
UNIVERSITY OF OSLO
Department of Informatics

Automation and
Abstraction for
Scalable z/VM
Linux
Administration on
the zSeries
Mainframe

Master thesis

Marius B. Gundersen

May 2008

Automation and Abstraction for Scalable
z/VM Linux Administration on the zSeries

Mainframe

Marius B. Gundersen
Oslo University College

May 19, 2008

Abstract

This thesis considers the administration of virtual machines on IBM main-
frames running z/VM. A solution for administrating z/VM through a Linux
VM running on a custom designed z/VM architecture is developed and im-
plemented. The administration tool used is a slightly expanded version of
MLN. The expansions added allows MLN to utilize plugins for technology
specific code. Support for z/VM are then added through the creation and
introduction of a plugin containing all z/VM specific code. Results from
scenarios conducted shows that the administration process can be signifi-
cantly automated and abstracted from a normal z/VM perspective. Also,
increased security and safety is achieved through the protective limitations
and control offered by the Programmable Operator running on z/VM.

Acknowledgements

First and foremost I would like to thank my advisor Kyrre Begnum for
his guidance through this project. I could hardly have asked for a better
supervisor as his moral and technical support and insight has been of in-
calculable help and a motivational driving force in itself. I cannot express
with words the gratitude I feel for his enthusiasm and all the time he set of
for me. I am truly proud of being his advisee, and truly grateful for getting
to know him as a person. Also, thanks to his lovely wife Miriam for allow-
ing me to take up so much of his time during their wedding period and for
the coffee.

I would also like to extend my thanks to all the lecturers on the Net-
work and System Administration program for two amazing years. They
have done an outstanding job at imparting their knowledge and preparing
us students for this project. I would especially like to mention Professor
Mark Burgess who through his course "Analytical Network and System
Administration" and many informal talks have opened my eyes to what
it truly means to be a scientist and the analytical mindset. It has been an
enormous asset in this project and I am sure it will serve me well in the
future.

I have also been graced with great classmates. They have been fine com-
panions on this journey of academic enlightenment, and I treasure the time
we have spent together both at the college and outside it.

I was lucky enough to do this project in cooperation with IBM, and for
that I am extremely grateful. It would not have been possible to complete
the project without their support, and I am proud to have worked with
the company. I would like to emphasize three persons in particular (in no
particular order).

IBM Certified Senior IT Specialist Per Fremstad has been my main con-
tact person in IBM. I can safely say that I would not have done this project
had it not been for him, the reason being quite simple. Before I met Per, I
had no knowledge at all about mainframes. It was Per and his course "Su-
percomputers and Virtual Operating Systems" that introduced me to the
incredible world of mainframes, and for that I will always be grateful. Per
has been an amazing person to work with. He has never hesitated to set

aside time to talk with me and give me advice, and his bottomless well of
enthusiasm for the mainframe has been an inspiration to me.

My first real encounter with z/VM was through a lecture held by Linux
Technical Consultant Malcolm Beattie, but although that was an important
event for me, it is not the main reason I speak of him here. The main reason
this could be a practical project is thanks to Malcolm. It is on "his" main-
frame environment that this entire project has taken place. Not only did he
give me access to the mainframe, he also gave me free access to IBM pro-
prietary software. He has also provided crucial practical assistance, guid-
ance and knowledge during the project. For all of this, I cannot thank him
enough.

I had the pleasure of getting to know IT Specialist Per Rosenquist dur-
ing a z/VM course IBM let me attend. Being a z/VM expert in every sense
of the word, he taught me a great deal about the technology. Most impor-
tantly, it was not until after listening to Per that I felt truly comfortable and
familiar in the new z/VM environment. It did not stop there however, as
Per continued to be immensely helpful by always answering every mail I
sent him quickly and thoroughly. Many a problem were solved with the
help of his expert advice, and for that he has my utmost gratitude.

May, 2008

Marius B. Gundersen

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Personal reasons for wanting to do this project 2
1.2 Problem definition . 2
1.3 Approach . 3
1.4 Summary of results . 4
1.5 Thesis outline . 4

2 Background: Virtualization, MLN and Mainframes 5
2.1 Virtualization . 5

2.1.1 Types of abstraction 5
2.1.2 The technology . 7

2.2 Virtual machine management 8
2.2.1 The benefits . 8
2.2.2 Challenges with virtualization 9

2.3 Virtualization on the mainframe 11
2.3.1 LPAR . 11
2.3.2 z/VM . 12
2.3.3 Terms and Acronyms 13

2.4 IBMs current mainframe initiatives 16
2.4.1 Server consolidation 16
2.4.2 z/OS simplification . 16

2.5 MLN . 17
2.6 The viability of MLN on mainframes 20

3 Approach 23
3.1 z/VM First Contact . 23
3.2 CP interaction through Linux / Managing VMs from Linux 32
3.3 Programable Operator Facility 35
3.4 Storage Management . 35
3.5 Network . 39

