as their products have completely no idea concerning IGRP
and EIGRP. The only approch to scale you network in this situation is defi-
nitely to use Cisco products. However, if your network is operating with the
other standard routing protocols such as RIP, OSPF, BGP and so on, it will not
be a problem to use the products from only Cisco system as all products are
compattible. They can be used together in the same network and exist together
successfully.

IGRP is a distance-vector routing protocol used by routers to exchange rout-
ing data within an autonomous system. IGRP was created in part to overcome
the limitations of RIP (maximum hop count of only 15, and a single routing
metric) when used within large networks. IGRP supports multiple metrics for
each route, including bandwidth, delay, load, MTU, and reliability; to com-
pare two routes these metrics are combined together into a single metric, us-
ing a formula which can be adjusted through the use of pre-set constants. and
IGRP is considered a classful routing protocol. As the protocol has no field for
a subnet mask the router assumes that all interface addresses have the same
subnet mask as the router itself. This contrasts with classless routing protocols
that can use variable length subnet masks. Classful protocols have become less
popular as they are wasteful of IP address space. EIGRP is a routing protocol
loosely based on their original IGRP. EIGRP is an enhanced version of IGRP.
The same distance vector technology found in IGRP is also used in EIGRP, and
the underlying distance information remains unchanged. The convergence
properties and the operating efficiency of this protocol have improved signif-
icantly. This allows for an improved architecture while retaining existing in-
vestment in IGRP. We will not discuss more in both Cisco proprietary routing
protocols, IGRP and EIGRP, in details. It is out of scope of the purpose of the
thesis.

Imagaine that after you configure the routers and then save it before exit, the
network devices would create a configuration file and store it in their storage.
All of them, Cisco, Juniper and Vyatta are using a file-based configuration. A
file-based configuration can be edited directly with any text editors but you
need to make sure that you are following the correct language syntax with
unique commands depending on the vendor products. An advantage of this
kind of configuration is very convenient to back up or restore the configura-
tion. You can setup a TFTP or FTP system to store the configuration files. When
you want to use the configuration files in the TFTP or FTP system, you can
copy it accross the network to replace to the current one then ask the routers
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to use the new one afterwards. All routing models are supported this function.

Syntax is one of the most important thing in the IT world. Different ven-
dors’products use different language syntaxes, but one thing that they use ex-
actly alike is a structure. Cisco, Juniper and Vyatta have hierarchical structure
with the way to achieve the goal is similar. Juniper and Vyatta configuration
are fairly closed. It would be by the reason of their operating systems are
look alike. For Juniper routers, they use curly brackets ({ }), double quota-
tion marks (” ”) and semincolon (;) to define the structure. However, Vyatta
routers uses curly brackets, double quotation marks, and using colon (:) in-
stead of semincolon. Cisco routers are a bit different from both because Cisco
uses only exclamation mark (!) and space to assemble its configuration file. To
make it more understandable, an example of configuration file structure for
Cisco, Juniper and Vyatta are located in Table 4.3.

Cisco Juniper Vyatta

! protocols { protocols {

router rip rip { rip {

version 2 group rip-group { interface eth0 {

network 192.168.0.0 export advertise-rip-routes; address 192.168.0.1 {

network 172.16.0.0 neighbor fe-0/0/0.0; }

! neighbor fe-0/0/1.0; }

neighbor fe-0/0/2.0; interface eth1 {

} address 172.16.20.1 {

} }

} }

interface eth2 {

address 172.16.30.1 {

}

}

export: ”EXPORT CONNECTED”

}

}

Table 4.3: Heirarchical structure for Cisco describing with RIP

A router can run multiple routing protocols simultaneously. The longest
prefix match rule does not help us because the prefix lengths are the same.
How then do we decide which route to take? There is a concerned value called
”administrative distance” which A router uses the concept to determine which
route wins. Administrative distance specifies a distance value that indicates
how good this route is. The router will use this distance value to help it to
decide between routes to the same destination prefix from different sources.
For example, if you have more than one static route to the same destination,
or if the router has learned another route to this destination via RIP, OSPF or
whatever, it will compare this administrative distances and use the route with
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the lowest distance value.

Every routing protocol has an administrative distance number that indicates
how much the router trusts the information it receives by this method. A Vy-
atta router uses the concept of administrative distance to determine which
route wins. In addition to, this concept is the same as that used by Cisco
routers. Basically each routing protocol has a configured ”distance”, and if a
route is heard from two protocols, then the version with the smallest distance
wins. Juniper routers, however, are different in terms of values and a name
since JUNOS refers to administrative distance as ”route preferences”, but still
using the same concept. When a Juniper router learns about routes to the same
destination from different sources, including routing protocols, it chooses the
one that has the lowest preference value as the active route and installs it in
the forwarding table.

The build-in table of administrative distances, Table 4.4, shows the default val-
ues for these administrative distances for all specificed routers.

Routing protocol or source Cisco and Vyatta Juniper

Connected interface 0 0
Static route 1 5
External BGP 20 170
OSPF 110 100
RIP 120 150
Internal BGP 200 170

Table 4.4: Cisco, Juniper and Vyatta default administrative distances

4.2 Modelling Routing Configurations

The basic active parts of routers are the interfaces. Each interface can operate
independently, or be connected together. Traffic arriving at an interface can be
forwarded to another interface. To modelling routing protocols, we would like
a model by which to compare routing in three vendor routing models. Promise
theory is a good approach because it offers a method for capturing and moni-
toring the autonomy of routers and their interfaces.

The general approach to using promises is:

• Separating all components in the system into ”Agents” which are the au-
tonomous agents of promises. We call these agents autonomous, mean-
ing that each agent can freely reject any impulse or suggestion from an-
other agent. No agent can be forced or controlled against its will.

• Defining the promises for each agent seems to make in order for the sys-
tem to function (Promise types or the bodies of promises). In principle,
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it should contain two things: a promise type, which explains the subject
of the promise, and a constraint or variation, which describes the extent of
what is being promised.

Consequently, we broke the router components down into its smallest parts
and then model the promised behaviours using the ideas how to make promises
which we mentioned earlier in the Chapter 3.1.

To compare the behaviours between three routers from different vendors is a
bit tricky because they are using their own commands, syntaxes and methods
to make all modules functioning. Typically, routers are configured with com-
mands, but these are not promises. To know promises, we must understand
the effects of the routing commands what describe the behaviours they lead to.

To write down promises more formally, we need to start with a set of ”agents”,
which are the elements of a system capable of making promises either im-
plicitly or explicitly. We can consider ”network interfaces” of the routers to be
agents in promises because they can be configured differently, meaning that
each agent can freely reject any impulse or suggestion from another agent. No
agent can be forced or controlled against its ”will” as they can behave and exist
differently depending on IP addresses, subnet masks and broadcast addresses
and also can collaborate together with internal and external network interfaces
during the process of forwarding traffic.

Based on the idea that everything, which can be configured differently, would
possibly be selected to be an agent causing a routing table should be consid-
ered as well. We know a fact that when the network is converged, a routing
table on each router in the network would look unsimilarly according to dy-
namic routing protocols it used. When the network topology is changed, all
routers will recalculate the routing information and make a new routing table
over and over again.

It is to say that routing tables have independent behaviour and/or informa-
tion. Our aim, however, is to get rid of the complexity and model a simplic-
ity one. We know that the routing table is one of the most important part
of the routers because without routing tables, routers cannot desire to where
the packets should go. Everytime network interfaces receive and merely want
to forward the packets to another interface, they have to use the information
where the packets can be reached the destination in the routing table. Anyhow,
when you think at this level, you are thinking about a communication protol-
col, not about promises. Making promises is way above that level of thinking.
It does not matter that we have to make a promise from a network interface
to a routing table to make the model work. We can simply make a promise
directly between network interfaces with no concerns about how routers for-
ward the packets. We can leave it as the technical level, not management level
like we are interested in. Thus, we waived the routing table not to mention
and selected only network interfaces to be only one agent in the model.
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Let’s see how promise theory helps us to understand the routers. We can
use Figure 4.7 to describe as an organization of routers which can be the only
one description standing for all routers from different vendors in cfengine
promise language.

