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Abstract

This project is about epidemics spreading in computer networks and the issue of node
centrality. The aim of such analysis is to investigate the rate of infection and informa-
tion spreading in the network, to find the most important nodes in the network graph,
and finally to answer the research question which states that”centrality of the node
has a crucial role on spreading power”.
The method used in this project to answer the research question is important because
it measures the power of spreading information by one specific node and studies the
environments around it, instead of environments around the whole network. So by
finding the power of spreading and properties of one specific node in the network will
help us understand which weaknesses or advantages this node has for maintenance or
blocking hazards at the right time.

The position or location of each node in the network is studied in a form of degree,
betweenness, and centrality of the node and the rate of effect those properties have on
spreading of information.

Hypotheses are suggested on epidemic networks in addition to our research ques-
tion and graphs are generated and analyzed, to test those hypotheses. We do so by
developing a mathematical SI-model which is depending on the values of principal
eigenvector to measure the number of infected nodes as a function of time, and also
trying to monitor infections’ movements and expressing the frequency and cumulative
tables, and graphs to support and confirm our developed mathematical method.

The obtained results from our work in this thesis show that centrality of the node
is related to the power of information spreading.
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Chapter 1

Introduction

Recently when Internet has grown and become available for every one and e-business
also has become incrasingly popular; a natural phenomenon to appear was the con-
cept of the so-called epidemic network. The term of epidemiology is used indeed for
human diseases for a long time now. Epidemiology [1]is dealing with disease spread-
ing within populations and can be defined as”the science of the infective diseases -
their prime causes, propagation and prevention. More especially it deals with their
epidemic manifestation” (LeRiche & Milner, 1971).

And since some computer worms propagated themselves in a very high speed and
rapidly such as Code-Red and SQL Slammer and that propagation can be described by
epidemic models as those that have been used for biological epidemiology [2]. Where
hosts (computers) can be considered as a population and some of them are infected
and contagious which can infect other susceptible hosts in the population by some in-
fection parameterβ.

So we can consider a network of machines (router, set of routers, hosts) as any
other population which can get epidemiological diseases from each other, unless that
the main different is within technological world, the spreading of information (worms,
viruses, etc.) will not take effect without contact between individuals.

Viral attack ca be contained by using antivirus programs or human countermea-
sures but often when a new epidemiological worm spreads may it will be difficult to
detect it and contain it at once, and this will causes too much damage and thousands of
machines (hosts) will be infected. On july 19th, 2001 a worm (”Code-Red v2”) was
spread into the internet and infected around 360000 machines over 14 hours and that
cost almost $2.6 billion [3].

Thus it is necessary to study the topology of the network and if an important node
is infected how this shall infect other nodes due to its central role. So having a good
knowledge about the structure of the network is very necessary for maintenance and
security purpose.
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CHAPTER 1. INTRODUCTION

Since mathematical methods can give us a clear view and can be a good help to
identify and solve many complex problems that why we would like to develop a new
mathematical method for information spreading by using principal eigenvector values
( PEV ) and then analyze and determine that how eigenvector and betweenness cen-
trality of the nodes within the network is related to the rate of infection.

The outline of this thesis will be like this: first we shall review background in form
of network topologies, network graphs, and principal eigenvector and centrality. Then
we shall talk about previous work has been done by others and review some known
epidemic models for spreading of infection.(We used the term ”spread of infection”
and ”spread of information” interchangeably).Finally we shall explain our methodol-
ogy to fulfill our study and then followed by result analyzing and conclusion.

1.1 Motivation

After joining the course of (Analytical Network And System Administration) coordi-
nated by Professor Mark Burgess at Oslo University College, autumn 2005, I found
interest in the network structure and especially the ways to rank all nodes in the net-
work.

Ranking nodes done by calculating adjacency matrix (see Section 2.1 and 2.4) and
then finding principal eigenvector which it’s values represent nodes centrality in the
network and highest value indicates the most important node. This knowledge led me
to be increasingly curious to study more about principal eigenvector. Our motivation
was trying to gain more advantage from principal eigenvector and determining how
eigenvector and betweenness centrality of the nodes is related to the rate of infection
in epidemic network.

Later when we had to choose our final thesis for obtaining the degree of Master
of Science in Network and System Administration and after discussion with Profes-
sor Mark Burgess I saw that it was a good opportunity to choose a thesis which deals
with epidemic network since it includes implicit working with network structure and
relationship between nodes in form of nodes degree and position (centrality) and their
effect on infections behavior.
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1.2. AIMS OF THIS THESIS

1.2 Aims of this thesis

The aims of this thesis are as follows:

1. Formulate a hypothesis which investigates centrality and rate of infection and
then trying to make graphs that test whether it is true or not.

2. Getting more knowledge and understanding about epidemic network and cen-
trality.

3. Figure out important nodes.

4. Observing the behavior of the information spreading by one chosen node.

5. Answering research questions.

1.3 Expectations and hypothesis

Our Research Question:Does principal eigenvector and centrality of the nodes
related to the rate of information (infection) spreading?

Our hypothesis:

Principal eigenvector and centrality of the nodes is related to the rate
of infection (spreading of infection). So if we suppose that there is
no recovery during the infections period; a node with highest principal
eigenvector value (PEV) which is called”most important node”shall
infect all other nodes rapidly than any other nodes and this lead to rapid
growth in curve of infection. Thus principal eigenvector is a good mea-
surement for centrality of the nodes.

Furthermore we have a prediction which represents what we expect from our de-
veloped mathematical method for epidemic information spreading:

• Nodes with different centrality have different curves of infections regardless of
their degree average.

3



CHAPTER 1. INTRODUCTION

1.4 Contribution

To answer research question and to show that whether our hypothesis is true this thesis
provides two main contributions:

• First is a developed mathematical SI-model depending on (PEV) for each node.
This method consists of three main phases:

1. Generating a random network of nodes by usin ORA see section (4.2)
which nodes interacting with each other.

2. Finding principal eigenvector (PEV) for each node to be assumed as rate
of infection (τ ).

3. And finally executing phase by applying our developed mathematical SI-
model which is represents the curve of infection as a function of time see
Eq.(4.32).

• Second is tracing infection’ movements to support and confirm our mathematical
method. This method also consists of three main phases:

1. Finding the number of infected nodes at each unit time (Frequency).

2. Cumulative phase by summing all infected nodes at each unit time.

3. Making statistical graphs depending on Frequency and Cumulative values
to show the curve of infection.

1.5 Limitations

Our method is not for describing one special worm (virus) spreading such as RedCod,
or SQL Slammer but our method shall describe information spreading in general by
one infected node depending on centrality and principal eigenvector (PEV).

Our mathematical SI-model:

I(t) =
(N − 1)

1 + (N − 2)e−τ(N−1)t

this equation represents the curve of infection see section (4.5) and can be used for
N = n nodes wheren = 2, 3, ....∞.

4



Chapter 2

Background

2.1 Network graph

Network graph consist of nodes which are connected to each other by edges, i.e links.
Before we start to talk about properties of nodes and links we should define each of
them to be easier to understand later in the following chapters.

Network can be of two types [4]: physical and logical (virtual). Physical network
where for example computers with assigned different IP addresses interacting with
each other according some protocols, and this kind of network can be represented by
undirected graph, where nodes in the graph represents the computers and the edges
between nodes as the physical links ( wire, optical cable, etc ) for communications. So
the connection between nodei and nodej happens through the path between nodei
and nodej. Another type of network graph is logical or virtual network such as e-mail
graph, where each node in this graph represents a user and each link from nodei would
go to all other users (nodes) which have e-mail address in the e-mail address book of
nodei, i.e. link represents contact between users (nodes). And similar to that in the
web graph node represents a web page and each link represents a hyperlink. All these
types of graph [4] (undirected graph, e-mail graph, and web graph) have almost the
same properties when it considers degree of nodes where [5]”the graph of Internet
is sparse with 75% of the nodes having outdegrees less or equal to two”, grouping or
clustering coefficient, and distance average”distances between any connected nodes”
and the distance between two nodes [5] is the sum of all links of the shortest path
between them.

Furthermore the Internet [5] can be divided into”subnetworks”which are called
”domains or autonomous systems”and these”subnetworks”interacting or connecting
to each other by different administrative authorities. And according to [5] there are
two levels Internet graphs namely”router level” see Figure (2.1) (a) where each router
(black dot) represented by a node and”inter-domain level” where each”domains
or autonomous systems”see Figure (2.1) (b) represented by a single node and link
between routers inside one domain is represents inter-connection.

5



CHAPTER 2. BACKGROUND

Figure 2.1: The structure of Internet at (a) the router level and (b) the inter-domain
level

And also according to [4] there are two levels of Internet graph:”microscopic In-
ternet graph” in this kind of graph the node represents routers and hosts and link rep-
resents communication between them. And second is”macroscopic Internet graph”
in this graph the node represents an”Autonomous System”which consist of a set
of routers and link represents communication between”Autonomous System”. Two
nodes”Autonomous System”in macroscopic graph are adjacent if there are at least
two routers which can communicate with each other between those two nodes.

Thus node can represents computer, user, webpage, host, router, and subnetwork
(domain) and links can represents physical material such as wire and optical cable for
communication between nodes or can represents hyperlink to connect webpages or
represents contact between users or routers or subnetworks.

Nodes can be represented [6] as dots they are connecting to each other by lines with
or with out arrow on them, and these diagrams called”graph” as D. Kønig proposed it.

Each line can indicate to some property such as:

• ”A dominates B (directed)”

• ”A depends on B (directed)”

• ”A is associate with B (undirected)”

Where directed link means”one-way” and undirected means”multi-way” . Each
node in the graph has its degree that depends on the nearest neighbors. And degree of
a node can be defined as:”In a non-directed graph, the number of links connecting
nodei to all other nodes is called the degreeki of the node. In a direct graph, we

6



2.1. NETWORK GRAPH

distinguish incoming and outgoing degrees”[6]. If we look at Figure:2.2 b) that each
node has degree of 2 (k=2).

Figure 2.2: a) Directed b) Undirected

We can represent any graph by”adjacency matrix” to be easier to deal with and
managed. Adjacency matrix is contains of 0’s and 1’s: where ”1” indicates connection
between the concerned nodes and ”0” indicates no connection. In adjacency matrix the
number of rows is equal to the number of columns and labeled by nodes of the graph.