3.5.1 HiperSockets . 39
3.5.2 Guest LAN . 40

I

CONTENTS

3.5.3 Virtual Switch . 40
3.6 The scenarios . 44

4 Results 45
4.1 Programable Operator Facility 45

4.1.1 PROP RTABLE . 45
4.1.2 PENGUINS EXEC . 49

4.2 DirMaint . 52
4.3 Networking in z/VM and Linux managed by MLN 57
4.4 The MLN Modifications . 60
4.5 The MLN Plugin . 61
4.6 Analyzing the administration complexity through scenarios 63

4.6.1 Scenario I . 66
4.6.2 Scenario II . 71
4.6.3 Scenario III . 80

4.7 Analysis of the collected metrics 90
4.7.1 Number of commands issued 90
4.7.2 Number of characters used on commands 92
4.7.3 Number of lines written to file 93
4.7.4 Number of characters written to file 94
4.7.5 Number of lines copied 96
4.7.6 Number of files edited 98
4.7.7 Number of systems logged on to 99
4.7.8 Average number of characters per command 99
4.7.9 Average number of characters per written line 101
4.7.10 Average number of lines per file 103
4.7.11 The administrational metrics 105
4.7.12 Startup . 106
4.7.13 Check if up . 108
4.7.14 Overall metrics summary 110

5 Discussion 111
5.1 The Final Architecture Complexity 111
5.2 Replication . 112
5.3 Alternative Approaches . 112
5.4 Adding virtualization platforms to MLN 112
5.5 Alternative Problem Statements 113
5.6 Validity of the scenarios and metrics 113
5.7 Compromises . 115
5.8 Practical Experience . 115

II

CONTENTS

6 Conclusion 117
6.1 Future Work . 118

6.1.1 Improve MLN z/VM plugin 118
6.1.2 DirMaint independence 118
6.1.3 z/VM options in MLN z/VM plugin 118
6.1.4 MLN redesign . 119

Appendices 122

A zVM.pl 125

B PROP RTABLE 135

C PENGUINS EXEC 137

D RESGUEST CONF 139

E EXTENT CONTROL 141

F AUTHFOR CONTROL 143

G Scenario III VSWITCH commands 145

H Scenario III USER DIRECT file 147

I Scenario III MLN project file 150

III

List of Figures

2.1 One-to-Many abstraction . 6
2.2 Many-to-One abstraction . 6
2.3 Something-to-Something-Else abstraction 7
2.4 Virtualized mainframe environment 12
2.5 MLN example . 19

3.1 Zeus login screen . 25
3.2 Zeus login screen, second z/VM level 25
3.3 Privilege class A LINUX1 . 34
3.4 Privilege class H LINUX1 . 34
3.5 LINUX1 to PROP to LINUX3 36
3.6 LINUX1 to PROP to MAINT 37
3.7 Guest LAN . 41
3.8 Virtual Switch . 42
3.9 Virtual Switch MLN . 43

4.1 Scenario I Architecture Overview 66
4.2 Scenario II Architecture Overview 71
4.3 Scenario III Architecture Overview 81
4.4 Number of commands issued 90
4.5 Number of characters used on commands 92
4.6 Number of lines written to file 93
4.7 Number of characters written to file 95
4.8 Number of lines copied . 97
4.9 Number of files edited . 98
4.10 Number of systems logged on to 100
4.11 Average number of characters per command 101
4.12 Average number of characters per written line 102
4.13 Average number of lines per file 104
4.14 Scenario III Commands issued on startup task 107
4.15 Scenario III Characters used on commands during startup task107
4.16 Scenario III Commands issued on check if up task 109

IV

LIST OF FIGURES

4.17 Scenario III Characters used on commands during check if
up task . 109

V

List of Tables

4.1 zVM.pl sub routines . 61
4.2 Scenario I Create: The non-MLN approach 68
4.3 Scenario I Administrate: The non-MLN approach 69
4.4 Scenario I Create: The MLN approach 70
4.5 Scenario I Administrate: The MLN approach 70
4.6 Scenario II Create: The non-MLN approach 75
4.7 Scenario II Administrate: The non-MLN approach 76
4.8 Scenario II Create: The MLN approach 78
4.9 Scenario II Administrate: The MLN approach 79
4.10 Scenario III Create: The non-MLN approach 85
4.11 Scenario III Administrate: The non-MLN approach 87
4.12 Scenario III Create: The MLN approach 87
4.13 Scenario III Administrate: The MLN approach 89
4.14 Number of commands issued 90
4.15 Number of characters used on commands 92
4.16 Number of lines written to file 93
4.17 Non-MLN Lines increase factor 94
4.18 MLN Lines increase factor . 94
4.19 Number of characters written to file 94
4.20 Non-MLN Lines and Character increase factor 95
4.21 MLN Lines and Character increase factor 96
4.22 Number of lines copied . 96
4.23 Number of files edited . 98
4.24 Number of systems logged on to 99
4.25 Average number of characters per command 100
4.26 Non-MLN Average number of characters per command in-