Figure 4.7: An Organization of Routers

It is true that there is only one type of agents in a model, nevertheless we
can separate it into two cases to help us to understand the organization easier:
promises for network interfaces between routers and another case is promises
for network interfaces inside a router.

4.2.1 Promises: Network interfaces between routers

Figure 4.8: Promises for Network interfaces between routers

During the operating time of routers, they connect to the other routers for
sure by using a network cable attached to two network interfaces. On the con-

44



4.2. MODELLING ROUTING CONFIGURATIONS

dition that they are connected, the routers can forward whatever traffic across
their network interfaces especially dynamic routing protocols in order to build
routing tables before being converged. We might think that it is trivial to model
this situation by making the same promises to each other because they are both
the same kind of agents, network interfaces. See Figure 4.8.

We can label the bodies of the promise for simplicity as:

• Promise to forward all traffic to a connected network interface.

• Promise to receive all traffic from a connected network interface.

4.2.2 Promises: Network interfaces inside a router

Figure 4.9: Promises for Network interfaces inside a router

Apart from having a relationship between two network interfaces on dif-
ferent routers, they also have a promise to network interfaces inside a router
itself. The main reason to use a router in the network is to separate networks
into a small one to reduce unwanted broadcast traffic and to usually tailored to
the tasks of routing and forwarding packets between minimum two networks.
For each network interface describes networking information which is an IP
address, a subnet mask and a broadcast address would be dissimilar. That is
to say, they would know all information in order to keep in touch to the others.

We can label the bodies of the promise for simplicity as:

• Promise to tell the other network interfaces the ip address, the subnet
mask, the broadcast address and so on.
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• Promise to receive information concerning the ip address, the subnet
mask, the broadcast address and so on., from the other network inter-
faces.

• Promise to forward all traffic to a destination network interface relying
on the information in a routing table.

• Promise to receive all traffic which is sent by the other agents.

Does a routing table involve in a process of forwarding packets? As a routing
table or Routing Information Base (RIB) is a kind of electronic table or database
type object which stores the routes (and in some cases, metrics associated with
those routes) to particular network destinations. Whenever a node needs to
send data to another node on a network, a routing table must be used to de-
cide the way for the packet to be forwarded. Hence, the answer is definitely
”Yes”, but forget about that. Like we mentioned before, when you think at this
level, you are thinking about a communication protocol, not about promises.
In promise theory we are way above that level of thinking, as a promise is not
a message.
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Chapter 5

Implementation of Linux Router
and a Set of Promises

5.1 Vyatta software router

To implement a proof of concept, we decided to build a linux router by using Vy-
atta software. Unlike traditional closed source venders which required to run
their proprietary on in an expensive hardware platform, Vyatta open source
software is able to install and run on many different environments. There are
several approaches provided by Vyatta Inc.. In fact, Vyatta does not even need
to be installed. Vyatta can run on a LiveCD environment where it boots from
a CD and run on memory or Vyatta can be installed on internal hard drive or
run in a vitural machine either on a LiveCD or installed to a virtual disk or
installed to USB flash drive. You might select the operating environment to
the best suits your need which have different pros and cons depended on the
approaches.

1. LiveCD

A LiveCD is a CD containing a bootable image. Vyatta LiveCD is created
from ISO image available from Vyataa website. [19] The usage of LiveCD
is simple. First, to make sure that the CD Drive is configured in the hard-
ware BIOS to be the first boot device, then insert the CD and boot. The
software will be loaded into and runs in memory. One advantages of the
LiveCD is it does not touch the machine kernel as it is not loaded into the
hard drive. That makes it is ideal for evaluations and lab environments.
Once you finish testing, simply remove the CD, reboot and you will be
to the way you were before testing. Another advantage is it is secure. We
can change system files by phisically accessing but the CD is not writable
causing no one can change it. In this case, the only way to save a config-
uration file is to use a floppy disk where we considered such as a huge
disadvantage.

2. Hard drive

Installing to the hard drive is the most common way to do. There are
several options for hard drive today. Of course, there is a traditional
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internal single hard drive which is available in all PCs. For protecting
from drive failure, hardward RAID, where RAID appears as a signle disk
to Linux, can be used. If moving part is concerned, then compact flash
or solid state disk can be used. An enormous advantage to install Vyatta
software to the hard drive is booting from hard drive is generraly faster
that booting from CD. If the drive is large enogh, you may collect log
files whatever you want and can be installed more additinal application
if you need. Futhermore, if you install in hardware RAID environment,
it can help you to protect from drive failure.

3. Virtual machine

Vyatta can run on most common hypervisors including VMware, XEN
or the others, especially VMware, Vyatta has certified VMware appli-
cance available. Vyatta can be used in the virtualized environment in
two ways. First, a Vyatta ISO LiveCD can be assigned to a virtual CD
drive or point the virtual CD drive to the LiveCD image, vice versa. That
means Vyatta will run as LiveCD. Alternatively, it can be installed to the
virtual hard drive. A several advantages for running Vyatta in a virtu-
alized environment, one approach is to combine with the other applica-
tions to make a better remote office solution. For instance, using Vyatta
plus IP/PBX, e-mail, etc. Virtualization improves management flexibility
with Snapshots and other virtualization tools which are available from
the hypervisor vendors making hardware manangement easier. If the
space and power consumption are concerned, solving with virtualized
environment would be a good idea and lastly, it is easy to build complex
network with multiple Vyatta nodes all on single machine for training
and testing purpose.

4. Compact Flash Drive

This is another technology which we can see in many operating system
in these days. Instead of running by CD/DVD, it can be operateed by
USB flash drives (USB key) or PMCIA compact flash drives. The main
advantages to use this approach is portability. it make excellent for a lab
environment for many users share the same hardware. However, you
must be awared that some hardware may not support booting off of USB
devices.

See Appendix B. for how to build a Linux router in detials.

Once the system has been installed, it is a good idea to perform a few check
to verify everything has been installed and work properly as expected.

1. Verity root login

To make sure that the root login would successfully be installed. As long
as you can login as root, it guarantees that you can do everything, using
user id ”root” and a default password ”vyatta”. Successful login receives
Linux bash shell prompt.
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2. Verify the router shell is operational

To check that the router shell is active by typing the ”xorpsh” command
to enter the router shell. If the router shell is operational, the router man-
ager process will start and you will receive the default prompt: ”root@vyatta¿”.
If not, the router manager process will eventually time out and the user
will be dropped back to the Linux shell prompt: ”root:-#”

3. Verify version and boot source information

Type ”show version” command at the router shell prompt. This command
will response a piece of important information. ”Baseline Version” is a
version of the Vyatta software and ”Booted From” would tell you that the
system is booted from disk. A common installation mistake is to forget
to remove the LiveCD in the CD drive. If that line shows you ”livecd”,
that means you are using a wrong source. To sort it out by just removing
the LiveCD and rebooting the system.

4. Check the configuration file to verify all interfaces are discovered

Type ”show configuration” at the router shell prompt and look at the in-
terfaces in the configuration file. Ethernet interfaces will be identified as
”eth#”

5. Check the configuration file to verify the default users

To check that the configuration file has been installed properly by using
a [Spacebar] key to page down when you see a ”–More–” indicator. As
we know that we are logging in as root, so that user ID root is already
verified by loggin in. The reason is to simply verify a user called ”vyatta”
has been pre-set up in the system and an encrypted password for vyatta
suppose to be the same as an encrpyted password for the root user.

Figure 5.1: Example: To verify the default users

The Vyatta software is based on Debian linux. If we would like to install more
debian packages, Vyatta allows us to do that. A nice and easy way to install
some applications is to use a software called ”apt”. First, we need to check
a version of debian by looking into a file ”/etc/debian version” and then add
debian repositories according to the version into ”/etc/apt/source.list” file. See
Figure 5.2 for an example of debian repositories.
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Figure 5.2: Example: contents inside ”/etc/apt/source.list”

After that we can install some essential debian packages to make the linux
router be prepared avoiding problems which is going to be happend when we
install cfengine afterwards.