Here we can represent Figure (2.2) b) by an adjacency matrix as in Eq. (2.1):

A =

node1

node2

node3

node4

node5


node1 node2 node3 node4 node5

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 (2.1)

7



CHAPTER 2. BACKGROUND

2.2 Network topologies

Networks can be represented by many types of graphs, that according to their connec-
tivity among nodes. As [6] shows three most important types of network topologies
which is discussed by Paul Baran in 1964, namely as in Figure:2.3”(a) centralized,
(b) de-centralized, and (c) distributed mesh”.

Figure 2.3: Network topologies

There are other topologies such as in Figure:2.4) (a) bus (line), (b) ring, (c) wheel,
and (d) grid.

Figure 2.4: More network topologies

8



2.3. CENTRALITY

2.3 Centrality

Centrality is one of the most important properties of the network analysis. If a node
has central position will has a crucial role to spread information, or will be one of
the most dangerous point which we should deal with by care. Those nodes are”well-
connected”with others and they have contact with many other important nodes [6].

Not all nodes have the same level of effect even may they have the same degree
that because of their position within network [6]. As we can see from the Figure (2.5)
both node A and node B have the same degree but node B is more important than node
A because of its position in the network which lies between many important nodes.

Figure 2.5: The most central node is B.

2.4 Principal Eigenvector

Since we want to depend on power of principal eigenvector values (PEV) in our method
to relate these values as probability of the rate of information spreading, so we would
like to review in general what is principal eigenvector and what principal eigenvector
is used for especially within network.

Suppose A is anN×N adjacency matrix then this will produceN eigenvalues and
N eigenvectors. We will choose the highest eigenvalue of that matrix to calculate the

9



CHAPTER 2. BACKGROUND

principal eigenvector, and most central node has highest value which is represent the
”eigencentre”of the graph, and all values in this eigenvector are positive.

Suppose that we have a very simple network which consists of just three nodes as
shown in Figure (2.6):

Figure 2.6: A very simple network

Figure (2.6) can be represented [6, 7] by an adjacency matrix as in Eq. (2.2):

A =

node1

node2

node3


node1 node2 node3

0 1 0
1 0 1
0 1 0

 (2.2)

WhereA is anN ×N adjacency matrix and we can find eigenvalues and eigenvec-
tors by applying Eq. (2.3):

A~v = λ~v (2.3)

Whereλ is called eigenvalues and there are correspondingly solutions which is
called eigenvectors. Each eigenvector can be represented asN × 1 matrix as Eq.(2.4):

~v =


x1

x2
...

xn

 (2.4)

10



2.4. PRINCIPAL EIGENVECTOR

Eq.(2.3) can be written as:

(A− λI)~v = 0 (2.5)

WhereI is an identity matrix and has the same dimensions asA.

I =

1 0 0
0 1 0
0 0 1



By setting

∣∣A− λI
∣∣ = 0 (2.6)

Then Eq. (2.6) gives

∣∣∣∣∣∣
−λ 1 0
1 −λ 1
0 1 −λ

∣∣∣∣∣∣ = 0 (2.7)

And by some algebra calculation we will get eigenvalues(λ) = (0,
√

2, -
√

2).
Now we are not interested to find all eigenvectors wich are corresponding to eigen-

values but only the principal eigenvector, so we will choose the highest value ofλ (
√

2)

then we rewritethe Eq. (2.5) as:−√2 1 0

1 −
√

2 1

0 1 −
√

2

x1

x2

x3

 = 0 (2.8)

And this gives the principal eigenvector:

~v =

x1

x2

x3

 =

 1√
2

1

 (2.9)

Eq.(2.9) is an eigenvector corresponding to the eigenvalue
√

2.

11



CHAPTER 2. BACKGROUND

The equation~v = [1,
√

2, 1]T represents principal eigenvector for our network (Fig-
ure 2.6)and these values characterizing the figure in some way that node2 with highest
eigenvector value

√
2 is most important node in our network. We can see that from

the Figure(2.6) if node 2 goes down the whole network will goes down, but if node1
or node3 goes down still we have connection between node2 and node3 or node2 and
node1.

12



Chapter 3

Related work

First this chapter reviews some most known epidemiological models such as SI, SIS,
SIR, SIDR, and SIRS models and then reviews related works have been done on epi-
demic networks and centrality.

Since network [8, 9] consists of nodes (vertices or hosts) which can be represented
by graph, we can consider the contact between the nodes as the edge which let the
information (diseases) pass through or transmitted. Nodes are connected to each other,
and the number of contacts represents the degree of the node. Not all the nodes have
very high degree unless complete graph which all nodes have equal degree and those
nodes are considered as most important nodes. Since network structure has a biggest
role of information spreading, therefore we should give a careful attention to the degree
distributions among nodes because of their role of building the network structure.

It is useful to know something about worm spreading because most epidemic mod-
els talking about infection by worms or viruses. When a worm [10] spreads in the
Internet trying to infect the vulnerable machines and after the infection happens those
vulnerable machines will get a copy of that worm. And by the same way these new
infected machines tries to infect other machines and so on.

The attacker try to make a list of machines with high network connection which is
called”hitlist” , first the worm will begins to infect those collected machines down the
list, and then these machines will infects other vulnerable machines.

The worm spreading mechanisms are many for instance”random, local subnets,
permutation, and topological scanning”.

Each computer will try to infect others in the Internet according to random scan-
ning, as in fully connected network and each node in this kind of graph represents
a computer and each link represents a connection. In subnet scanning there are di-
rect contacts between computers in this case the worm will not scanning randomly,
but instead scans for hosts on the local address space. And according to [10] if some
machine gets infected this machine will not be infected again.

And by applying random scanning of active worms one can see the rate of infection
as in Figure (3.1) which is showing the number of infected nodes versus the time.

13



CHAPTER 3. RELATED WORK

Figure 3.1: Random Scanning of Active Worms

3.1 Previous work on epidemic network

3.1.1 Epidemic Models

Epidemic model [11] is a good tool to understand the information (disease) spreading
by relating the process of spreading to the individuals (hosts) properties.
Anyway epidemic models are not easy to apply and to be sure of their results because
of:

1. Their conclusions depend on assumptions which are rarely straightforward.

2. Some times they can fit the date virtually to their models easily because the
epidemic threshold is very strong which is easy to be observed.

3. Depending on parameter values; such as number of population and units (rates)
of the contact between them which are just assumptions.

To make the epidemic process possible or easier it should not be complex and
should be very simple and clear to understand.

Epidemic algorithm deals with population that can be represented by a set of indi-
viduals which interactive with each other according some rules and these rules have a
crucial role to spread the information.

14
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Those individuals should have one of these states at a specific time [3, 12]:

1. Susceptible:
The individual has no idea about the specific information (worm, virus, etc.), but
has ability to get that information.

2. Infective:
The individual is knows about the specific information and will infect others
by spreading that information that means they are vulnerable but not become
victims yet.

3. Recovered:
The individual knows about that specific information but will not infect any
other.

There are to useful models for infectious disease, the first is stochastic and the
second is deterministic [13, 9].

Stochastic models uses for small or isolated population depending on chance by
following each individual and the number of infected nodes converges to zero this
means the extinction of worm happens with probability one. Stochastic models need
much work to get a result which confirms the predictions. Also these models can be
difficult to understand and complex mathematically.

Deterministic models uses for large population, trying to tell us what happened
to the average of population insteady state by deciding some initial condition. These
models put the individuals in subclasses or states. For example SEIR model includes
these states: Susceptible, Exposed, Infected, and Recovered. Deterministic models
uses widely because they do not need too much data and they are not complex.

Transition from one state to other happens at some rate, for instance infection rate
is very well known factor which force susceptible individuals to change their state to
infectious individuals.

When an epidemic disease appears and because the individuals (population) inter-
acting with each other in a particular situation, the individuals will change their states
by time. And transition from one state to other happens by some rate for instance in-
fection rate is very well known factor which force susceptible individuals to change
state to infectious individuals.
At start each individual can be considered as susceptible (S), then by time the number
of susceptible individuals will decrease and the number of others (infected (I), exposed
(E), and recovered (R)) will increase by some chosen rates.

Recently epidemiological models for network become more and more popular for
virus and worm propagation. Network can be represented by graphs [4, 14, 15], and
each graph consists of nodes which represent individuals and edges (links) which rep-
resent the possible contacts between the individuals. Each node in the graphs has one
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of these states: infectious, susceptible, exposed, recovered, and removed. Any infected
node can pass the infection to its susceptible neighbor node.

There are several factors that cause or influence the spread of an infection [3, 16,
17]:

1. The number of infected nodes at the present time.

2. The rate of infection.

3. The number of susceptible nodes.

4. The rate of infection or transmission.

5. The vulnerability of the population.

6. The immunity levels.

7. The state which any worm can be ready or prepared for copying it self.

8. The period of time that one infected node can stay infected.

9. Degree of connection with other nodes.

SI model

SI model considers as one of the simplest epidemic model to describe the growth of an
infection. The individuals (nodes) divided in to compartments or states: Susceptible (
S ) and Infectious ( I ) [3, 12].

In this model nearly each individual is susceptible. After spreading of information
(disease) all individuals (susceptible) will be infected exponentially and will remain
infected.
This model assumes [12, 4] that: first the infected individuals will remain infected for
ever, that means there is no birth, latency, death, or recover among them, second the
population size is large and fixed, and third the population is homogeneous.

Suceptible - Infectious

Figure 3.2: SI model
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This model [4] can be used for”worst-case propagation”, i.e. there are not any
security protections is used such as automated network security ( antivirus, firewalls,
intrusion detection system, monitoring, etc.) and no countermeasures action taken to
protect against worm propagation such as ( traffic blocking, patching, etc.).

”While computer worms represent a relatively new threat, the mathematical foun-
dations governing the spread of infectious disease are well understood and are easily
adapted to this task.”[3].