crease factor . 100
4.27 Average number of characters per written line 102
4.28 Non-MLN Average number of characters per line increase

factor . 103
4.29 MLN Average number of characters per line increase factor . 103
4.30 Average number of lines per file 104
4.31 MLN Average number of lines per file increase factor 105

VI

LIST OF TABLES

4.32 Scenario I Startup: Commands issued 106
4.33 Scenario I Startup: Characters used on commands 106
4.34 Scenario II Startup: Commands issued 106
4.35 Scenario II Startup: Characters used on commands 106
4.36 Scenario III Startup: Commands issued 106
4.37 Scenario III Startup: Characters used on commands 106
4.38 Scenario I Check if up: Commands issued 108
4.39 Scenario I Check if up: Characters used on commands 108
4.40 Scenario II Check if up: Commands issued 108
4.41 Scenario II Check if up: Characters used on commands . . . 108
4.42 Scenario III Check if up: Commands issued 108
4.43 Scenario III Check if up: Characters used on commands . . . 108

VII

Chapter 1

Introduction

1.1 Motivation

The topic of this project is administrating Linux virtual machines1 on IBM
mainframes (mainly zSeries). Mainframes have received a lot of attention
lately when it comes to consolidating servers to a single system. There are
multiple benefits from this, from environmental and saving space to the
ability to utilize hardware to a much greater extent. For a system adminis-
trator who is mainly used to multiple Intel Unix servers however, migrat-
ing to a mainframe platform is inherently different.

• New operating system. The zSeries mainframes primary operating
system is z/OS, an OS custom created for the mainframe hardware.

• New virtualization technology. For virtualization, zSeries mainframes
run z/VM. As the operating system, it is custom created for the main-
frame.

• New interface. z/OS can be controlled either through command line
or ASCII-like GUI screens. z/VM is controlled exclusively through
command line.

• New filesystem. Both z/OS and z/VM uses a record based filesystem,
not byte based like Unix or MS Windows.

It should be apparent from these points that a mainframe is more than
just a really big PC.

z/OS and z/VM might seem difficult and overly complicated to use
and administrate for someone without mainframe experience. Even for ex-
perienced system programmers it can be quite time-consuming to manage
a large number of VMs. What can be done about this problem?

1The term "guest" is commonly used when referring to virtual machines on z/VM. The
terms "virtual machine", "VM" and "guest" will be used interchangeably throughout this
text.

1

1.2. PROBLEM DEFINITION

The purpose of this project is to design and create a z/VM environment
where an expanded version of MLN can be implemented in a designated
administrator Linux guest. Thereby giving system administrators without
z/VM experience a more familiar environment to work with, and automate
tasks for system programmers. The motivation is that mainframes are the
ideal machines for the purpose of running a large amount of VMs (the z
mainframes have been tested with tens of thousands of VMs running at the
same time), and most of these VMs will be identical clones. Creating and
administrating multiple identical VMs is exactly what MLN was designed
to do. Therefore it seems logical to combine these technologies.

1.1.1 Personal reasons for wanting to do this project

• I would very much like to do a project involving mainframes, but it
would be nice if it didn’t mean completely losing touch with the Unix
platform. This project involves both IBM mainframes and Linux, the
best of both worlds so to speak.

• I have for some time now wanted to learn Perl as I believe it is a great
asset to any system administrator. This project would give me a much
desired push to really learn Perl instead of just playing around with
it.

• As mentioned before, I would like a project involving mainframes.
This project gives me a chance to not only refresh some z/OS knowl-
edge, but also to learn more about z/OS and z/VM.

• Virtualization has received a lot of attention the last several years,
and justly so. The possibilities with this branch of technology are
staggering and I would definitely like to learn more about it.

1.2 Problem definition

1. Can the management of a high number of Linux VMs under z/VM be sim-
plified through increased automation?

I) Can MLN be modified/expanded to offer its original functionality for
z/VM?

II) Can a suitable z/VM environment architecture be implemented for use
by MLN?

III) If the first two can be achieved, can the benefits be demonstrated through
general scenarios?

2

1.3. APPROACH

Some terms in the problem statement deserve concrete definitions:
Management. Tasks which are performed relatively often in an environ-

ment dependent on VMs. Examples would be starting, stopping, creating
and destroying VMs as well as connecting the VMs in virtual networks.