Debian Packages Descriptions

build-essential Informational list of build-essential packages.
gcc The GNU C compiler.
g++ The GNU C++ compiler.
libdb4.4-dev Berkeley v4.4 Database Libraries [development].
libssl-dev SSL development libraries, header files and documentation.
openssl Secure Socket Layer (SSL) binary and related cryptographic tools.
byacc Public domain Berkeley LALR Yacc parser generator.
flex A fast lexical analyzer generator.

Table 5.1: Essential Debian packages to install Cfengine

You might visit cfengine website [4] to see how to get started with and to
install cfengine into the linux router.

5.2 The Set of Promises

In cfengine 3, promises belong to bundles and attributes of promises belong
in bodies. Hence, control information is now the province of promise ”bodies”.
Which means, a body is exactly a collection of control attributes, belonging to
a promise. We can have more than one body like a template and can call to use
it in ”bundle”.

To design cfengine’s bodies and bundle, we started by exploring behaviours
of the promises and configurations in depth and then we tried to declare im-
portant control attributes of the promises as much as possible. For example,
when you want to make a promise about network information for network
interfaces in routers, we need to think in general about what the network in-
formation the routers uses, what kind of the network interfaces are, what kind
of values that can be controlled. The network information would be a IP ad-
dress, a subnet mask and a broadcast address. The interface types would be
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ethernet interfaces, serial interfaces or WAN interfaces. The controlled values
would be Media Access Control (MAC), Maximum transmission unit (MTU)
and maximun global link speed. After that we compose them nicely into the
body to which they should belong in the simplest way to easily use them later.

Based on our model in Chapter 4.2, let’s see the results we have.

5.2.1 Body - Network interface

# Network interface

body ethernet myethinf(ethinfaddress,ethinfprefixlength,ethinfbroadcast)

{

vyatta::

ethinf_address => "$(ethinfaddress)";

ethinf_prefix_length => "$(ethinfprefixlength)";

ethinf_broadcast => "$(ethinfbroadcast)";

ethinf_disable => "false";

}

body ethernet myethvif(ethvifnumber,ethvifaddress,

ethvifprefixlength,ethvifbroadcast)

{

vyatta::

ethvif_number => "$(ethvifnumber)";

ethvif_address => "$(ethvifaddress)";

ethvif_prefix_length => "$(ethvifprefixlength)";

ethvif_broadcast => "$(ethvifbroadcast)";

ethvif_disable => "false";

}

body ethernet myethchar()

{

vyatta::

ethchar_mac => "AA-BB-CC-DD-EE-FF";

ethchar_mtu => "1500";

ethchar_duplex => "auto";

ethchar_speed => "auto";

}

body loopback myloinf(loinfaddress,loinfprefixlength,loinfbroadcast)

{

vyatta::

loinf_address => "$(loinfaddress)";

loinf_prefix_length => "$(loinfprefixlength)";

loinf_broadcast => "$(loinfbroadcast)";

loinf_disable => "false";

}
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When the routers starts up, it will automatically discovers the physical inter-
faces available on the system and creates a loobback interface. Apart from the
interface automatically created by the system, each level of interface, IP ad-
dress, prefix-length, broadcast address and vifs (virtual interfaces) to be used
must explicitly created through configuration. Since our linux router has only
ethernet interfaces, we can use myethinf() to define an IP address on the in-
terface, myethvif() to create a virtual interface on the physical ethernet inter-
face and myloinf() to define an IP adddress on the loopback interface which is
widely used for advertising OSPF or BGP as the loopback interface is the most
reliable interface of routers. For more characteristics of ethnernet interface, we
allow to change them by the body, myethchar().

5.2.2 Body - Static route

# Static route

body static mystatic(staticnetwork,staticnetmask,staticnexthop,staticmatric)

{

vyatta::

static_network => "$(staticnetwork)";

static_netmask => "$(staticnetmask)";

static_next_hop => "$(staticnexthop)";

static_matric => "$(staticmatric)";

}

This body mystatic() is straight forward as it contains four variables, network
address, subnet mask, next-hop address and matric number. The idea to de-
sign this body is to allow cfengine to do static route, routing without using any
dynamic routing protocols. Be careful that you are allowed to add many route
but can add only one default route for each router.

5.2.3 Body - RIP

# RIP IPv4

body rip myrip(ripaddress)

{

vyatta::

rip_address => "$(ripaddress)";

rip_metric => "1";

rip_horizon => "split-horizon-poison-reverse";

rip_disable => "false";

rip_passive => "false";

rip_accept-non-rip => "true";

rip_accept_default_route => "true";

rip_advertise_default_route => "ture";

rip_update => "30";

rip_timeout => "180";
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rip_expiry => "120";

rip_deletion_delay => "120";

rip_triggered_delay => "3";

rip_triggered_jitter => "66";

rip_update_jitter => "35";

rip_request_interval => "30";

rip_interpacket_delay => "50";

}

body rip myripauthentication(rippassword)

{

vyatta::

rip_simple_password => "$(rippassword)";

}

body rip myripauthenticationmd5(ripmd5key,ripmd5pass)

{

vyatta::

rip_md5_key => "$(ripmd5key)";

rip_md5_password => "$(ripmd5pass)";

rip_md5_start_time => "2008-01-01.00:00";

rip_md5_end_time => "2008-12-31.23:59";

}

body rip myripexport(ripexporttext)

{

vyatta::

rip_export => "$(ripexporttext)";

}

body rip myripimport(ripimporttext)

{

vyatta::

rip_import => "$(ripimporttext)";

}

# RIP IPv6

body rip myripng(ripngaddress)

{

vyatta::

ripng_address => "$(ripngaddress)";

ripng_metric => "1";

ripng_horizon => "split-horizon-poison-reverse";

ripng_disable => "false";

ripng_passive => "false";

ripng_accept_non_rip => "true";

ripng_accept_default_route => "true";
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ripng_advertise_default_route => "ture";

ripng_update => "30";

ripng_timeout => "180";

ripng_expiry => "120";

ripng_deletion_delay => "120";

ripng_triggered_delay => "3";

ripng_triggered_jitter => "66";

ripng_update_jitter => "35";

ripng_request_interval => "30";

ripng_interpacket_delay => "50";

}

body rip ripngauthentication(ripngpassword)

{

vyatta::

ripng_simple_password => "$(ripngpassword)";

}

body rip ripngauthenticationmd5(ripngmd5key,ripngmd5pass)

{

vyatta::

ripng_md5_key => "$(ripngmd5key)";

ripng_md5_password => "$(ripngmd5pass)";

ripng_md5_start_time => "2008-01-01.00:00";

ripng_md5_end_time => "2008-12-31.23:59";

}

body rip myripngexport(ripngexporttext)

{

vyatta::

ripng_export => "$(ripngexporttext)";

}

body rip myripngimport(ripngimporttext)

{

vyatta::

ripng_import => "$(ripngimporttext)";

}

As you can notice that there are two types of RIP bodies. One myrip() is for
IPv4 and another one myripng() is for IPv6. The reason why we need to sep-
arate it because they use different approach to achieve the goal. It is obvious
that they both are RIP but the old RIP for IPv4 networks does not understand
IPv6 network addresses so that they created RIPNG (RIP New Generation) to
resolve this problem.

Inside the RIP body contains many fixed values especially many RIP timers.
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For example: update timer, timeout timer, expiry timer, etc. Typically, we do
not need to change those but for further objective, we allowed to change by
modifying directly in the body. An only variable we must declare when you
call this body is an network address running RIP and a policy in order to ex-
change RIP information with the adjacent routers. In addition to secure the
RIP connections, you can use the authenication mechanism to authorize RIP
updates sent and received via the addresses either plain text password or MD5
authentication key.