So SI model can be described mathematically by the differential equation [3, 4].

di(t)

dt
= βd̄(1− i(t))i(t) (3.1)

Total rate of newly infected nodes

Where:
β is a rate of infection and it is an assumed constant.
d̄ is the average degree of an infectious node.
i(t) is fraction of infectious node ( I(t)/N ) at time t.
N is population number
I(t) infectives nodes (spreading the infection) at time t.
d̄(1− i(t)) is the expected number of susceptible neighbors which can be

infected by an infectious node.
βd̄(1− i(t))i(t) is the total rate of infected nodes.

The solution to Eq.(3.1) is:

i(t) =
i(0)eβ′t

1− i(0) + i(0)eβ′t
(3.2)

Logistic curve describing the rate of infection

Where: β′ = βd̄

This equation will give the S-shape curve [4], which indicates that there are three
regions of fraction of infection nodes:

1. ”Slow start:” in this phase there are not many nodes infected yet.
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2. ”Exponential growth:” in this phase the number of infected nodes will increase
exponentially.

3. ”Equilibrium:” in this phase the number of infectious nodes will change gradu-
ally.

We can rewrite Eq (3.2) as:

i(t) =
i(0)eβd̄t

1− i(0) + i(0)eβd̄t
(3.3)

Logistic curve describing the rate of infection

Thus the equation for spreading infection on complete graph whered̄ (average of
degree) =(n− 1) will be as Eq (3.4):

i(t) =
i(0)eβ(n−1)t

1− i(0) + i(0)eβ(n−1)t
(3.4)

Logistic curve describing the rate of infection for complete graph

And SI-model [18]can be represented mathematically as:

da

dt
= Ka(1− a)

Differential equation of SI-model

Where:
a is the proportion of vulnerable machines which have been compromised.
K is the rate of infection and K is just assumed constant = 1.8 and does not

depend on”processor speed, network connection, or location of the
infected machine”.

The solution of that differential equation will be as:

a =
eK(t−T )

1 + eK(t−T )

Logistic curve describing the rate of infection
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Where: T is a time which fixes when the incident happens.

And according to [19]spreading of infections has two phases at start begun quickly
which refers by epidemic phase then slows down and refers by steady state. And SI-
model could be used to study infection in the network where population is divided
to( S )of computer nodes they are considers as vulnerable nodes and ( I ) of infective
which can pass the infection to the susceptible nodes.

Spreading of computer worms can be described [19] by differential equation as:

dit

dt
= βi(t)(N − i(t))

Differential equation of SI-model

WhereN is the number of susceptible nodes for allt andN(t) = i(t) + s(t). In
this equation the rate of passing infectionβ is just assumption and constant also.

SIS model

SIS model has ability to stop the information spreading before all individuals become
infected [12]. If some node recognizes that there are many infected among its last
communication with neighbors, is not going to pass the disease because it became old.
And in this model the removed individuals can get infection again.

Suceptible - Infectious - Suceptible

Figure 3.3: SIS model

This model [15] also is one of the simplest models of network epidemic models.
This model consists of just two states, the susceptible ( S ) and the infectious ( I )
states. Susceptible node can be infected by some infected neighbor at some time step
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and become infectious. During the same time step the infectious nodes will be exposed
to cure by some probability and become susceptible again. And due to that [20] nodes
will change their stated from susceptible to infectious and vice versa many times.

This model [15] does not consider removal properties (death, immunization or pro-
tection).In the SIS model [4] there are rate of infection and a recovery, i.e. individuals
can be susceptible again.

This model is uses to study the worm propagation while some nodes are out of
work for a short time but still there are not cured from infections, for instance when
the some infected computer is turned off for some time.

SIS model can be described by the differential equation:

di(t)

dt
= βd̄(1− i(t))i(t)− γi(t) (3.5)

Total rate of infection and recovery of nodes at time t

Where:
β is the rate of infection.
d̄ is the average degree of an infections node.
γ is the rate of recovery.

Recovery of the individuals is proportional to the number of infectious nodes and the
rate of recovery (γ ).

The solution to Eq.( 3.5 ) is:

i(t) =
(1− δ)i(0)

i(0) + (1− δ − i(0))e−(β′−γ)t
(3.6)

Logistic curve describing the rate of infection and recovery

Where:
β′ = βd̄ andδ is the rate of cure.
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Similar to SI model if we have complete graph with n nodes thend̄ = (n− 1) and
the fraction of infected individuals will get this solution:

i(t) =
(1− δ)i(0)

i(0) + (1− δ − i(0))e−(β(n−1)−γ)t
(3.7)

Logistic curve describing the rate of infection
and recovery for complete graph

SIR model

SIR model has three states that depending on their status [8]:

1. ”Susceptible ( S ):”in this phase the individuals are free for any disease but they
can be infected at any time.

2. ”Infectious ( I ):” in this phase the individuals have the disease and they can
infect others.

3. ”Recovered ( R ):” in this phase the individuals have been cured and can not
infect any others.

Susceptible individuals will be infected with a constant probability per unit time by
infectious individuals whom have contact to them. After they have been infected they
will remain for some time before they can be recovered.

SIR model [9] has not latent period, what this means is that individuals are infected
as soon as they get contact with other infected nodes.
This model [20] is the extension of the SI model and takes in count the removal state
in addition to susceptible and infectious states. In this model, a node can be infected
just once.

Suceptible - Infectious - Removed

Figure 3.4: SIR model
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When the infected node recovers from the disease will get some immunity which
can be removed and has not ability to pass the infection anymore [12, 4]. Without any
regular immunization the spreading will not be slowing down [15]. But if the nodes
with highest degree become immune they will have important effect to prevent propa-
gations growth.

This model is uses to study the worm or virus propagation and at the same time to
determine the effects of protections technique such as using of anti-virus program, fire-
wall, intrusion detection software or human countermeasure such as software patching
and traffic blocking.

SIDR model

This model [4] deals with four states: susceptible, infectious, detected (in this phase
the virus has been discovered but it is not active to spread the infection), and removed.

Suceptible - Infectious - Detected - Removed

Figure 3.5: SIDR model

This model is used to study the virus throttling which is an automatic mechanism
for restraining or slowing the spread of information [4, 21].

The process of this model contains of two phases: the first is appearing virus sig-
nature which lead the node to change its state from susceptible to infectious with some
rate. The second phase is detecting the virus. The nodes will be divided in to two
classes namely”throttled and un-throttled”. If some node belongs to the throttled
class and become infected, the infection will not pass through to other nodes and at
once will change its state to detected state.
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SIRS model

This model [4] has three states: susceptible, infectious, and removed.

Suceptible - Infectious - Removed - Susceptible

Figure 3.6: SIRS model

Immediately after one node becomes removed it will stay in this state for while
and this period called”vigilance period”, and then will change its state to susceptible
again [4, 20].

3.2 Epidemic networks and centrality

Centrality can be measured by betweenness, and betweenness can be considered as
measurement of effect that a node has on the behavior of information propagation
within the network [22] . Possibly there is another way to measure the centrality
namely the degree of node which indicates the number of contact with other nodes in
the network. And the degree represents in some way the popularity of a node. But the
most powerful way to measure the centrality of some node is closeness which depends
on the shortest possible path between this node and other nodes. Closeness measures
the lasting of spreading information from one given node to all other nodes in the net-
work.

Betweenness it seems to be considered as location of a node on the paths between
others as we can see from Figure (3.7) where nodes A and B lay between tow groups of
nodes they consider as”bridged” and they obtain the highest betweenness. Thus they
represent the shortest path between any tow nodes from both groups and that indicates
A and B have important roles of information flow from sources to targets. But node C
obtains the lowest betweenness because none of shortest path goes through it.
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Figure 3.7: NodesA andB have highest betweenness than nodeC

The equation of betweenness of nodei according [22] is:

bi =

∑
s<t g

(st)
i /nst

1
2
n(n− 1)

(3.8)

Betweenness of nodei

Where:
s andt are two nodes.
n is the total number of the nodes within the network.
g

(st)
i is the number of shortest path between nodes andt which pass throw

nodei.
nst is the total number of shortest path between s and t.

But since using this method to measure the betweenness is too hard and difficult if
we compared it with measuring degree of nodes and since they are too much correlated
it is better to use degree as measurement [22, 23]. Nodes with high degree have more
influence than nodes with low degree.

Centrality [24] depending on nodes degree,”ie, its number of neighbors”and can
be related to spreading power. Degree of any node can be as represented in Eq.(3.9)

ki =
∑

j=nn(i)

(3.9)

Equation of nodes degree

Wherenn(i) is the nearest neighbors of nodei.
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Eq.(3.9) is not quite enough to measure the centrality [24] , so by involving neigh-
bors centrality may obtain the smoother measurement of centrality as in Eq.(3.10):

ei =
1

λ

∑
j=nn(i)

ei (3.10)

Nodes centrality

And Eq. (3.10) can be rewritten as:

Ae = λe (3.11)

Where:
A is an adjacency matrix
e is a vector of centrality

Note: Eq. (3.11) is equivalent with Eq.(2.3).

And as we mentioned under section (2.4 Principal eigenvector) heree represents
principal eigenvector, that insures by taking the largest eigenvalue (λmax).Then eigen-
vector centrality values are different from node to node in a smooth way that because
the most central node surrounded by important nodes too. That distinguishes the mea-
surement by eigenvector centrality from measurement by degree centrality. The reason
is that as in [24, 6] even one node has high degree may do not has high centrality be-
cause that node has no connection with important nodes. This is mean on other words
that eigenvector centrality takes in count the properties of neighborhoods but node de-
gree does not.

This will lead us to deduce that central node is surrounded by many nodes with
high eigenvector centrality and isolated node is poor from that property.

The author of [24] assumed that:
”Eigenvector centrality (EVC) is a good measure of spreading power”.

If this assumption is true then the isolated nodes (separate nodes from other nodes)
will never have large spreading power.

Spreading will take place from node to node and depends on the centrality of the
infected node. Neighbors of infected node will be infected and they will infect their
own neighbors and so on. If node has high spreading power it will infect other nodes
rapidly than other nodes with low spreading power.
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If infection starts from nodes with low spreading power then will reach after while
to the nodes with higher spreading power and at end reaches the remained nodes with
low spreading power. During these stages the most important nodes will be completely
infected and at this time the rate of infection will reach maximum and this lead to ob-
tain ”saturation” and then infection moves again toward nodes with low eigenvector
centrality.