High number. On a mainframe the number of VMs can easily be in the
range of several hundred.

Simplified. This will be measured by a number of metrics. Most notably
the number of commands, lines and characters. The complexity of the tasks
and commands will also be considered.

Scenarios. Fictional situations in which the different approaches are con-
sidered.

Beneficial. The benefits will mostly be decided by the reduction of work-
load for the administrator.

Increased automation. By increased automation steps will be grouped
into tasks, thereby reducing the number of operations the user initiates.
This will be compared to the level of automation determined before the
proposed solution is implemented.

Modify/expand. Writing necessary plugins for MLN and detect possibly
necessary architectural expansions to original MLN codebase.

Original Functionality. Functions already implemented in MLN at project
start.

Compared to. Each parameter related to the simplification and automa-
tion will be considered by itself. Further, the number of steps and com-
mands, which are related to the workload of a system administrator, will
be of particular interest.

1.3 Approach

The project will be divided into four distinct parts

1. Design
Before the practical development of the system can begin, the sys-
tem must first be designed. Different approaches must be considered
and decisions about the underlying z/VM platform must be made.
Whether the expansion of MLN occurs through the creation of a plug-
in or a completely integrated module must also be decided.

2. Implement
During this phase MLN will be expanded to work with z/OS and
z/VM. It is important here to consider the shift from i86 to z/360
architecture. Perl will be used as this is the original language of MLN.
The underlying z/VM architecture will also be implemented at this
point. This is the phase most prone to potential problems. For this
part to be possible and realistically carried out, access to an IBM z

3

1.4. SUMMARY OF RESULTS

mainframe is crucial. The difference in architecture and file systems
might also pose to large of an obstacle to overcome. Should this be the
case, an important part of this project will be to document the attempt
and investigate possible solutions on a lower lever of the system to
lay the foundation for the stated primary objectives.

3. Measure
After the completion of phase two, the product will be used in a mea-
sured comparison.

• Compare the administration process of creating and adminis-
trating a large number of identical z/VM servers with and with-
out MLN.

4. Analyze/discussion
When phase three is complete, the metrics must be analyzed and dis-
cussed to derive meaning and conclusions.

1.4 Summary of results

A z/VM architecture was successfully developed supporting automation
from a Linux VM. A plugin for MLN was created to take advantage of
the z/VM layer and MLN itself was modified to allow the use of plugins
for technology specific code. Three scenarios were carried out, the results
indicating that the majority of the measured areas has been simplified and
automated by the new system.

1.5 Thesis outline

This thesis considers the administration of virtual machines on IBM main-
frames running z/VM. An introduction the technology is given in Chapter
2. The decisions and design of the solution, most notably the architecture
of the z/VM layer, is described in Chapter 3. In Chapter 4 the actual im-
plementation of the system is described. Scenarios are also conducted to
estimate the change the system has had on the administration aspect. The
system and project are then discussed in Chapter 5 before the conclusion is
presented in Chapter 6.

4

Chapter 2

Background: Virtualization,
MLN and Mainframes

In this chapter, an introduction will be given to virtualization in section
2.1 before moving on to virtual machine management in section 2.2. An
introduction to virtualization on the mainframe is then given in section 2.3
and a few IBM projects are introduced in section 2.4. I the final sections,
2.5 and 2.6, MLN is introduced and some reasons for using MLN on the
mainframe is mentioned.

2.1 Virtualization

For those not familiar with virtualization in computer science, a short in-
troduction is in order. By virtualization one refers to the abstraction of the
hardware layer, with the desired effect of simulating a different physical ar-
chitecture. There are several benefits with doing this, and several different
ways of virtualization.

2.1.1 Types of abstraction

Virtualization allows for several types of abstractions, three of which will
be presented here.

One to many
Here we start with one physical resource. This resource can be every-
thing from one mainframe to one hard disk. Through virtualization
we abstract this entity to appear as several physical resources [Figure
2.1]. VMs in themselves are examples of this. By virtualizing a main-
frame it is possible to have it appear as several physical machines.
This form of abstraction can happen by dividing up the physical re-
sources in parts, giving each virtual entity one part, or by time shar-

5

2.1. VIRTUALIZATION

ing the physical resource among the virtual entities.

Physical Virtual Virtual Virtual

Figure 2.1: One physical resource is abstracted into several virtual resources.

Many to one
In this case the intention is to make several physical resources (of
the same type) appear as one [Figure 2.2]. A common example is
the abstraction of multiple storage devices. By virtualizing these de-
vices they get the appearance of one storage area. This can then be
shared among multiple users/systems, giving the possibility of mak-
ing shares with a higher capacity than any of the individual physical
devises. A common example of this is hard drives connected in a
RAID.