5.2.4 Body - OSPF

# OSPF

body ospf myospf(ospfrouterid)

{

vyatta::

ospf_router_id => "$(ospfrouterid)";

ospf_rfc1583_compatibility => "false";

ospf_ip_router_alert => "false";

}

body ospf myospfarea(ospfarea,ospfaddress)

{

vyatta::

ospf_area => "$(ospfarea)";

ospf_area_type => "normal";

ospf_default_lsa_disable => "false";

ospf_default_lsa_metric => "0";

ospf_summaries_disable => "false";

ospf_link_type => "broadcast";

ospf_address => "$(ospfaddress)";

ospf_priority => "128";

ospf_hello_interval => "10";

ospf_router_dead_interval => "40";

ospf_interface_cost => "1";

ospf_retransmit_interval => "5";

ospf_transit_delay => "1";

ospf_passive => "false";

ospf_disable => "false";

}

body ospf myospfareainterfaceneighbor(ospfneighboraddress,

ospfneighborrouterid)

{

vyatta::

ospf_neighbor_address => "$(ospfneighboraddress)";

ospf_neighbor_router_id => "$(ospfneighborrouterid)";
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}

body ospf myospfarearange(ospfnetwork)

{

vyatta::

ospf_area_range => "$(ospfnetwork)";

ospf_advertise => "true";

}

body rip ospfauthentication(ospfpassword)

{

vyatta::

ospf_simple_password => "$(ospfpassword)";

}

body rip ospfauthenticationmd5(ospfmd5key,ospfmd5pass)

{

vyatta::

ospf_md5_key => "$(ospfmd5key)";

ospf_md5_password => "$(ospfmd5pass)";

ospf_md5_start_time => "2008-01-01.00:00";

ospf_md5_end_time => "2008-12-31.23:59";

}

body ospf myospfvirtuallink(ospfvirtualaddress,ospftransitarea)

{

vyatta::

ospf_backbone_area => "0.0.0.0";

ospf_virtual_link_address => "$(virtualaddress)";

ospf_transit_area => "$(ospftransitarea)";

ospf_virtual_link_hello => "10";

ospf_virtual_link_router_dead => "40";

ospf_virtual_link_retransmit => "5";

ospf_virtual_link_trasit_delay => "1";

}

body ospf myospfexport(ospfexporttext)

{

vyatta::

ospf_export => "$(ospfexporttext)";

}

body ospf myospfimport(ospfimporttext)

{

vyatta::

ospf_import => "$(importtext)";

}
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body ospf myospftraceoption()

{

vyatta::

ospf_trace_all_disable => "false";

}

Two main bodies which can be used at least to configure OSPF network to
be operated are myospf() and myospfarea(). In myospf(), we can configure OSPF
global attributes and can specify the other characteristics of OSPF in myosp-
farea(). In OSPF, the network is broken up into areas. Within each area, routers
prossess only local routing information. Routing information about other ar-
eas is calculated using routes exchanged between areas. This reduce the amount
of network topology information routers have to generate and maintain mak-
ing OSPF a better choice for larger networks.

No interface can belong to more than one area. If all the interfaces on a router
belong to the same area, the router is said to be an internal router. If the
router has OSPF-enableed interfaces that belong to more than one area, it is
said to be an Area Border Router (ABR). If you define more than one area in
your OSPF network, one of the areas must be designated as the backbone with
ospf area type equals ”normal” and an ABR must be connected to the backbone
area (0.0.0.0).

OSPF requires a single contiguous backbone area which all other areas must
connect to the backbone and all inter-area traffic passes through it. If you can-
not design your network to have a single contiguous backbone, or if a failed
link splits the backbone, you can extend a backbone by creating a virtual link
between two non-contiguous areas by using myospfvirtuallink().

5.2.5 Body - BGP

# BGP

body bgp mybgp(bgpid,bgplocalas)

{

vyatta::

bgp_id => "$(bgpid)";

bgp_local_as => "$(localas)";

}

body bgp mybgpdamping()

{

vyatta::

bgp_damping_half_life => "15";

bgp_damping_max_suppress => "60";

bgp_damping_reuse => "750";
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bgp_damping_suppress => "3000";

bgp_damping_disable => "false";

}

body bgp mybgpconfederation(identifier)

{

vyatta::

bgp_confederation_identifier => "$(identifier)";

bgp_confederation_disable => "false";

}

body bgp mybgpexport(bgpexporttext)

{

vyatta::

bgp_export => "$(bgpexporttext)";

}

body bgp mybgpimport(bgpimporttext)

{

vyatta::

bgp_import => "$(bgpimporttext)";

}

body bgp mybgppeer(bgppeer,bgplocalip,bgpas,bgpnexthop)

{

vyatta::

bgp_peer_address => "$(bgppeer)";

bgp_peer_multihop => "1";

bgp_peer_local_ip => "&(bgplocalip)";

bgp_peer_as => "$(bgpas)";

bgp_peer_next_hop => "$(bgpnexthop)";

bgp_peer_holdtime => "90";

bgp_peer_delay_open_time => "0";

bgp_peer_client => "false";

bgp_peer_confederation => "false";

bgp_peer_prefix_maximum => "250000";

bgp_peer_prefix_disable => "false";

bgp_peer_ipv4_unicast => "true";

bgp_peer_ipv4_multicast => "false";

bgp_peer_ipv6_unicast => "true";

bgp_peer_ipv6_multicast => "false";

}

body bgp mybgproutereflector(bgpclusterid)

{

vyatta::

bgp_route_reflector_cluster_id => "$(bgpclusterid)";
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bgp_route_reflector_disable => "false";

}

body bgp mybgptrace()

{

vyatta::

bgp_trace_verbose_disable => "false";

bgp_trace_all_disable => "false";

bgp_trace_messagein_disable => "false";

bgp_trace_messageout_disable => "false";

bgp_trace_statechange_disable => "false";

bgp_trace_policy_disable => "false";

}

To enable BGP on the router, we need to use the body, mybgp() to set its BGP
ID and autonomous system and mybgppeer() to define an iBGP or eBGP peer.
An BGP peer can be one of two types: Internal BGP (iBGP) peers are peers that
are configured with the same AS number and external BGP (eBGP) peers are
peers that are configured with different AS numbers. The BGP ID is normally
given the loopback address, the most reliable interface of the router. Note that
the BGP ID does not actually provide any reachability information, but just
gives the BGP speaker a unique identifier.

The bodies, mybgpconfederation(), mybgpdamping() and mybgproutereflector() are
optional. Confederations enable you to reduce the size and complexity of the
iBGP mesh and mybgpdamping() is for setting the characteristics of route flap
damping. Route flapping is a situation where a route fluctuates repeatedly be-
tween being announced, then withdrawn, then announced, then withdrawn,
and so on. In this situation, a BGP system will send a excessive number of
update messages advertising network reachability information. Route damp-
ing is intended to minimize the propagation of update messages between BGP
peers for flapping routes. This reduces the load on these devices without un-
duly impacting the route convergence time for stable routes. Route reflection,
mybgproutereflector(), is another technology designed to help ASs with large
numbers of iBGP peers. In a standard BGP implementation, all iBGP peers
must be fully meshed. When an iBGP peer learns a route from another iBGP
peer, the receiving router does not forward the route to any of its iBGP peers,
since these routers should have learned the route directly from the announc-
ing router. In a route reflector environment, the iBGP peers are no longer fully
meshed. Instead, each iBGP peer has an iBGP connection to one or more route
reflectors which are the routers configured to be router reflector servers.

5.2.6 Bundle

When we finished defining the body parts, it is a time to apply them to our
promises which we mentioned in Chapter 4.2. An approach in cfengine 3 to
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use the bodies is to call them in the bundle part. Recall Figure 4.7 in the Chap-
ter 4.1. Imagine that we are going to ask cfengine to directly configure and
maintain promises for a router number 2 to use RIP and a default route. There
are two agents in this case, eth0 and eth1. Eth0 promises to have an IP address
172.16.0.2 and eth1 promises to have an IP address 10.9.1.2. Both of them are
in class C network (subnet mark equals 255.255.255.0). When they want to for-
ward traffic but there in no match for a route in the routing table, they will use
the eth1 interface as a default route. As the result, we can do it like an example
below.