From this conclusion one can obtain the curve with S-shape which can be divided
in to three parts or stages. According [24, 25] the first one represents the earlier stage
of infection which is known by its flat part. That because nodes with low spreading
power are infected at this stage and the curve goes”uphill” not so quickly. Then fol-
lows by second part which represents the”saturated” stage that because nodes with
high spreading power are infected and the infection will spread rapidly toward top of
infection and that called”top of the mountain”where infection increases exponen-
tially. Third part of the curve represents the infection of remainder of the nodes with
low spreading power and the rate of infection at this time is slow and the infection
seems to be almost linearly.

If we look at Figure (3.8) we can easily see those three stages from the S-shaped
curves [25]. This figure shows the rate of infection as function of time which is carried
out by applying SIR (Susceptible-Infected-Removed) model on a network with some
rate of infection and recovery.

A network with multiple region [24] shows also S-shape even each region has own
S shape that because the infection curve for the whole network represents the sum of
all infection curves which belong to those regions.

In this paper [24] SI (Susceptible, Infected) model be implemented where if a node
infected it will remain infected for ever. At(t = 0) initially there is just one infected
node then this will goes to infect all other nodes with fixed probabilityp per unit time.

Figure (3.9) shows the cumulative S-shape of one region with infection probability
(p = 0.05) within ”Gnutella” graph where the most important nodes are infected at
the beginning of the time steps.
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Figure 3.8: Curve of rate of infection (S-Shape)

Figure (3.10) is the same as figure (3.9) in all conditions unless the infection proba-
bility is (p = 0.6) and this lead to compressing of time scale for infected nodes. As we
can see from figure (3.9) all nodes need 120 unit time to be infected with(p = 0.05)
but in figure (3.10) one can see they need almost just 14 unit time steps to be infected
when(p = 0.6).

The author of [24] would like to show a side of spreading power as an outline that
because they has not get the correct result for their SI spreading process.

First the author was interested to find out an expression for”infection coefficient”
C(i, j) to be as description for spreading infection from nodei to nodej and reverse
and depends on path fromi andj as shown in Eq.(3.12).

C(i, j) =
max∑
h=1

whNSRh(i, j) (3.12)

Infection coefficient
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Figure 3.9: Cumulative S-shape withp = 0.05

Figure 3.10: Cumulative S-shape withp = 0.6

Where:
C(i, j) is infection coefficient
i andj is tow nodes (i will infectj)
h is path length
NSR is a an adjacency matrix”Non-Self-Retracing”path
w is some positive weight andw < 1

Eq.(3.12) gives the”infection coefficient” for each node, and now it easy to apply
that equation to fine the spreading power for nodei. To do so one must add all infection
coefficientC(i, j) which involves nodei as shown in Eq.(3.13).
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S(i) =
∑

i

C(i, j) =
∑

i

max∑
h=1

whNSRh(i, j) (3.13)

Spreading power of nodei by excluding Self-Retracing path

Where: WhereS(i) is indicate the spreading power.

Here again one can say each node with high infection coefficient has high spreading
power.But sinceNSRh is still not having a general expression so it will be substituted
with as in Eq. (3.14):

Sa(i) =
∑

i

∑
h=1

whAh(i, j) (3.14)

Spreading power of nodei by including Self-Retracing path

Where A is an adjacency matrix.

Well this mathematical theory of the spreading power does not gives the exact so-
lution because of infection maybe doubled when spreading from j to i also taken with.

29



CHAPTER 3. RELATED WORK

30



Chapter 4

Methodology

To approach from satisfied answer to our research question and our predictions; we
shall try to exhibit our method to be easier to follow the steps of solving the problem.

4.1 Research Subjects

The subjects of this research are nodes (hosts), which they can be considered as one
population. Since we shall test our developed mathematical SI-model for measurement
so all nodes in our population (network) are infected or susceptible.

Our network has these properties:

1. The population consist ofN nodes.

2. Just one node infected ( I ) and has ability to infect all other nodes by infection’s
rate (τ ).

3. (N − 1) nodes are susceptible ( S ) which they have no idea about the infection
but they have ability to get it.

4.2 Research Tools

We shall use several tools for testing and analyzing data.

1. Mathematica:
Mathematica is a popular tool for computer algebra system and it is a powerful
programming language. Mathematica is helpful to: do numerical and symbolical
computation, to analyze and visualizing data, to do numerical modelling and
simulation, solving simple and complex systems and much more [26].
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2. Excel:
Excel is a powerful program to store information in columns and rows and then
can be organized as we want. Excel deals with number and text. Numbers
called values and text often called label. Using excel for numerical solution
and making and displaying graph from data which stored in the tables. We can
use excel for many mathematical and statistical calculating to fine for instance
standard deviation, mean, average, max, min, and sum. Furthermore we can
choose many types of chart depending on our demand such as: line, bar, pie,
cylinder, and cone [27].

3. ORA (Organizational Risk Analyzer):
The Organizational Risk Analyzer (ORA) is a statistical analysis package for
analyzing complex systems as dynamic social networks. By using ORA we can
generate and visualize network graph and shows nodes connection with each
other by edges.We can easily rotate, isolate, and add nodes as demanded. We
can use ORA for sketching many types of chart such as: Bar Chart, Scatter Plot,
Histogram, and Heat Map. Furthermore we can use ORA for generating many
types of reports for instance, risk, management, immediate impact, and Sphere
of influence. We can use it for many other tasks such as comparing organizations
to each other, optimizing network structure, and for identify subgroups [28].

4. In addition we used Online Matrix Calculator1 for calculating eigenvalues and
their corresponding eigenvectors.

4.3 Procedures

1. Using ORA to generate two types random network graph (populations); first,
is a small network graph and another one is a large network. Small network
graph consist of just 12 nodes and large network graph consist of 100 nodes.
The purpose of that is to get more overview, to identify patterns or trends and to
support the result in some way by comparing them; they may supplement each
other.

2. Trying to calculate PEV for each graph.

3. Proportionate to the values of PEV. The purpose of that is to enhance data anal-
ysis because it is easier to analysis data if there are relatively distributed and it is
more meaningful. Then we will use the relative values of PEV as an assumption
for the rate of infection of nodes instead of just assuming any constant number
as almost all other models have been done to fit their demands. As we have seen
from (section 3.1.1 SI-model Eq (3.3)) that the author [4] assumed thatβ is the
rate of infection and at the same time the author usedd̄ (average of nodes degree)

1http://www.bluebit.gr/matrix-calculator/
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to get more sensible result. In our model we used PEV which includes implicit
degree, betweenness and centrality at the same time that why we do not need to
assume any extra constant number to represents the rate of infection.

4. Trying to develop our mathematical method for SI-model which can describe
our demand to show the relationship between the rate of information spreading
and centrality.

5. Testing our method to figure out whether it satisfies our demands or not.

6. Tracing infections’ movements. This will help us to make a cumulative fre-
quency graph to get better view of infected nodes at each time scale, i.e. collect-
ing data spatiotemporally.

4.4 Proportion

To perform the proportion process as we mentioned under section (4.3) we need to:

1. Calculate PEV.

2. Dividing 1 by the sum of all values which we obtained from PEV and the result
is denoted by proportion factor (PF).

3. Multiplying each value of PEV by PF to get the proportion form.

Example:

Let us say we have a network graph consist of 10 nodes as in Figure 4.1:

Figure 4.1: Network consist of 10 nodes
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The adjacency matrix of Figure (4.1) will be as Eq. (4.1):

A =



0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 1 1 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 1 0


(4.1)

Then we used2 Online Matrix Calculator for calculating eigenvalues and eigenvectors.

Matrix (A) gives eigenvalues(λ) = {−2.513, 2.513,−1.523, 1.523,−0.764,−0.764,
0.764, 0.764,−0.447, 0.447}.

The highest value of eigenvalue is:λ = 2.513, and the principal eigenvector (PEV)
which is associated with this value is as in Eq. (4.2):

~v(A) =



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10


=



0.090
0.226
0.190
0.478
0.359
0.426
0.170
0.424
0.281
0.281


(4.2)

Then next step is to calculate the sum of all values of principal eigenvalue as in Eq.
(4.3):

10∑
i=1

PEV (xi) = 2.925 (4.3)

2http://www.linktotheonlinesite.com
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Now we shall calculate proportion factor (PF) as in Eq. (4.4):

PF =
1∑10

i=1PEV (xi)
=

1

2.925
= 0.341 (4.4)

The final step is to calculate the proportion form of PEV as in Eq. (4.5):

PF × ~v(A) = PF ×



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10


= 0.341×



0.090
0.226
0.190
0.478
0.359
0.426
0.170
0.424
0.281
0.281


=



0.030
0.077
0.064
0.162
0.122
0.145
0.057
0.144
0.095
0.095


=



τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

τ9

τ10


(4.5)

Now after proportion process ourPEV = [0.030, 0.077, 0.064, 0.162, 0.122, 0.145,
0.144, 0.095, 0.095]T , and we assume thatτith value represent the probability of in-
fection rate forith node.

4.5 Mathematical method

To develop our mathematical SI-model we would like to bring to mind that our re-
search subjects (see section 4.1) consist ofN nodes and just one node is infected ( I )
and(N −1) nodes are susceptible ( S ). And we assume that the (τ ) is representing the
probability for rate of infection after proportionate process; so all susceptible nodes
sooner or later will become infected by that probability.

In our method we assume that each node has different ability to pass the infection
(information), that according to their location within the network, i.e. nodes have not
equal chance to infect others. As mentioned in [8] in the real world the way of contacts
between individuals is too far from fully mixed, i.e. they are different in centrality and
degree.
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To relate degree of the nodes to the rate of infection is not satisfactory, because if
two nodes have the same degree will have the same rate of infection too, which is not
true. As we can see from Eq.(3.3) the author [4] usedβ plus d̄ (average of degree) to
fit or get the suitable result and author of [18] usedK see SI-model section (3.1.1) as
the rate on infection and this is also just assumed constant and does not depends on
network connection or location of the machine.

We used PEV after proportion process to represent the rate of infection that be-
cause it includes implicit degree, betweenness, and centrality at the same time. So
we have to consider both the degree and location. What we want to say centrality in
addition to degree has effect on the rate of passing information.