Physical

Physical

Physical

Physical

Virtual

Figure 2.2: Many physical resources are abstracted into one virtual resource.

Something to something else
The purpose of this form of abstraction is not to change the apparent
quantity of a resource, but rather to change the characteristics and
attributes of a single device [Figure 2.3]. This is extremely useful to

6

2.1. VIRTUALIZATION

make software compatible with hardware. If a software depends on a
specific device to function or adheres to a certain hardware standard,
the needed hardware can be virtualized to ensure compatibility. This
is of great help when backward compatibility is an important issue
(as is the case with IBMs mainframes).

Physical Virtual

Figure 2.3: One physical resource is abstracted into another virtual resource.

2.1.2 The technology

Physical partitioning
The process of physical partitioning is simply the approach of divid-
ing the hardware between partitions physically. As the name implies
this happens on the physical level without the use of software or
firmware. This method is becoming less and less common these days,
and can not justifiably be viewed as virtualization. It is included in
this text simply to give a more complete picture of partitioning.

Logical partitioning
Through logical partitioning, the hardware resources are divided by
means of firmware. This allows for more freedom and flexibility com-
pared to physical partitioning. Although still on the physical level,
one can say that logical partitioning takes place on a higher aspect of
the layer since it utilizes firmware. Whether hardware resources can
be shared among logical partitions and reconfigured dynamically, as
opposed to dedicated, statically allocated, depends on the logical par-
titioning technology used. Logical partitioning is often referred to as
‘physical hypervisor’.

Software partitioning
In software partitioning, a hypervisor is used in the software layer
to partition the system. This form of partitioning allows for a highly
fine-grained and dynamic administration of resources. There are two
different forms of hypervisors on this level:

7

2.2. VIRTUAL MACHINE MANAGEMENT

Hypervisor Type 1
A Type 1 hypervisor have the hypervisor function implemented
in the operating system itself. This makes the guest system run
on the second level above the hardware. Xen [1] is an example
of a Type 1 hypervisor.

Hypervisor Type 2
A Type 2 hypervisor runs as an application on top of the host
operating system. As a result, the guest system runs on the third
level above the hardware. User-Mode Linux [2] is an example of
a Type 2 hypervisor.

2.2 Virtual machine management

Virtualization brings with it both advantages and disadvantages when it
comes to operating and managing computer systems. It is important to
know and understand both sides of the technology so as not to cause more
damage than good when implementing it.

2.2.1 The benefits

When considering the benefits of virtualization, it is important to remem-
ber that they are context sensitive. To what degree a system will get these
benefits, or if it will get some of them at all, is largely dependent on the
architecture of the system.

Consolidation
Virtualization makes it possible to consolidate several physical ma-
chines on one single physical machine. The abstraction of the one
machine allows it to function as several independent machines. This
makes it possible to run several operating systems, identical or differ-
ent, at the same time independently of each other. Thereby utilizing
the hardware more effectively.

Lower management cost
Virtualization can lower management cost by reducing the amount of
physical hardware that must be maintained and managed. It can also
simplify management through abstraction and thereby decrease the
time spent on management tasks.

Higher resource utilization
By pooling resources/consolidation, resources can be utilized much
more dynamically. This is especially useful when it comes to resource
requirements with a tendency to spike. It is not unusual for a normal
server to utilize only about 20% of its assigned hardware resources.

8

2.2. VIRTUAL MACHINE MANAGEMENT

The remaining 80% is only used to handle occasional spikes. This is
a poor resource utilization since most of the time the 80% remains
unused. Through virtualization, the necessary resources to handle
spikes can be allocated to the server only when needed, while the rest
of the time the resources are used elsewhere.

Increased flexibility
Through virtualization it is no longer necessarily a requirement for
an administrator to wait for approval and purchase of hardware to
set up an extra server or user machine. On a virtualization server
machines can be created and destroyed in less time than it would
take to set up a physical machine.

Finer resource allocation
Because of the virtualization of hardware, resources can be allocated
with greater freedom. The size of memory modules and CPUs are
no longer relevant as far as the VMs are concerned. If it is desirable
to create a VM with 1701 MB of memory then that is just as simple
as creating a VM with 256 or 512 MB of memory. Virtualization also
incorporates the possibility to make changes to the resources during
runtime.

Migration
If certain requirements (hardware consistency) are met within the sys-
tem, it is possible to live migrate VMs. VMs have the ability to mi-
grate between physical hardware in mainly two ways. In ‘cold mi-
gration’ the running VM is frozen and moved to a different location
where it is unfrozen. In live migration the VM is moved with no
downtime at all. In fact, a user on the VM will not notice that a mi-
gration has taken place. In addition to identical hardware on the two
sites, live migration also require the filesystem to reside on a SAN1.