# Router 2

bundle agent routing()

{

routing:

"eth0"

ethernet => myethinf("172.16.20.2","24","172.16.20.255"),

rip => myrip("172.16.20.2"),

rip => myripexport("EXPORT_CONNECTED"),

rip => myripauthentication("password");

"eth1"

ethernet => myethinf("10.9.1.2","24","10.9.1.255"),

rip => myrip("10.9.1.2"),

rip => mystatic("0.0.0.0/0", "172.16.20.1", "1");

}
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Chapter 6

Conclusion and Future work

This study of incompatible routing languages from different manufacturers
has proven to be instructive work. The primary goal of the thesis was to
discover whether these routing languages can be unified into a single open
standard that can be intregated into server management. The main focus was
to model routing configuration by using promise theory, to design a set of
promises for cfengine 3 and to build a linux router.

Particular routers which were selected to be studied were from Cisco Systems,
Inc., Juniper Networks Inc. and Vyatta Inc. Operationally, Cisco, Juniper and
Vyatta routers are based on different hardware and software concepts. Cisco
routers use Cisco IOS, Juniper routers use JUNOS and Vyatta based on XORP,
Extensible Open Route Platform. Applications wise, Cisco, Juniper and Vy-
atta cater to similar market segments. However, they have some advantages
in certain areas compared to the other. Cisco, being the first to enter the mar-
ket, has better market penetration. One of the strong areas of Cisco is the
low-end router market including remote-office, and branch-office connectiv-
ity solutions. Vyatta is a ground-breaking brand with a strong emphasis on
the cost and flexibility inherent in an open source, Linux-based system to be
intended as a replacement for some Cisco products. All of them provide high-
end router solutions that offer gigabit transfers and advanced security routing
solutions.

Since Vyatta is a open source software router, the only prerequisites to use
Vyatta are to have a working PC or appliance with an Intel or Intel-like proces-
sor and at least one network interface. Even it is only facultative, it is better to
have a floppy disk drive or a hard drive to save the configurations. For better
performances, however, it is recommended to install on a hard drive.

Promise theory is a way of describing and understanding the behaviour of
systems that are composed of many parts some of which might be able to
communicate with one another. Cfengine, a policy-based server/client con-
figuration management system, was the outcome of the promises. In addition
to, convergence and voluntary cooperation are central to the design and func-
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tioning of cfengine.

Two considerations that we must concern before disigning a model for the
set of promises for cfegine are the cfengine 3 language components (syntax)
and behaviours of the routing protocols. We also need to know the functions
in details of the each routing protocol in order to predict the behaviours to
cover all actions of the routing protocols to be placed as control information
in cfengine 3’s body. The cfengine 3 language components were introduced in
Chapter 3.2. Differ from cfengine 2, there is a separate part between bundle
(promises) and body (attributes of promises) as the goal of cfengine 3 is to re-
move the limitations from the organically grown of cfengine 2.

There were three dynamic routing protocols, RIP, OSPF and BGP, were thor-
oughly studied in the thesis. RIP is widely used in simple topologies as it is
very simple to implement and deploy. However, it does not scale well to larger
networks, where OSPF are generally more appropriate. People use OSPF when
they discover that RIP just is not going to work for their larger network, or
when they need very fast convergence. OSPF is the most widely used IGP.
BGP is a routing protocol maintaining of mapping topology between ASs. It
is different from RIP and BGP which can be used only inside an AS. That is to
say, BGP is the major protocol that holds the internet together in these days.

Over the long term research in modelling routing using promises, we intro-
duced the organization of routers which can be described and represented
the incompatible routing languages from different vendors. Be grateful for
promise theory, it makes a complicated thing in routing much easier to un-
derstand. The model for the set of promises that can be applied to all routing
platform was presented in Chapter 5.2. We would not say it was a perfect de-
sign as it was not completed yet, but satisfactory and serviceable. There are
many features that we can add up in the future.

A problem which can be issued might be: is it acceptable to be only one type of
promise agent in the model? We would say ”Yes”, because an agent can be any
component or entity that has autonomous or independent behaviour and/or
information. Regarding our previous design, we had two agents in a model, a
network interface and a routing table. It is obvious when routers wants to for-
ward traffic from one destination to another destination, it uses a routing table
to desire where the packets should go by comparing a destination address to
a destination network information field inside the routing table. If they match
up, then forward the packet to a specific next-hop address, otherwise using a
common route, a default route, to forward the packet. When you think at this
level, you are thinking about a communication protocol, not about promises.
In promise theory we are way above that level of thinking. The promise made
by the network interface do not need to ask the routing table for a direction
becasue we can leave it as the technical level (how it works, how to implement
it, etc.) but what we are interested in promises is at the management level so
that it does not matter to turn high level promises into low level details to help
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us to understand systems from the top down. Consequently, having only one
type of agent is fine.

The corresponding study showed that all routing configurations were used
hierachical structure causing it was impossible for cfengine to directly config-
ure the routers at this time. Cfengine is a configuration system management
tools which is available for all major UNIX and UNIX-like and all major UNIX
are used plain text system configurations which cfengine can understand and
manage it. There was a big challenge for cfengine to directly configure the
linux router.

Due to limitations of time, directly configuring could not be done. Future re-
search on how to make it work would be interested and necessary. We thought
about the way to solve this problem and would like to inspire a future re-
searcher to follow this guideline below. It might help more or less.

How to solve

1. To certainly understand the configurations for those particular routers.

2. To make configuration templates as regard to a configuration structure of router
vendors.

3. To let cfengine to edit the configuration template, copy and then replace the
completed configuration file to a configuration path in a linux router.

4. To reboot a routing service in order to use a new configuration.

With this approach, it is not only routing module but aslo can be used to
manage the whole router configuration including system, policy and so on.
Furthermore, when everything is under control, they will possibly apply the
same approach and idea to switching products afterwards.
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Appendix A

Experimental Router
Configurations

All routing configurations of the routers in Chapter 4.1 are shown below here.

A.1 Cisco

A.1.1 Network interfaces

• Router 1:

!
interface Serial0/0/1
description R1 Interface 1
ip address 192.168.0.1 255.255.255.0

!
interface Serial0/0/2
description R1 Interface 2
ip address 172.16.20.1 255.255.255.0

!
interface Serial0/0/3
description R1 Interface 3
ip address 172.16.30.1 255.255.255.0

!
interface Loopback0
description R1 Loopback interface
ip address 10.0.1.1 255.255.255.255

!

• Router 2:

!
interface Serial0/0/1
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description R2 Interface 1
ip address 172.16.20.2 255.255.255.0

!
interface Serial0/0/2
description R2 Interface 2
ip address 10.9.1.2 255.255.255.0

!
interface Loopback0
description R2 Loopback interface
ip address 10.0.2.2 255.255.255.255

!

• Router 3:

!
interface Serial0/0/1
description R3 Interface 1
ip address 172.16.30.3 255.255.255.0

!
interface Serial0/0/2
description R3 Interface 2
ip address 10.9.1.3 255.255.255.0

!
interface Serial0/0/3
description R3 Interface 3
ip address 192.168.1.3 255.255.255.0

!
interface Loopback0
description R3 Loopback interface
ip address 10.0.3.3 255.255.255.255

!

A.1.2 Static route

• Router 1:

!
ip classless
ip route 192.168.1.0 255.255.255.0 172.16.30.3
ip route 10.9.1.0 255.255.255.0 172.16.20.2
ip route 0.0.0.0 0.0.0.0 Serial0/0/1

!

• Router 2:

!
ip classless
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ip route 172.16.30.0 255.255.255.0 172.16.20.1
ip route 192.168.0.0 255.255.255.0 172.16.20.1
ip route 192.168.1.0 255.255.255.0 10.9.1.3
ip route 0.0.0.0 0.0.0.0 Serial0/0/1

!