We shall develop the existing SI model which is considered as one of the sim-
plest epidemic model. Our method depends on differential equation and the idée has
come from reviewing previous works see section (3.1.1) [4, 14, 18, 3, 13, 19] with two
essential differences between our method and the method of those papers or articles:

1. We have determined that we have just one infected node at the beginning, but [4,
14, 18, 3, 13, 19] do not determined how many nodes infected at the beginning.

2. We shall use PEV (τ ) as rate of infection and this value as we mentioned includes
implicit nodes centrality and degree, but the rate of infection in [14, 18, 3, 13,
19] depends on just assumed numerical number (β) and in [4] depends on (̄d)
(average of degree) plus (β) of nodes plus that assumed number.

Since in this model we are depending on just one factor namely the rate of infection
(τ ) so we do not have any recovery state during the infection process. In this case we
suppose that just one node is infected and all other nodes within the network are sus-
ceptible, and when they get infected they will remain as they are with out getting cured
for ever. We do so because we are interesting to find and determine how one infected
node can infect all other nodes within the network depending on principal eigenvector
and centrality of that infected node, i.e. depending on the position and degree of that
infected node.

The spread of information in this model will depends on the connection between
nodes, in other words any infected node will infect all connected susceptible neighbors
and each neighboring node will infect its susceptible connected neighbors and so on.

Now we can represent the whole population (nodes) by Eq. (4.6)

N = S(0) + I(0) (4.6)

As we supposed that we have just one infected node and(N − 1) susceptible nodes at
start which represented by Eq. (4.7) and Eq.(4.8):

I(0) = 1 (4.7)
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S(0) = N − 1 (4.8)

So the number of susceptible nodes at timet will be like initial number of suscep-
tible nodes minus newely infected nodesI(t) as in Eq. (4.9):

S(t) = S(0)− I(t) (4.9)

Substituting S(0) from Eq. (4.8) by S(0) in Eq. (4.9) we get Eq. (4.10) which is
represents number of susceptible nodes at timet:

S(t) = N − I(t)− 1 (4.10)

since the number of infected nodes will change (increase) by each unit time, so it
is suitable to use a differential equation as in Eq.(4.11) to represent this process and
the change factor is (τ ) infection rate.

dI

dt
= τI(t)S(t) (4.11)

By setting Eq.(4.10) in Eq.(4.11) we get:

dI

dt
= τI(t)(N − I(t)− 1) (4.12)

Since Eq.(4.12) is separable, we will separate it as in Eq.(4.13):

1

I(t)(N − I(t)− 1)
dI = τdt (4.13)

Eq.(4.13) is difficult to be integrated so we should split up the left side of the
equation to be easier for integration as in Eq.(4.14) where A and B are constants.

1

I(t)(N − I(t)− 1)
=

A

I(t)
+

B

(N − I(t)− 1)
(4.14)

1

I(t)(N − I(t)− 1)
=

A(N − I(t)− 1) + BI(t)

I(t)(N − I(t)− 1)
(4.15)
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Then from Eq.(4.15) we getA(N − I(t) − 1) + BI(t) = 1 as in Eq.(4.16) since
denominator for both sides in Eq.(4.15) is equal.

A(N − I(t)− 1) + BI(t) = 1 (4.16)

To get the value ofA we will setI(t) = 0 in Eq.(4.16) and we get Eq.(4.17).

A(N − 0− 1)− 0 = 1 =⇒ A(N − 1) = 1 =⇒ A =
1

(N − 1)
(4.17)

Then to get the value ofB we will set(N − I(t)− 1) = 0 in Eq.(4.16) and we get
Eq.(4.18)

A ∗ 0 + B(I) = 1 =⇒ B =
1

(I)
(4.18)

and since we set(N − I(t)− 1) = 0 =⇒ I(t) = (N − 1) and by setting this value in
Eq.(4.18) we will get Eq.(4.19).

B =
1

(N − 1)
(4.19)

Now we have gotA = 1
(N−1)

and B = 1
(N−1)

and by setting these values in
Eq.(4.14) we will get Eg.(4.20).

1

I(t)(N − I(t)− 1)
=

1
(N−1)

I(t)
+

1
(N−1)

(N − I(t)− 1)
(4.20)

and Eq.(4.20) gives:

1

I(t)(N − I(t)− 1)
=

1

N − 1

(
1

I(t)
+

1

(N − I(t)− 1)

)
(4.21)

Then we will set Eq.(4.21) in Eq.(4.13) and the result will be as Eq.(4.22):

1

N − 1

(
1

I(t)
+

1

(N − I(t)− 1)

)
dI = τdt (4.22)
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Now we are going to integrate both sides of Eq.(4.22) and this will give:

1

N − 1

(∫
1

I(t)
dI +

∫
1

(N − I(t)− 1)
dI

)
= τ

∫
dt (4.23)

ln I(t)− ln(N − I(t)− 1) = τ(N − 1)t + c (4.24)

where c is constant

ln

(
I(t)

(N − I(t)− 1)

)
= τ(N − 1)t + c (4.25)

eln( I(t)
(N−I(t)−1)) = eτ(N−1)t+c (4.26)

(
I(t)

(N − I(t)− 1)

)
= eτ(N−1)+c = eτ(N−1)tec (4.27)

By settingec = C, where C is constant then we will get:

(
I(t)

(N − I(t)− 1)

)
= Ceτ(N−1)t (4.28)

Initializing:

when t = 0 =⇒ eτ(N−1)∗0 = 1 and I(0) = 1 (4.29)

By setting Eq.(4.29) in Eq.(4.28) we will get Eq.(4.30)

C =
1

(N − 2)
(4.30)

And by setting Eq(4.30) in Eq.(28) we will get Eq.(4.31)(
I(t)

(N − I(t)− 1)

)
=

1

(N − 2)
eτ(N−1)t (4.31)
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Now to get the final equation of logistic curve of rate of infection we just continue
to do some algebraical steps.

I(t) =

(
(N − I(t)− 1)

(N − 2)

)
eτ(N−1)t

I(t) =

(
(N − 1)

(N − 2)
− I(t)

(N − 2)

)
eτ(N−1)t

I(t) +
I(t)

(N − 2)
eτ(N−1)t =

(
(N − 1)

(N − 2)

)
eτ(N−1)t

I(t)

(
1 +

1

(N − 2)
eτ(N−1)t

)
=

(
(N − 1)

(N − 2)

)
eτ(N−1)t

I(t)

(
(N − 2) + eτ(N−1)t

(N − 2)

)
=

(
(N − 1)

(N − 2)

)
eτ(N−1)t

I(t) =
(N − 1)eτ(N−1)t

(N − 2) + eτ(N−1)t

I(t) =
(N − 1)

1 + (N − 2)e−τ(N−1)t
(4.32)

Eq.(4.32) represents the logistic curve describing the rate of infection which we will
use it to measure the number of infected nodes as a function of timet.
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4.6 Graphic Representations of Data

Graphic representation is very useful for data analysis and for describing data which
is often difficult to be analysis by just tables or other data forms. We will use polygon
and histogram for analysis purpose and to get overview on our data. Polygon is a good
representation for data when we need it to be described graphical as a line chart and
histogram is a bar chart which represents frequency distribution of data.

4.6.1 Tracing infections’ movements

Since one node can not be infected by another node if there is no contact between
them, so we shall try to trace infections’ movements from node to node and observing
the number of nodes will be infected within each unit time. The number of infected
nodes within one unit time depends on the number of susceptible neighbors for in-
fected nodes. It means we will collect data spatiotemporally; in other words collecting
data at a specific location and at specific time.

Note that by contact we mean for example if a machine is already infected by e-
mail virus; this virus shall spread to all who have e-mail address in your e-mail address
list regardless to where they are and they become infected too.

4.6.2 Cumulative Representation

The term cumulative means adding the number of frequencies after each unit time.
Thus after observing the number of infected nodes at each unit time as in section
(4.6.1) we shall add them and use”ogive” which is used for graphical representation
for cumulative values to show the number of infected nodes as a function of time. This
will give us a clear view of infection’s curve and can be a good support to our mathe-
matical method which is depends on deferential equation.
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Chapter 5

Results and Analysis

5.1 Result from our small network

Let us say we have a small network which consists of 12 nodes as in Figure (5.1):

Figure 5.1: Small network consists of 12 nodes
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Output from ORA report generator for small network

Node Betweenness Eigenvector Degree

node1 0.0000 0.0709 0.0.1818
node2 0.0000 0.0343 0.0909
node3 0.2091 0.1009 0.3636
node4 0.2545 0.1081 0.2727
node5 0.1273 0.0840 0.1818
node6 0.5545 0.1465∗ 0.3636
node7 0.0000 0.0979 0.1818
node8 0.5727∗ 0.1418 0.4545∗

node9 0.0818 0.0625 0.1818
node10 0.0818 0.0625 0.1818
node11 0.0000 0.0481 0.0.0909
node12 0.0091 0.0425 0.1818

Table 5.1: Betweenness, Eigenvector, and Degree output from ORA Risk Report

The result of PEV which we obtained from ORA Risk Report is:
{
node1 0.0709
node2 0.0343
node3 0.1009
node4 0.1081
node5 0.0840
node6 0.1465
node7 0.0979
node8 0.1418
node9 0.0625
node10 0.0625
node11 0.0481
node12 0.0425
}
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now we are ranking all nodes from most important nodes to less important nodes
as follow:
{
1 Node6 0.1465
2 Node8 0.1418
3 Node7 0.0979
4 Node4 0.1081
5 Node3 0.1009
6 Node5 0.0840
7 Node1 0.0709
8 Node9 0.0625
9 Node10 0.0625
10 Node11 0.0481
11 Node12 0.0425
12 Node2 0.0343
}

Node6 has highest value that indicates node6 (τ = 0.1465) is most important node
in this graph and has most centrality in compare with other nodes, and node2 (τ =
0.0343) is considers as the most unimportant node in this graph.

5.1.1 Mathematical Method applied on small network

Now we shall apply our developed mathematical SI-model Eq. (4.32) on our small
network which consists of 12 nodes:

I(t) =
(N − 1)

1 + (N − 2)e−τ(N−1)t

This equation represents the logistic curve for number of infected nodes as a function
of time t.

WhereN = 12 andτ depends on PEV for each node after proportion process.