2.2.2 Challenges with virtualization

Although beneficial in several cases, virtualization also introduces new
problems and challenges. As with the benefits, it largely depends on the
architecture of the setup as to what degree these challenges presents them-
selves.

Single point of failure
By consolidating several services/machines on one physical machine,
it is easy to end up with a single point of failure. Should this physical
machine fail, all the virtual systems contained on it naturally also fail.

1It should be noted that solutions where the filesystem resides completely on a RAM
drive are not necessarily dependent on a SAN.

9

2.2. VIRTUAL MACHINE MANAGEMENT

Overhead
Although there are virtualization platforms that provides a very high
utilization of the hardware for the virtual environment, it is diffi-
cult to achieve the same utilization as a non-virtual, straight-on-the-
hardware system. This overhead is difficult to avoid because the vir-
tualization platform is a layer between the hardware and the VMs,
and a system in itself that require resources to run.

Resource bottlenecks
When running several VMs on the same hardware, it is important to
remember the limitation of said hardware. This is especially impor-
tant when it comes to hardware that scales badly. The benefit ‘Higher
resource utilization’ can backfire if spikes occur on several VMs at the
same time. Parts of the system, especially I/O, can then turn into bot-
tlenecks, decreasing performance dramatically. (Interestingly, I/O is
something the z mainframes were design to excel at)

Number of systems
Through virtualization, one extra system is effectively added to the
total number of managed systems. It is therefor necessary to consider
if virtualization will improve the current situation. After all, virtu-
alizing only one machine effectively doubles the number of systems
that must be managed and maintained.

Non-scaling management
Although virtualization makes it possible to create extremely large
and complex environments, the management does not necessarily
scale as well. Several aspects of management and maintenance are
done manually, and are therefor unsuited to these environments. Be-
cause of this, the full potential of virtualization may be lost in the
impossibility of administrating the final product.

OS restrictions
The different virtualization platforms are currently able to support a
wide variety of guest operating systems. However, there are still re-
strictions one several of them. Some of them can for example only
support specific unix based OSs. This is important to take into con-
sideration when choosing a virtualization platform. A change in the
choice of platform to support a specific OS can lead to huge costs in
time and money if a different platform is already implemented.

As mentioned in the drawbacks of virtualization, virtual machine man-
agement is not necessarily an area that scales well. In its basic form, VM
management consists of giving individual commands to individual VMs.
There are of course systems which greatly improves the aspect of managing
a high number of VMs, but these are mostly proprietary and not open for

10

2.3. VIRTUALIZATION ON THE MAINFRAME

customization by the user. As a result, administrators often end up writing
crude, undocumented scripts in languages like Perl or Python to handle
specific tasks. This is an undesired solution because it hinders consistency
and standards in the virtualization community, and because it makes the
specific administrator ‘indispensable’ in his position if the scripts are to be
utilized. There are however some free, open source projects, like MLN, that
try to improve the situation. These projects attempt to offer a free alterna-
tive to the proprietary systems, thereby giving anyone administrating VMs
a consistent, quality tested tool to work with.

2.3 Virtualization on the mainframe

Although virtualization has received a lot of attention the last years, it is
by no means a "new thing". The history of virtualization stretches back
almost fifty years to the late fifties early sixties [3]. In 1959 the scientific
community, largely on Massachusetts Institute of Technology (MIT), began
to explore the possibility of time sharing large IBM machines. The result
was the creation of the Compatible Time Sharing System (CTSS) which was
demonstrated on a IBM 709 processor in 1961 [3]. This can be seen as the
birth of the VM.

After the introduction of CTSS, IBM began to develop the hardware to
compliment this new technology. Also, some problems that could not be
solved on the software level were instead solved on the hardware level.
Because nearly fifty years of continuous development is more than enough
to fill entire volumes by itself, it will be omitted in this text for the sake of
the reader. Sufficient to say, it has all culminated to todays version of IBMs
virtualization platform, z/VM 5.3.

2.3.1 LPAR

LPARs, or Logical PARtitions, are virtual machines created at the hardware
level as described under ‘Logical partitioning’ in the ‘The technology’ sub-
chapter (2.1.2). The creation and running of LPARs are handled by the Pro-
cessor Resources/System Manager (PR/SM) facility. From a practical view-
point, LPARs can be seen as separate physical mainframes with their own
hardware and independent operating systems. This is not to say that the
partitioning of the actual physical hardware is necessarily static. Through
PR/SM, the system administrator can choose to share certain resources like
I/O devices and processors among several LPARs. Modern mainframes al-
ways have at least one LPAR, and the System z mainframe supports up to
60 LPARs. Because LPARs run independently of each other, they can be
started, stopped and even crash without affecting the other LPARs on the
system. This makes it common to have for instance one ‘development’, one

11

2.3. VIRTUALIZATION ON THE MAINFRAME

‘test’ and one ‘production’ LPAR.