• Router 3:

!
ip classless
ip route 192.168.0.0 255.255.255.0 172.16.30.1
ip route 172.16.20.0 255.255.255.0 10.9.1.2
ip route 0.0.0.0 0.0.0.0 Serial0/0/1

!

A.1.3 RIP

• Router 1:

!
router rip
version 2
network 192.168.0.0
network 172.16.0.0

!

• Router 2:

!
router rip
version 2
network 10.0.0.0
network 172.16.0.0

!

• Router 3:

!
router rip
version 2
network 192.168.1.0
network 10.0.0.0
network 172.16.0.0

!
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A.1.4 Single-area OSPF

• Router 1:

!
router ospf 100
network 192.168.0.0 0.0.0.255 area 0
network 172.16.20.0 0.0.0.255 area 0
network 172.16.30.0 0.0.0.255 area 0

!

• Router 2:

!
router ospf 100
network 172.16.20.0 0.0.0.255 area 0
network 10.9.1.0 0.0.0.255 area 0

!

• Router 3:

!
router ospf 100
network 172.16.30.0 0.0.0.255 area 0
network 172.16.20.0 0.0.0.255 area 0
network 192.168.1.0 0.0.0.255 area 0

!

A.1.5 Multi-area OSPF

• Router 1:

!
router ospf 100
network 192.168.0.0 0.0.0.255 area 2
network 172.16.20.0 0.0.0.255 area 2
network 172.16.30.0 0.0.0.255 area 0

!

• Router 2:

!
router ospf 100
network 172.16.20.0 0.0.0.255 area 2
network 10.9.1.0 0.0.0.255 area 1

!

• Router 3:
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!
router ospf 100
network 172.16.30.0 0.0.0.255 area 0
network 172.16.20.0 0.0.0.255 area 1
network 192.168.1.0 0.0.0.255 area 1

!

A.1.6 iBGP

• Router 1:

!
router bgp 65000
network 192.168.0.0
network 172.16.20.0 mask 255.255.255.0
network 172.16.30.0 mask 255.255.255.0
neighbor 172.16.20.2 remote-as 65000
neighbor 172.16.30.3 remote-as 65000

!

• Router 2:

!
router bgp 65000
network 172.16.20.0 mask 255.255.255.0
network 10.9.1.0 mask 255.255.255.0
neighbor 172.16.20.1 remote-as 65000
neighbor 10.9.1.3 remote-as 65000

!

• Router 3:

!
router bgp 65000
network 172.16.30.0 mask 255.255.255.0
network 10.9.1.0 mask 255.255.255.0
network 192.168.1.0 mask 255.255.255.0
neighbor 172.16.30.1 remote-as 65000
neighbor 10.9.1.2 remote-as 65000

!

A.1.7 eBGP

• Router 1:

!
router bgp 65000

72



A.2. JUNIPER

network 192.168.0.0
network 172.16.20.0 mask 255.255.255.0
network 172.16.30.0 mask 255.255.255.0
neighbor 172.16.20.2 remote-as 65001
neighbor 172.16.30.3 remote-as 65002

!

• Router 2:

!
router bgp 65001
network 172.16.20.0 mask 255.255.255.0
network 10.9.1.0 mask 255.255.255.0
neighbor 172.16.20.1 remote-as 65000
neighbor 10.9.1.3 remote-as 65002

!

• Router 3:

!
router bgp 65002
network 172.16.30.0 mask 255.255.255.0
network 10.9.1.0 mask 255.255.255.0
network 192.168.1.0 mask 255.255.255.0
neighbor 172.16.30.1 remote-as 65000
neighbor 10.9.1.2 remote-as 65002

!

A.2 Juniper

A.2.1 Network interfaces

• Router 1:

interfaces {
fe-0/0/0 {

unit0 {
family inet {

address 192.168.0.1/32;
}

}
}
fe-0/0/1 {

unit 0 {
family inet {
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address 172.16.20.1/32;
}

}
}
fe-0/0/2 {

unit 0 {
family inet {

address 172.16.30.1/32;
}

}
}
lo0 {

unit 0 {
family inet {

address 10.0.1.1/32;
}

}
}

}

• Router 2:

interfaces {
fe-0/0/0 {

unit0 {
family inet {

address 172.16.20.2/32;
}

}
}
fe-0/0/1 {

unit 0 {
family inet {

address 10.9.1.2/32;
}

}
}
lo0 {

unit 0 {
family inet {

address 10.0.2.2/32;
}

}
}

}

• Router 3:
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interfaces {
fe-0/0/0 {

unit0 {
family inet {

address 172.16.30.3/32;
}

}
}
fe-0/0/1 {

unit 0 {
family inet {

address 10.9.1.3/32;
}

}
}
fe-0/0/2 {

unit 0 {
family inet {

address 192.168.1.3/32;
}

}
}
lo0 {

unit 0 {
family inet {

address 10.0.3.3/32;
}

}
}

}

A.2.2 Static route

• Router 1:

routing-options {
static {

route 192.168.1.0/24 {
next-hop 172.16.30.3;

}
route 10.9.1.0/24 {

next-hop 172.16.20.2;
}
route 0.0.0.0/0 {

next-hop 192.168.0.100;
}

}
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}

• Router 2:

routing-options {
static {

route 172.168.30.0/24 {
next-hop 172.16.20.1;

}
route 192.168.0.0/24 {

next-hop 172.16.20.1;
}
route 192.168.1.0/24 {

next-hop 10.9.1.3;
}
route 0.0.0.0/0 {

next-hop 172.16.20.1;
}

}
}

• Router 3:

routing-options {
static {

route 192.168.0.0/24 {
next-hop 172.16.30.1;

}
route 172.16.20.0/24 {

next-hop 10.9.1.2;
}
route 0.0.0.0/0 {

next-hop 172.16.30.1;
}

}
}

A.2.3 RIP

• Router 1:

policy-options {
policy-statement advertise-rip-routes {

term1 {
from protocol [ direct rip ];
then accept;

}

76



A.2. JUNIPER

}
}
protocols {

rip {
group rip-group {

export advertise-rip-routes;
neighbor fe-0/0/0.0;
neighbor fe-0/0/1.0;
neighbor fe-0/0/2.0;

}
}

}

• Router 2:

policy-options {
policy-statement advertise-rip-routes {

term1 {
from protocol [ direct rip ];
then accept;

}
}

}
protocols {

rip {
group rip-group {

export advertise-rip-routes;
neighbor fe-0/0/0.0;
neighbor fe-0/0/1.0;

}
}

}

• Router 3:

policy-options {
policy-statement advertise-rip-routes {

term1 {
from protocol [ direct rip ];
then accept;

}
}

}
protocols {

rip {
group rip-group {

export advertise-rip-routes;
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neighbor fe-0/0/0.0;
neighbor fe-0/0/1.0;
neighbor fe-0/0/2.0;

}
}

}

A.2.4 Single-area OSPF

• Router 1:

routing-options {
router-id 10.0.1.1;

}
protocols {

ospf {
area0.0.0.0 {

interface lo0.0 {
passive;

}
interface fe-0/0/0.0;
interface fe-0/0/1.0;
interface fe-0/0/2.0;

}
}

}

• Router 2:

routing-options {
router-id 10.0.2.2;

}
protocols {

ospf {
area0.0.0.0 {

interface lo0.0 {
passive;

}
interface fe-0/0/0.0;
interface fe-0/0/1.0;

}
}

}

• Router 3:

routing-options {
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router-id 10.0.3.3;
}
protocols {

ospf {
area0.0.0.0 {

interface lo0.0 {
passive;

}
interface fe-0/0/0.0;
interface fe-0/0/1.0;
interface fe-0/0/2.0;

}
}

}

A.2.5 Multi-area OSPF

• Router 1:

routing-options {
router-id 10.0.1.1;

}
protocols {

ospf {
area0.0.0.0 {

interface lo0.0 {
passive;

}
interface fe-0/0/2.0;

}
area 0.0.0.2 {

interface fe-0/0/0.0;
interface fe-0/0/1.0;