Note: we have talked about proportion process in section (4.3) and section (4.4) to
make analysis easier and useful but in some package such as ORA we do notwant to
be worry abut that because the proportion is given automatically..
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Figure 5.2: screenshot from application of our developed SI-model for allnodes in
graph of Figure 5.1

From this figure (Figure 5.2) one can notice the clear S-shape which starts with
slow beginning then growth exponential at next stage and finally the curve will take
off until all nodes will be infected. Furthermore one can see that whennode6 which
is most important node is infected the rate of infecting other nodes is faster than any
other nodes and the curve (rate of infection) growth rapidly.

Figure 5.3: Screenshot from application of our developed SI-model fornode2 and
node6

46



5.1. RESULT FROM OUR SMALL NETWORK

Figure 5.3 represents the rate of infections bynode2with τ = 0.0343 andnode6
with τ = 0.1465. As from ranking nodes we found thatnode6 is most important
node and has most centrality and we can see here also from this graph the different
between the rate of infection bynode2 andnode6. The time scale for infecting all
other nodes whennode6 is infected is shrunk too much in compare to time scale for
most unimportant node (node2). This indicates that centrality in form of degree and
position has crucial role of infection rate.

5.1.2 Tracing infections’ movements for small network

Each infected node attempts to infect its susceptible neighbors at rate (β) [20, 29, 30,
4, 31]. And according to [32]”Propagating viruses: A node in the ”susceptible” state
will change to ”infected” state with the probability (α) only if one of its neighbors is
infected, where (α) is the birth rate of the computer virus”.

Now let us suppose thatnode2 in Figure (5.1) is infected first, and according to
principle of each infected node will infect it’s nearest susceptible neighbors,node2
will infects its susceptible neighbors by some rate and those shall infect their own sus-
ceptible (uninfected) neighbors and so on. And we will do the same withnode6 in
Figure (5.1) to compare their ability to spread infection to other nodes in our small
graph.

Since network structure has a crucial role for infections spreading [8] and accord-
ing to [24] ”Since spreading takes place over the links of a network, it is clear that the
topology of the network can have a profound influence on the spreading process.”

So if we take a look at Figure 5.4 and Figure 5.6we can see hownode2 andnode6
step by step infects all other nodes and infections’ movements depending on structure
of our small network Figure 5.1.

From Figure 5.1we can see that infections’ movements depend on network’s structure.

47



CHAPTER 5. RESULTS AND ANALYSIS

Figure 5.4: Tracing infections’ movements fromnode2

From Figure 5.4 we obtained Table (5.2) by tracing infections’ movements between
nodes.

Table (5.2) consist of two columns as follow:

Frequency column represents the number of infected nodes at each unit time. For
example att0 we have justnode2 is infected and all other nodes are susceptible. At
time t1 node2 will infect only its susceptible neighboringnode3; which means that we
have just one node that is infected att1. Next at timet2 node3 will infect its suscep-
tible neighborsnode1, node4 andnode5; it means infecting 3 nodes.Then at timet3
node6 is the only susceptible node which will be infected bynode4 or node5 because
each node if it becomes infected it will remain infected for ever in our SI-model and
will not be infected again by other node. Then other nodes by the same way will be
infected.
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And cumulative column represents the sum of all infected nodes at each unit time.

Cumulative distribution shows the sum of all infected nodes at each unit time in
contrast to Frequency distribution which shows just the number of infected nodes at
one specific unit time.

Time Frecquency Cumulative

t0 1 1
t1 1 2
t2 3 5
t3 1 6
t4 2 8
t5 3 11
t6 1 12

Table 5.2: Frequency and Cumulative table for infecting other nodes bynode2 at ti

The Frequency histogram and cumulative polygon Figure 5.5 represents the fre-
quency and cumulative distribution of Table (5.2). This chart helps us to see clearly
how the nodes will be infected at each unit time. Where the horizontal axis represents
the time scale for infection and the vertical axis represents the number of infected
nodes. From Figure 5.5, we note that, whennode6 the most important node (the red
ball at timet3) gets infected the curve of infection will rise up clearly and continues
until all other nodes will be infected.
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Figure 5.5: The Frequency and Cumulative graphical representation for Table (5.2)

Figure 5.6: Tracing infections’ movements fromnode6

Figure 5.6 shows the infections’ movements step by step whennode6 infected first
then passing the infection to other nodes. Also here the number of infected nodes at
each time scale depends on structure of the network see Figure 5.1.
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By the same way as we did when we obtained Table (5.2) we will trace infections’
movements fromnode6 and collect the data as in Table (5.3)

Time Frecquency Cumulative

t0 1 1
t1 4 5
t2 5 10
t3 2 12

Table 5.3: Frequency and Cumulative table for infecting other nodes bynode6 at ti

The Frequency histogram and cumulative polygon Figure 5.7 represents the fre-
quency and cumulative distribution of Table (5.3). From Figure 5.7, we note that, how
the curve increased rapidly whennode6 the most important node (the red ball at time
t0) gets infected.

Figure 5.7: The Frequency and Cumulative graphical representation for Table (5.3)

Now we would like to set infections’ rates which we obtained from cumulative
distribution for bothnode2 andnode6 side by side in one graph to compare them and
see how they have different power to infect other nodes.
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Time Node2 infects other nodes atti Node6 infects other nodes atti

t0 1 1
t1 2 5
t2 5 10
t3 6 12
t4 8
t5 11
t6 12

Table 5.4: Cumulative table for infecting other nodes bynode2 andnode6 for our
small network (12 nodes)

Figure 5.8: The cumulative graphical representation for Table (5.4)

From Figure5.8 one can notice clearly the difference between the rate of infection
whennode2 andnode6 are infected first, wherenode6 infects other nodes rapidly.
Note that whennode2 is infected at start the most important nodenode6 will be in-
fected at timet3.
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Figure 5.9: Histogram quantities representation of nodes betweenness, eigenvector and
degree for Table (5.1)

In Figure 5.9 we used histogram to describe the difference between nodes between-
ness, eigenvector and degree. Histogram is a good help to illustrate data and each bar
in the graph along x-axis has its height which represents the proportion between nodes
with respect to their betweenness, eigenvector, and degree.

If a specific node has highest degree or highest betweenness or both does not mean
that that node has most centrality and has most power to infect other nodes. If we look
at bar chart fornode8 this node has highest betweenness and highest degree in com-
pare tonode6 and alsonode3 has the same degree asnode6 butnode6 is most central
and has highest PEV. That whynode6 has highest power of spreading infection.

This meansnode6 is well connected and moreover its connections end almost with
well connected nodes too as we can see from Figure 5.1such asnode8andnode4. But
evennode8 has highest degree and highest betweenness it connect to not important
nodes unlessnode6.

From the graph we can see easily ifnode6 goes down the connections between
nodes shall be less than any if any other node will goes down or the amount of damage
will be mostor the amount of damage will be most. For example ifnode3 goes down
even this node has same degree as node6 still we have good connections.

Thus principal eigenvector is a good measurement for centrality of nodes.
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Figure 5.10: Bar chart quantities representation of nodes betweenness

Here in Figure 5.10 node’s betweenness expressed by bar chart, where the length of
each bar represents the quantities of betweenness. If we observe this bar chart we can
easily compare all nodes due to their betweenness. We can see thatnode8 has highest
value in contrast tonode1, node2, node7, andnode11 they have no betweenness at all.
If we look at Figure 5.1 it was easy to see thatnode2 andnode11 has no betweenness
but it was not easy for us to see thatnode1 andnode7 has no betweenness. So this
bar chart was a good help to illustrate what was not easy for us to see. From this chart
we found that betweenness of nodes does not depend on node’s degree, as we can see
from Figure 5.1 that the degree ofnode4 k = 3 and the degree ofnode3 k = 4 but if
we look at Figure 5.10 we can notice thatnode4 has higher betweenness thannode3,
that becausenode4 has contact with two important nodes namely (node3 andnode6)
butnode3 has contact with just one important node that isnode4.

The most powerful nodes in this graph arenode8 and thennode6 with respect to
their betweenness; if one of them goes down the whole network will be infected. On
the other side if one or more than one ofnode1, node2, node7, andnode11 get down
no thing happens to the whole network. Thus centrality of nodes has crucial role to
infect the whole network.
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Figure 5.11: Bar chart quantities representation of nodes degree

From Figure 5.11 we can observe thatnode8 has longest bar, i.e highest degree
and we can see thatnode3 andnode6 has the same length, where the length of each
bar represents the quantities of degree. But notwithstandingnode6 has more power to
spread the infection because of it position or because of its centrality.

Figure 5.12: Bar chart quantities representation of nodes eigenvector

As we mentioned above sincenode6 has the central position because of its de-
gree and its important connections so from Figure 5.12 we can see thatnode6 has
the longest value which indicates thatnode6 is most powerful node in this network.
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Thus we will repeat our statement which is saying”principal eigenvector is a good
measurement for centrality of nodes”.

Figure 5.13: Scatter quantities representation of nodes eigenvector versus between-
ness.

Scatter chart is a good representation if we have two kinds of variables and we
want to know the nature of relationship between them.

From Figure 5.13 we can see that we have independent and dependent variables:

1. Independent variable as betweenness of nodes along x-axis which does not de-
pends on other factors than the position of the node.

2. Dependent variable as eigenvector of nodes along y-axis which depends on other
factors such as centrality which depends on degree and betweenness and the
position of the node within the network.

When betweenness of node changes the eigenvector of the node changes too, as we
can seenode8 andnode6 have highest betweenness that effects their eigenvector to be
high too but since we have other factors which effects eigenvector sonode6 is most
powerful thannode8. Note thatnode7 has high eigenvector in some way but that does
not change anything from its betweenness where it is zero. That because eigenvector
of node7 depends on other factors such as degree ofnode7 and the position within this
network; wherenode7 has contact to other important nodes such asnode6 andnode8
as we can see from Figure 5.1.
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Figure 5.14: Scatter quantities representation of nodes eigenvector versus degree.