2.3.2 z/VM

z/VM is IBMs software level virtualization platform. It is an operating sys-
tem with hypervisor incorporated, making it a Type 1 hypervisor (z/VMs
hypervisor is called Control Program, or CP). z/VM normally runs on top
of an LPAR or on another z/VM instance. This makes the VMs themselves
run on the second level or higher as seen from the hardware level. z/VM
supports 64-bit IBM z/Architecture and 31-bit IBM Enterprise Systems Ar-
chitecture/390 guests [3]. This makes it capable of hosting z/OS, z/VM
and Linux distributions adapted to System z, to name a few. z/VM allows
for dynamic changes to several of its VMs resource attributes. This makes
it possible to reconfigure VMs without rebooting them, potentially disrupt-
ing the use and running of the virtual systems.

It should be noted that older mainframes has the option to run in a ‘basic’
mode. In this mode the mainframe has no LPAR and instead runs z/VM or
z/OS directly on the hardware. By doing this the system naturally looses
the benefits and features of running on an LPAR. Newer mainframes do
not support this option.

LPAR LPAR

z/OSz/VM z/VM

z/VM

Li
nu
x

Li
nu
x

Li
nu
x

Li
nu
x

Li
nu
x

z/OS

Hardware

Figure 2.4: Example of a virtualized environment on a Series z mainframe.

12

2.3. VIRTUALIZATION ON THE MAINFRAME

2.3.3 Terms and Acronyms

There are some IBM z/VM specific terms and acronyms that will be used
through this thesis. For the readers not already familiar with z/VM, a short
description of the of these are in order. For those already familiar with the
terms, feel free to skip this part as the acronyms should be consistent with
the ones used in most IBM documentation.

Control Program

The Control Program will throughout this thesis be referred to by the acronym
CP [3]. CP is one of a z/VM systems two primary components, the other
being CMS which is covered in the next section. As mentioned before, CP is
a Type 1 hypervisor and can itself be seen as an operating system. Note that
in this context the term ’operating system’ is not used to describe a software
bundle like GNU/Linux or Microsoft Windows, it is more accurate to com-
pare it to the Linux kernel by itself. The task of CP is to administrate the
resources given to z/VM, it also handles the creation and administration of
VMs. It is CP that takes the physical hardware and virtualizes it so that it
can be used by the VMs. Although an operating system in itself, CP would
be quite useless to a normal user. It can not be used to surf the internet
or write text documents. In fact, CP alone does not even understand the
concepts of files and processes. If CP is to run programs and services that
are not part of CP, it does so through a dedicated service virtual machine.

CP is the greatest single point of failure in an z/VM environment. Fail-
ure in this low level can propagate through all the higher levels and desta-
bilize the entire z/VM environment, even making it completely unavail-
able to the users. The greatest threat to CP can be seen as a careless (or new
and unlucky) superuser. One careless command can easily take down the
system. Even if it is just a simple shutdown, not permanently damaging the
system, it will still have terminated all activity on all VMs on the system.

Conversational Monitor System

The Conversational Monitor System will throughout this thesis be referred
to by the acronym CMS [3]. CMS is the second primary component of a
z/VM system, the first being CP covered in the previous section. CMS is
considered to be the default z/VM guest operating system and greatly in-
creases the functionality of the system compared to a system only running
CP. Where CP can be compared to the Linux kernel, CMS can be loosely
compared to the Linux shell. It incorporates a high number of commands,
and more closely resembles a basic operating system on a personal com-
puter. It allows a user to create and edit files, execute applications and
share data with other guest operating systems. CMS has a close relation-

13

2.3. VIRTUALIZATION ON THE MAINFRAME

ship with CP that allows a user to issue commands from CMS and directly
to CP, this is useful and necessary when administrating VMs under z/VM.

In one aspect CMS can also be compared to GRUB (Grand Unified Boot
Loader) under Linux. This is because CMS can be used to launch another
guest operating system, but in doing so the CMS instance used ceases to
exist.

Although CMS, as mentioned, increases functionality of the system, it
still leaves much to be desired in some areas. Most notably when it comes
to user-friendliness. CMS is completely console based, and contains no GUI
as seen today. One might expect this to be like working with Linux through
only command line, unfortunately this is not the case. The terminal will
most likely feel old fashion and sluggish to use compared to a Linux shell
as it lacks things like auto completion. Flexibility and freedom is often seen
as one of the main advantages of terminals and shells. This can, however,
quickly turn into a two-edged sword as it gives new and inexperienced
users plenty of chances to cause serious damage to the system.