}
}

}

• Router 2:

routing-options {
router-id 10.0.2.2;

}
protocols {

ospf {
area0.0.0.1 {

interface lo0.0 {
passive;
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}
interface fe-0/0/1.0;

}
area 0.0.0.2 {

interface fe-0/0/0.0;
}

}
}

• Router 3:

routing-options {
router-id 10.0.3.3;

}
protocols {

ospf {
area0.0.0.0 {

interface lo0.0 {
passive;

}
interface fe-0/0/0.0;

}
area 0.0.0.1 {

interface fe-0/0/1.0;
interface fe-0/0/2.0;

}
}

}

A.2.6 iBGP

• Router 1:

routing-options {
router-id 10.0.1.1;
autonomous-system 65000;

}
protocols {

bgp {
group internal-within-AS65000 {

type internal;
neighbor 172.16.20.2;
neighbor 172.16.30.3;

}
}

}

• Router 2:
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routing-options {
router-id 10.0.2.2;
autonomous-system 65000;

}
protocols {

bgp {
group internal-within-AS65000 {

type internal;
neighbor 172.16.20.1;
neighbor 10.9.1.3;

}
}

}

• Router 3:

routing-options {
router-id 10.0.3.3;
autonomous-system 65000;

}
protocols {

bgp {
group internal-within-AS65000 {

type internal;
neighbor 172.16.30.1;
neighbor 10.9.1.2;

}
}

}

A.2.7 eBGP

• Router 1:

routing-options {
router-id 10.0.1.1;
autonomous-system 65000;

}
protocols {

bgp {
group session-to-AS65001 {

type external;
peer-as 65001;
neighbor 172.16.20.2;

}
group session-to-AS65002 {

type external;
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peer-as 65002;
neighbor 172.16.30.3;

}
}

}

• Router 2:

routing-options {
router-id 10.0.2.2;
autonomous-system 65001;

}
protocols {

bgp {
group session-to-AS65000 {

type external;
peer-as 65000;
neighbor 172.16.20.1;

}
group session-to-AS65002 {

type external;
peer-as 65002;
neighbor 10.9.1.3;

}
}

}

• Router 3:

routing-options {
router-id 10.0.3.3;
autonomous-system 65002;

}
protocols {

bgp {
group session-to-AS65000 {

type external;
peer-as 65000;
neighbor 172.16.30.1;

}
group session-to-AS65001 {

type external;
peer-as 65001;
neighbor 10.9.1.2;

}
}

}
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A.3 Vyatta

A.3.1 Network interfaces

• Router 1:

interfaces {
loopback lo {

address 10.0.1.1 {
prefix-length: 32

}
}
ethernet eth0 {

address 192.168.0.1 {
prefix-length: 24

}
}
ethernet eth1 {

address 172.16.20.1 {
prefix-length: 24

}
}
ethernet eth2 {

address 172.16.30.1 {
prefix-length: 24

}
}

}

• Router 2:

interfaces {
loopback lo {

address 10.0.2.2 {
prefix-length: 32

}
}
ethernet eth0 {

address 172.16.20.2 {
prefix-length: 24

}
}
ethernet eth1 {

address 10.9.1.2 {
prefix-length: 24

}
}

}
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• Router 3:

interfaces {
loopback lo {

address 10.0.3.3 {
prefix-length: 32

}
}
ethernet eth0 {

address 172.16.30.3 {
prefix-length: 24

}
}
ethernet eth1 {

address 10.9.1.3 {
prefix-length: 24

}
}
ethernet eth2 {

address 192.168.1.3 {
prefix-length: 24

}
}

}

A.3.2 Static route

• Router 1:

protocols {
static {

route 192.168.0.0/24 {
next-hop: 172.16.30.3

}
route 10.9.1.0/24 {

next-hop: 172.16.20.2
}
route 0.0.0.0/0 {

next-hop: 192.168.0.100
}

}
}

• Router 2:

protocols {
static {
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route 192.168.0.0/24 {
next-hop: 172.16.20.1

}
route 192.168.1.0/24 {

next-hop: 10.9.1.3
}
route 172.16.30.0/24 {

next-hop: 172.16.20.1
}
route 0.0.0.0/0 {

next-hop: 172.16.20.1
}

}
}

• Router 3:

protocols {
static {

route 192.168.1.0/24 {
next-hop: 172.16.30.1

}
route 172.16.20.0/24 {

next-hop: 10.9.1.2
}
route 0.0.0.0/0 {

next-hop: 172.16.30.1
}

}
}

A.3.3 RIP

• Router 1:

policy {
policy-statement ”EXPORT CONNECTED” {

term1 {
from{

protocol: ”connected”
}
then {

action: ”accept”
}

}
}

}
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protocols {
rip {

interface eth0 {
address 192.168.0.1 {
}

}
interface eth1 {

address 172.16.20.1 {
}

}
interface eth2 {

address 172.16.30.1 {
}

}
export: ”EXPORT CONNECTED”

}
}

• Router 2:

policy {
policy-statement ”EXPORT CONNECTED” {

term1 {
from{

protocol: ”connected”
}
then {

action: ”accept”
}

}
}

}
protocols {

rip {
interface eth0 {

address 172.16.20.2 {
}

}
interface eth1 {

address 10.9.1.2 {
}

}
export: ”EXPORT CONNECTED”

}
}

• Router 3:
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policy {
policy-statement ”EXPORT CONNECTED” {

term1 {
from{

protocol: ”connected”
}
then {

action: ”accept”
}

}
}

}
protocols {

rip {
interface eth0 {

address 172.16.30.3 {
}

}
interface eth1 {

address 10.9.1.3 {
}

}
interface eth2 {

address 192.168.1.3 {
}

}
export: ”EXPORT CONNECTED”

}
}

A.3.4 Single-area OSPF

• Router 1:

policy {
policy-statement ”EXPORT CONNECTED” {

term1 {
from{

protocol: ”connected”
}
then {

action: ”accept”

¿}
}

}
}
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protocols {
ospf4 {

router-id: 10.0.1.1
area 0.0.0.0 {

interface eth0 {
address 192.168.0.1 {
}

}
interface eth1 {

address 172.16.20.1 {
}

}
interface eth2 {

address 172.16.30.1 {
}

}
}
export: ”EXPORT CONNECTED”

}
}

• Router 2:

policy {
policy-statement ”EXPORT CONNECTED” {

term1 {
from{

protocol: ”connected”
}
then {

action: ”accept”
}

}
}

}
protocols {

ospf4 {
router-id: 10.0.2.2
area 0.0.0.0 {

interface eth0 {
address 172.16.20.2 {
}

}
interface eth1 {

address 10.9.1.2 {
}

}
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}
export: ”EXPORT CONNECTED”

}
}

• Router 3:

policy {
policy-statement ”EXPORT CONNECTED” {

term1 {
from{

protocol: ”connected”
}
then {

action: ”accept”
}

}
}

}
protocols {

ospf4 {
router-id: 10.0.3.3
area 0.0.0.0 {

interface eth0 {
address 172.16.30.3 {
}

}
interface eth1 {

address 10.9.1.3 {
}

}
interface eth2 {

address 192.168.1.3 {
}

}
}
export: ”EXPORT CONNECTED”

}
}

A.3.5 Multi-area OSPF

• Router 1:

policy {
policy-statement ”EXPORT CONNECTED” {

term1 {
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from{
protocol: ”connected”

}
then {

action: ”accept”
}

}
}

}
protocols {

ospf4 {
router-id: 10.0.1.1
area 0.0.0.0 {

interface eth2 {
address 172.16.30.1 {
}

}
} area 0.0.0.2 {

interface eth0 {
address 192.168.0.1 {
}

}
interface eth1 {

address 172.16.20.1 {
}

}
}
export: ”EXPORT CONNECTED”