Figure 5.14 illustrate the relationship between two variables; independent variable
(degree) and dependent variable (eigenvector). Where degree of node does not change
(independent) as we can see from Figure 5.14 for nodes 1, 5, 7, 9, 10, and 12 all have
the same degree (k = 2) but their eigenvector changes (dependent) because of their
position (centrality) within our network Figure 5.1. Degree has partial effect on eigen-
vector of the nodes as we can see from Figure 5.1 by increasing degree eigenvector
increase too but sine they are other factors have their effects so we can seenode8 has
highest degree butnode6 has highest eigenvector which indicate thatnode6 is most
important node in our graph Figure 5.1.
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5.2 Result from our large network

Figure 5.15: Network of 100 nodes

Figure 5.15 represents a screenshot of network which consist of 100 nodes gener-
ated by ORA.

From ranking nodes (see Appendix E) we can see that node44 has highest value
that indicatesnode44 (τ = 0.0656) is most important node and has most centrality in
compare with other nodes then followed bynode50 andnode45. And from other side
we can see thatnode61, node62, andnode15 are considers as the most unimportant
nodes in this graph.

5.2.1 Mathematical Method applied on large network

Now we would like to apply our developed mathematical SI model Eq. (4.28) to show
the rate of spreading information (infection) in graph of Figure 5.15 depending on PEV.

I(t) =
(N − 1)

1 + (N − 2)e−τ(N−1)t
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Where N = 100, andτ depends on PEV for each node in Figure 5.15.

Figure 5.16: Screenshot of mathematical application of our SI model for all nodes in
graph of Figure 5.15

From Figure 5.16 we can observe that curves of infections’ rates (information
spreading) are distributed from highest rate; as we can see whennode44 with τ =
0.0656 infects all other nodes to lowest rate whennode61 with τ = 0.0011 infects all
other nodes. This indicates thatnode44 is most important node in this network. If we
take a look at Figure (C.1, C.2, and C.3) we can see easily thatnode44 has highest
betweenness and highest eigenvector and justnode50 has highest degree thannode44.
This led us to produce that centrality of node does note depend on just degree of node
but on position and connection to other important nodes.
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Figure 5.17: Screenshot of mathematical application of our SI model fornode44

Figure (5.17) represents the rate of infections bynode44 with τ = 0.0656. Here we
can see also the clear S-shape of rate of infection with three stages: slow, exponential
and final stage.

5.2.2 Tracing infections’ movements for large network

Here again we analyse as we explained in section (5.1.2) according to principle of each
infected node will infect it’s nearest susceptible neighbors.

By tracing the infections’ movements whennode44 is infected first as in Figure
(D.1) (see Appendix D) we have obtained Table (5.5): where column Frequency rep-
resents the number of infected nodes at each unit time and column Cumulative repre-
sents the sum of all infected nodes at each unit time. The number of infected nodes at
each time scale depends on structure of the network see Figure 5.15.

Time Frecquency Cumulative

t0 1 1
t1 9 10
t2 26 36
t3 23 59
t4 21 80
t5 15 95
t6 5 100

Table 5.5: Frequency and Cumulative table for infecting other nodes bynode44 at ti
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Figure 5.18: The Frequency and Cumulative graphical representation for Table (5.5)

From Figure 5.18 we observe that, how the curve increased rapidly whennode44
the most important node (the red ball at time t0) get infected and we can compare this
with Figure 5.19 to see the different between infections rate at start.

Time Frecquency Cumulative

t0 1 1
t1 2 3
t2 4 7
t3 6 13
t4 15 28
t5 22 50
t6 19 69
t7 13 82
t8 10 92
t9 8 100

Table 5.6: Frequency and Cumulative table for infecting other nodes bynode57 at ti

We obtained Table (5.6) by tracing infections’ movements Figure D.2 (see Ap-
pendix D) step by step whennode57 infected first then infection spreads to other nodes.
Also here the number of infected nodes at each time scale depends on structure of the
network see Figure 5.15.
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Figure 5.19: The Frequency and Cumulative graphical representation for Table (5.6)

Figure (5.19) represents the frequency and cumulative distribution of Table (5.6).
Whennode44 the most important node (the red ball at timet4) get infected the curve
of infection will rise up clearly. Thus this indicates hownode44 has its role to spread
information rapidly.

Now we would like to compare cumulative distribution as in Table (5.7) for both
node44 andnode57 to have a clear view of how different nodes have different power
of spreading infection that by plotting them in one graph as in Figure 5.20.

Time node57infectedfirst node44infectedfirst

t0 1 1
t1 3 10
t2 7 36
t3 13 59
t4 28 80
t5 50 95
t6 69 100
t7 82
t8 92
t9 100

Table 5.7: Cumulative table for infecting other nodes bynode44 andnode57 in our
large network (100 nodes).
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Figure 5.20: The cumulative graphical representation for Table (5.7)

From Figure 5.20 one can notice clearly the different between the rate of infection
whennode44 andnode57 are infected first. Note that whennode57 is infected at start
the most important nodenode44 will be infected at timet4. So nodes with differ-
ent centrality have different rate of infection. And important node infects other nodes
rapidly than unimportant nodes or less important nodes and time of infection shrinks
too when important node infects others.
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Chapter 6

Conclusions and Discussion

6.1 Conclusions

We investigated during this thesis epidemic network and centrality and the aim was to
study the information (infection) spreading, to find most important nodes in the net-
work graph, and finally to answer the research question.

Our research question in section (1.3) was:”Does principal eigenvector and cen-
trality of the nodes related to the rate of information (infection) spreading?”

We had two strategies to answer our research question:

• First was depending on our developed mathematical method see section (5.1.1)
and section (5.2.1). The result was clear supported our research question as we
observed that nodes with highest principal eigenvector (PEV) and most central-
ity had infected other nodes rapidly than nodes with low (PEV) as we saw from
curves of infections see Figure (5.2), (5.3), and (5.16). This is mean princi-
pal eigenvector and centrality of the nodes is related to the rate of information
(infection) spreading.

• And second depending on tracing infection’ movements see section (5.1.2) and
section (5.2.2). Here again the answer to our research question was clear as we
saw from Figure (5.5), (5.7), (5.18), and (5.19); when most important nodes in-
fected, the curve of infection will increase clearly and rapidly which indicates
that these nodes has most centrality and they have highest (PEV) which is mean
principal eigenvector and centrality of the nodes is related to the rate of infor-
mation (infection) spreading.

Furthermore we can observe from Figure (5.8) and (5.20) the different between the rate
of infection when one node with high principal eigenvector and high centrality such
asnode6 in Figure (5.8) andnode44 in Figure (5.20) and one node with low principal
eigenvector and low centrality such asnode2 in Figure (5.8) andnode57 in Figure
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(5.20) are infected first and then infecting other nodes. It was clear that node with high
principal eigenvector and high centrality infects other nodes rapidly which is support
our research question.

Thus we can see from this conclusion that our hypothesis which states that princi-
pal eigenvector and centrality of the nodes is related to the rate of infection in section
(1.3) is supported and confirmed too.

And our extra expected prediction in section (1.3) which is stated that”nodes with
different centrality have different curves of infections regardless of their degree aver-
age” is answered quite well. As we can see from Figure (5.14) that for examplenode7
andnode12 have the same degree (k = 2) see also Figure (5.1) but if we look at Fig-
ure (5.2) we can observe thatnode7 has different curve of infection thannode12 that
because of their position in the network, i.e. centrality has effect on rate of infection.

The works have been done which concern SI-model see section (3.1.1) [4, 14, 18,
3, 13, 19] is different from our SI-model at rate of infection and at the number of
infected nodes at the beginning. When it concerns the rate of infection we have as-
sumed that principal eigenvector PEV (τ ) which is represents centrality in addition to
degree and betweenness as a rate of infection (information spreading) in contrast to
[4, 14, 18, 3, 13, 19] used a numerical assumed constant in addition to degree average
see section (3.1.1), or just by a constant probability as in section (3.2) Figure 3.10 and
Figure??. And when it concerns the number of initially infected nodes our SI-model
begins with just one node (initially) as infected but according to [4, 14, 18, 3, 13, 19]
the number of infected nodes at the beginning is not determinate.

But the question which SI-model in [4, 14, 18, 3, 13, 19] will face here is if we sup-
pose that one node infected at the beginning and since they depend as we mentioned
on a numerical assumed constant which its value is same for all nodes in addition to
degree average which lead to may two nodes with same degree average have the same
rate of infection which is not true because nodes effect does not depend on just degree
average as we explained above.

Finally since we do not know exactly how infection in real world will spread, so it
is difficult to be sure about any answer we are getting from our experiment. And us we
have noticed from our research almost all previous works depend on assumption to find
the rate of infection, i.e. there is no any exact answer because the base is assumption
always.
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6.2 Results Utilities and Recommendations

Our developed mathematical SI-model Eq.(4.32):

I(t) =
(N − 1)

1 + (N − 2)e−τ(N−1)t

This equation it could be used in any software for network analyzing or simulator
or worm (information) propagation programs for describing or showing the logistic
curve of spreading power within the network by one specific node. In this case we
should take into account that the simulator should calculate the principal eigenvector
for chosen node to be as a probability of the rate of infection. For example we have
used ORA see section (4.2) this is one of the most user friendly and advanced tool to
generate network and use it for analysis, the only thing this software missing from our
view is just an epidemic process simulating for nodes of interested network graph. So
for example ORA can include our equation into their software program to analyze rate
of infections.
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Appendix A

Adjacency matrix

The adjacency matrix for network (100 nodes) of Figure 5.15 will be as:

A =



0100000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1011000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000
0100010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0100100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0001000110000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0010001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000010100011000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000101000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1000100001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000010100000000010000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000001010000000011000000000000000000000000000000000000000000000000000000000000000000000000000000
0000001000100000000010000000000000000000000000000000000000000000000000000000000000000000000000000000
0000001000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000001010001000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000101000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000010100000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000001010000000000000000000000000010000000000000000000000000000000000000000000000000000000
0000000000000000101000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000100010100000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000001010000000000000000000000000000000000000000000000000000000000000000000000000000000
0100000001110000000100010000000000000000000010000000000000000000000000000000000000000000000000000000
0000000000100000000000100010000000000000000100000000000000000000000000000000000000000000000000000000
0000000000000000000001010000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000010101000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000010100000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000001010100000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000001000101000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000010000011000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000100010000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000101000000000000000000100000000000000000000000000000000000000000000000000
0000000000000000000000000000010100000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000001010000000000000000000000000000000000000010000000000000000000000000000
0000000000000000000000000001000100000010000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000001000000100000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000001000000000100000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000001000000010000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000010100000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000001000100000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000010000001000100000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000010100000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000101010000000000010000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000100000000000100000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000100000001000000000000000000000000000000000000000000000000
0000000000000000000001000000000000100010001010000100100000000000100000000000000000000000000000000001
0000000000000000100010000000000000010000000101000000100000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000010100000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000001010000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000101000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000010100000000000000000000000000000000000000000000000000
0000000000000000000000000000010000000000000100001010000100000000000000000001000010000001100000100000
0000000000000000000000000000000000000000000000000101100000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000001000000010000000000000000000000000000000000000000000000000


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

0000000000000000000000000000000000000000010110000010000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000100000000000001000001000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000010110000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000100001000010000000000000000000000000000000100000000
0000000000000000000000000000000000000000000000000000001001000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000010100100000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000001010000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000100100000001000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000010000000100000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000001001010000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000101000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000010100000000000000000000000000000000000
0000000000000000000000000000000000000000000100000000000000000001011100000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000101000000000000000000000000000000100
0000000000000000000000000000000000000000000000000000000000010000110000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000100011000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000100010000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000100100000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000001010000000000000000000000000000
0000000000000000000000000000000100000000000000000000000000000000000010101000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000010100000000000010000000000000
0000000000000000000000000000000000000000000000000000000000000000000000001010010000001000000000000100
0000000000000000000000000000000000000000000000000000000000000000000000001101000000001100000000000000
0000000000000000000000000000000000000000000000000100000000000000000000000010100000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000010001000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000100001000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000010100000001000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000001010000000000000000000
0000000000000000000000000000000000000000000000000100000000000000000000000000000101000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000010100000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000001010000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000010000000100000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000110000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000010000000000010000000000000
0000000000000000000000000000000000000000000000000000000000000000000000001000000000000100000000000000
0000000000000000000000000000000000000000000000000100000000000000000000000000001000000000100000000000
0000000000000000000000000000000000000000000000000100000000000000000000000000000000000001010000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010110000000
0000000000000000000000000000000000000000000000000000000100000000000000000000000000000000001000000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001001000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010100000
0000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000001010000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010100
0000000000000000000000000000000000000000000000000000000000000000010000000100000000000000000000001010
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101
0000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000010


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Appendix B

Report output

Output from ORA report generator

Node Betweenness Eigenvector Degree

node1 0.0005 0.0035 0.0202
node2 0.0684 0.0093 0.0404
node3 0.0071 0.0027 0.0202
node4 0.0068 0.0029 0.0202
node5 0.0027 0.0023 0.0303
node6 0.0015 0.0018 0.0202
node7 0.0529 0.0045 0.0404
node8 0.0028 0.0017 0.0202
node9 0.0130 0.0047 0.0303
node10 0.0299 0.0131 0.0303
node11 0.0572 0.0199 0.0404
node12 0.0634 0.0131 0.0303
node13 0.0053 0.0015 0.0202
node14 0.0064 0.0015 0.0303
node15 0.0064 0.0012 0.0202
node16 0.0220 0.0032 0.0202
node17 0.0694 0.0118 0.0303
node18 0.0129 0.0037 0.0202
node19 0.0170 0.0032 0.0303
node20 0.0206 0.0078 0.0202
node21 0.2077 0.0283 0.0707
node22 0.1115 0.0256 0.0404
node23 0.0073 0.0089 0.0202
node24 0.0191 0.0101 0.0303
node25 0.0076 0.0036 0.0202
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Node Betweenness Eigenvector Degree

node26 0.0169 0.0045 0.0303
node27 0.0228 0.0088 0.0303
node28 0.0107 0.0055 0.0303
node29 0.0172 0.0057 0.0202
node30 0.0544 0.0184 0.0303
node31 0.0119 0.0057 0.0202
node32 0.0267 0.0048 0.0303
node33 0.0315 0.0074 0.0303
node34 0.0041 0.0058 0.0202
node35 0.0196 0.0177 0.0202
node36 0.0249 0.0109 0.0202
node37 0.0091 0.0032 0.0202
node38 0.0040 0.0021 0.0202
node39 0.0570 0.0197 0.0303
node40 0.0149 0.0062 0.0202
node41 0.0369 0.0054 0.0404
node42 0.0264 0.0102 0.0202
node43 0.0082 0.0191 0.0202
node44 0.4995* 0.0656* 0.0909
node45 0.3189 0.0405 0.0606
node46 0.0174 0.0111 0.0202
node47 0.0060 0.0040 0.0202
node48 0.0084 0.0052 0.0202
node49 0.0222 0.0168 0.0202
node50 0.4495 0.0625 0.1010*
node51 0.0205 0.0272 0.0303
node52 0.0002 0.0115 0.0202
node53 0.0524 0.0356 0.0404
node54 0.0311 0.0032 0.0303
node55 0.0501 0.0064 0.0303
node56 0.1185 0.0207 0.0404
node57 0.0086 0.0019 0.0202
node58 0.0071 0.0014 0.0303
node59 0.0124 0.0025 0.0202
node60 0.0380 0.0085 0.0303
node61 0.0061 0.0011 0.0202
node62 0.0105 0.0011 0.0303
node63 0.0191 0.0020 0.0202
node64 0.0354 0.0068 0.0202
node65 0.1562 0.0253 0.0505
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Node Betweenness Eigenvector Degree

node66 0.0273 0.0109 0.0303
node67 0.0224 0.0111 0.0303
node68 0.0480 0.0078 0.0303
node69 0.0088 0.0034 0.0202
node70 0.0107 0.0024 0.0202
node71 0.0032 0.0021 0.0202
node72 0.0348 0.0060 0.0455
node73 0.0257 0.0075 0.0354
node74 0.0345 0.0092 0.0505
node75 0.0753 0.0123 0.0505
node76 0.1023 0.0202 0.0303
node77 0.0068 0.0065 0.0152
node78 0.0069 0.0044 0.0202
node79 0.0184 0.0086 0.0303
node80 0.0019 0.0067 0.0202
node81 0.0634 0.0185 0.0303
node82 0.0282 0.0051 0.0202
node83 0.0113 0.0022 0.0202
node84 0.0029 0.0036 0.0152
node85 0.0000 0.0053 0.0202
node86 0.0097 0.0038 0.0202
node87 0.0015 0.0028 0.0202
node88 0.0298 0.0234 0.0303
node89 0.0266 0.0230 0.0303
node90 0.0088 0.0066 0.0202
node91 0.0052 0.0037 0.0303
node92 0.0143 0.0061 0.0202
node93 0.0013 0.0022 0.0202
node94 0.0172 0.0050 0.0202
node95 0.0607 0.0181 0.0303
node96 0.0109 0.0053 0.0202
node97 0.0054 0.0031 0.0202
node98 0.0381 0.0073 0.0404
node99 0.0130 0.0062 0.0202
node100 0.0258 0.0178 0.0202

Table B.1: Betweenness, Eigenvector, and Degree output from ORA risk report
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Appendix C

Bar chart graphs

Bar chart quantities representation of nodes betweenness, eigenvector, and degree from
large network (100 nodes).
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Figure C.1: Bar chart quantities representation of nodes betweenness from large graph
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Figure C.2: Bar chart quantities representation of nodes eigenvector from large graph
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Figure C.3: Bar chart quantities representation of nodes degree from large graph
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Appendix D

Tracing infections’ movements

Figure D.1: Tracing infections’ movements fromnode44
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Figure D.2: Tracing infections’ movements fromnode57
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Appendix E

Eigenvector Ranking

We are ranking all nodes from most important nodes to less important nodes as follow:
{
1 Node44 0,0656
2 Node50 0,0625
3 Node45 0,0405
4 Node53 0,0356
5 Node21 0,0283
6 Node51 0,0272
7 Node22 0,0256
8 Node65 0,0253
9 Node88 0,0234
10 Node89 0,0230
11 Node56 0,0207
12 Node76 0,0202
13 Node11 0,0199
14 Node39 0,0197
15 Node43 0,0191
16 Node81 0,0185
17 Node30 0,0184
18 Node95 0,0181
19 Node100 0,0178
20 Node35 0,0177
21 Node49 0,0168
22 Node12 0,0131
23 Node10 0,0131
24 Node75 0,0123
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25 Node17 0,0118
26 Node52 0,0111
28 Node46 0,0111
29 Node66 0,0109
30 Node36 0,0109
32 Node24 0,0101
33 Node2 0,0093
34 Node74 0,0092
35 Node23 0,0089
36 Node27 0,0088
37 Node79 0,0086
38 Node60 0,0085
39 Node68 0,0078
40 Node20 0,0078
41 Node73 0,0075
42 Node33 0,0074
43 Node98 0,0073
44 Node64 0,0068
45 Node80 0,0067
46 Node90 0,0066
47 Node77 0,0065
48 Node55 0,0064
49 Node99 0,0062
50 Node40 0,0062
51 Node92 0,0061
52 Node72 0,0060
53 Node34 0,0058
54 Node31 0,0057
56 Node28 0,0055
57 Node41 0,0054
58 Node96 0,0053
59 Node85 0,0053
60 Node48 0,0052
61 Node82 0,0051
62 Node94 0,0050
63 Node32 0,0048
64 Node9 0,0047
65 Node26 0,0045
66 Node7 0,0045
67 Node78 0,0044
68 Node47 0,0040
69 Node86 0,0038
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70 Node91 0,0037
71 Node18 0,0037
72 Node84 0,0036
73 Node25 0,0036
75 Node69 0,0034
76 Node54 0,0032
77 Node37 0,0032
78 Node16 0,0032
80 Node97 0,0031
81 Node4 0,0029
82 Node87 0,0028
83 Node3 0,0027
86 Node5 0,0023
87 Node94 0,0022
88 Node83 0,0022
89 Node71 0,0021
90 Node38 0,0021
91 Node63 0,0020
92 Node57 0,0019
93 Node6 0,0018
94 Node8 0,0017
95 Node14 0,0015
96 Node13 0,0015
97 Node58 0,0014
99 Node62 0,0011
100 Node61 0,0011

}
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