}
}

• Router 2:

policy {
policy-statement ”EXPORT CONNECTED” {

term1 {
from{

protocol: ”connected”
}
then {

action: ”accept”
}

}
}

}
protocols {

ospf4 {
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router-id: 10.0.2.2
area 0.0.0.1 {

interface eth1 {
address 10.9.1.2 {
}

}
} area 0.0.0.2 {

interface eth0 {
address 172.16.20.2 {
}

}
}
export: ”EXPORT CONNECTED”

}
}

• Router 3:

policy {
policy-statement ”EXPORT CONNECTED” {

term1 {
from{

protocol: ”connected”
}
then {

action: ”accept”
}

}
}

}
protocols {

ospf4 {
router-id: 10.0.3.3
area 0.0.0.0 {

interface eth0 {
address 172.16.30.3 {
}

}
} area 0.0.0.1 {

interface eth1 {
address 10.9.1.3 {
}

}
interface eth2 {

address 192.168.1.3 {
}

}
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}
export: ”EXPORT CONNECTED”

}
}

A.3.6 iBGP

• Router 1:

protocols {
bgp {

bgp-id: 10.0.1.1
local-as: 65000
peer ”10.0.2.2” {

local-ip: ”10.0.1.1”
local-as: 65000
next-hop: 10.0.1.1

}
peer ”10.0.3.3” {

local-ip: ”10.0.1.1”
local-as: 65000
next-hop: 10.0.1.1

}
}

}

• Router 2:

protocols {
bgp {

bgp-id: 10.0.2.2
local-as: 65000
peer ”10.0.1.1” {

local-ip: ”10.0.2.2”
local-as: 65000
next-hop: 10.0.2.2

}
peer ”10.0.3.3” {

local-ip: ”10.0.2.2”
local-as: 65000
next-hop: 10.0.2.2

}
}

}

• Router 3:
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protocols {
bgp {

bgp-id: 10.0.3.3
local-as: 65000
peer ”10.0.1.1” {

local-ip: ”10.0.3.3”
local-as: 65000
next-hop: 10.0.3.3

}
peer ”10.0.2.2” {

local-ip: ”10.0.3.3”
local-as: 65000
next-hop: 10.0.3.3

}
}

}

A.3.7 eBGP

• Router 1:

protocols {
bgp {

bgp-id: 10.0.1.1
local-as: 65000
peer ”172.16.20.2” {

local-ip: ”172.16.20.1”
local-as: 65001
next-hop: 172.16.20.1

}
peer ”172.16.30.3” {

local-ip: ”172.16.30.1”
local-as: 65002
next-hop: 172.16.30.1

}
}

}

• Router 2:

protocols {
bgp {

bgp-id: 10.0.2.2
local-as: 65001
peer ”172.16.20.1” {

local-ip: ”172.16.20.2”
local-as: 65000
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next-hop: 172.16.20.2
}
peer ”10.9.1.3” {

local-ip: ”10.9.1.2”
local-as: 65002
next-hop: 10.9.1.2

}
}

}

• Router 3:

protocols {
bgp {

bgp-id: 10.0.3.3
local-as: 65002
peer ”172.16.30.1” {

local-ip: ”172.16.30.3”
local-as: 65000
next-hop: 172.16.30.3

}
peer ”10.9.1.2” {

local-ip: ”10.9.1.3”
local-as: 65001
next-hop: 10.9.1.3

}
}

}
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Appendix B

Step by Step: Building a Linux
Router

1. Everything starts with downloading a LiveCD from Vyataa official web-
site. http://www.vyatta.com/download/index.php

2. When you finishing downloading an ISO image, it is a time to turn it into
a LiveCD. Creating a LiveCD is easy and it can be accomplished on ei-
ther the machines running Microsoft Windows or the machines running
Linux.

• Windows-based options - There are many tools availabe including
Roxio, Nero and so on.

Figure B.1: An example for Windows-based software, Nero Burning Roms

• Linux-based options - You can should to use GUI-based CD the au-
thoring software or a CLI command such as ”cdrecord”
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Figure B.2: An example for Linux-based software, CD/DVD creator

Figure B.3: An example for creating LiveCD using Linux CLI

3. Now we have a LiveCD. What we have to do next is to boot from the
LiveCD and the first step to use the LiveCD is to verify and set boot order
in BIOS by selecting CD-ROM first then save, exit, insert the LiveCD into
the CD-ROM drive and reboot. See Figure B.4.
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Figure B.4: Booting off order in BIOS

4. When the device finished from booting from the LiveCD, log in as user
”root” with a default password ”vyatta” See Figure B.5.

Figure B.5: The first login as root with a Vyatta default password
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5. The next step for installation to the hard drive is to run the installation
script. At the root prompt type ”install-system” and hit the [Enter] key.
The installation script will ask you a series of questions as configuring
software to suit your individual different kind of hardware situations.
Eash question are shown in ”[ ]”. See Figure B.6.

Figure B.6: To install to the hard drive by a command ”install-system”

6. The next step is to select the partitioning scheme. Vyatta suggested pick-
ing up ”Auto” option. Automatic partioning creates two partitions on
the disk. One is for root partition which holds majority of files including
the system binaries and log files. The second partitions holds configu-
ration informations. It is a good idea to separate routing configuration
from system partition because it helps protect the configurations from
being deleted during system upgrade. We selected ”Auto”. See Figure
B.7.

Figure B.7: To select the partitioning scheme

7. The next step is to choose the drive where the software will be installed.
The default location is the first drive in the chain. Typical names are
”sda” or ”hda”. As we have only one drive. We have no other ways
except to select ”sda” by default. See Figure B.8.

99



Figure B.8: To choose the drive where the Vyatta software to be installed

8. Then we need to select the size for root and configuration partition. Vy-
atta strongly suggested to select minimum 450MiB for root partition to
give a plenty of space for additonal updates and log files. The installa-
tion script will automatically subtract 10MiB from the total disk size to
reserve space for a configuration partition. You can choose more space
for the configuration partition by choosing a lower value here. We used
the default value passing by the step by pressing only [Enter] key. See
Figure B.9.

Figure B.9: To select the size for root and configuration partitions

9. The system would ask you where to copy the configuration file. As we
see in this example, a normal Vyatta installation suggested to use this
path /opt/vyatta/etc/config/config.boot. We pressed [Enter] key to accept the
default ”config.boot” file. See Figure B.10.

Figure B.10: Default path to copy the configuration file
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10. The next step is to install a linux bootloader. Briefly, the bootloader is the
first software program that run when the computer starts. It is responsi-
ble for loading and then transfering control to an operating system ker-
nel software. The bootloader for Linux is called GRUB which stands for
Grand Universal Boot Loader. Once the installation completed, the root
prompt return. See Figure B.11.

Figure B.11: To install the GRUB bootloader
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Appendix C

Glossary

AS: see Autonomous System.

Autonomous System: a routing domain that is under one administrative au-
thority, and which implements its own routing policies. Key concept in BGP.

BGP: Border Gateway Protocol. See chapter 2.1.3.

Cfengine: a policy-based configuration management system. See chapter 3.2.

Dynamic Route: A route learned from another router via a routing protocol
such as RIP or BGP.

EGP: see Exterior Gateway Protocol.

Exterior Gateway Protocol: a routing protocol used to route between Au-
tonomous Systems. The main example is BGP.

IGP: see Interior Gateway Protocol.

Interior Gateway Protocol: a routing protocol used to route within an Au-
tonomous System. Examples include RIP, OSPF and IS-IS.

Live CD: A CD-ROM that is bootable. In the context of Vyatta, the Live CD can
be used to produce a low-cost router without needing to install any software.

OSPF: See Open Shortest Path First. See chapter 2.1.2.

Open Shortest Path First: an IGP routing protocol based on a link-state al-
gorithm. Used to route within medium to large networks.

Promise theory: a theory to describe and model an autonomous system. See
chapter 3.1.
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RIB: See Routing Information Base.

RIP: Routing Information Protocol. See chapter 2.1.1.

Routing Information Base: the collection of routes learned from all the dy-
namic routing protocols running on the router which can be subdivided into a
Unicast RIB for unicast routes and a Multicast RIB.

Static Route: A route that has been manually configured on the router.
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