The CMS filesystem also bears mentioning. The CMS filesystem was
designed to be fast, especially when dealing with file I/O operations. In
contrast with files on Microsoft Windows or Linux, a CMS file is record
oriented rather than byte oriented. Where a Linux file consists of a stream
of bytes, a CMS file consists of a number of records (rows) of a specific
length. As an example, a CMS file might be described as having a record
length of 80 and 20 records. This means 20 rows of 80 characters, essen-
tially amounting to 1600 bytes. This distinction is mostly important when
it comes to transferring files between CMS and another operating system,
since CMS files can not be read or written by another OS. The naming of
files in CMS follows the syntax [file name] [file type] [file mode]; an exam-
ple would be NOTES DATA A1. The file name can consist of up to eight
alphanumeric character, and can be compared to the filename in Linux.
The file type can also consist of up to eight alphanumeric character. It says
something about the purpose of the file and can be compared to the file ex-
tension in Microsoft Windows. The file mode consists of one character and
one number. The character represents the access character of the disk on
which the file resides and can be compared to the partition character (like
C:) in Microsoft Windows. The number ranges from 0 to 6 and is used by
the system to decide how to treat the file. This number can be omitted in
day-to-day activity.

Storage

When the term storage is used in mainframe context it usually refer to
physical non-volatile storage like hard-drives. In IBM terms, hard-drives
are referred to as Direct Access Storage Device or its acronym DASD (the
physical DASDs are sometimes referred to as "real DASD"). In z/VM,

14

2.3. VIRTUALIZATION ON THE MAINFRAME

DASDs are normally segmented into 3390 disks (a former physical disk
standard), but other models are used as well. These virtual DASDs are of-
ten referred to as "DASD packs" or "volumes". The 3390 disks can either be
used as a whole, or it can be partitioned over several minidisks. Partition-
ing can be compared to partitioning a hard-disk in Microsoft Windows,
and in z/VM each of the partitions are referred to as minidisks. Under
z/VM each of these DASDs or minidisks can be shared among VMs, or
be dedicated completely to a single VM. The size unit used when describ-
ing DASDs (and minidisks) are not bytes like in a personal computer, but
rather cylinders. On the 3390 DASD, one cylinder is the equivalent to 849
960 bytes [3], or roughly 850 kB.

There are three types of 3390 DASDs in use today: 3390-3, 3390-9 and 3390-
27. The 3390-3 is the most commonly used.

• 3390-3 (also known as mod 3) contains 3339 cylinders - about 3 GB in
size.

• 3390-9 (also known as mod 9) contains 10017 cylinders - about 9 GB
in size.

• 3390-27 (also known as mod 27) contains 30051 cylinders - about 27
GB in size.

Directory Maintenance Facility

The Directory Maintenance Facility will be referred to by the acronym DirMaint
[4]. DirMaint is an IBM product designed to help with the management of
the USER DIRECT file. The USER DIRECT file is where the guest defini-
tions resides, it will be discussed to greater extent later in the text. Instead
of editing USER DIRECT directly, commands are issued to DirMaint who
then verifies the command and changes USER DIRECT. This reduces the
chance of making errors, and makes sure the commands comes from au-
thorized users. The main beneficial feature to this project however, is its
ability to manage storage. Since guests created will be allocated storage in
the form of cylinders in DASDs, it is important that this is handled prop-
erly. It is for instance vital that allocated cylinders do not overlap, as this
would destabilize the system.

Programmable Operator Facility

The Programmable Operator Facility will be referred to by the acronym
PROP [5]. PROP is designed to handle several tasks concerning system
management. PROP is a service running under z/VM, meaning that it runs
in a service virtual machine. It picks up messages sent to the VM it runs

15

2.4. IBMS CURRENT MAINFRAME INITIATIVES

in, and carries out actions depending on its configuration and the message.
The three main features of PROP are:

1. Logging all messages that goes through PROP.

2. Routing messages to a predefined real user.

3. Executing code and commands depending on the incoming message.

The most important feature to this project is number three, Executing code
and commands depending on the incoming message, as this also encom-
passes sending commands to different VMs. This makes it possible to ver-
ify the sender of the message, and check whether the sender is authorized
for the requested action. It also makes it possible to control and limit the
final target guest of the action. This is where much of the security of the
system will reside.

2.4 IBMs current mainframe initiatives

IBM currently have two large scale projects of particular interest in the
mainframe area. The first one centers on server consolidation, while the
second one focuses on improving the user-friendliness of z/OS.

2.4.1 Server consolidation

The server consolidation initiative is part of IBMs project "Big Green". It is
a five year plan started in 2007 to consolidate 3.900 distributed servers onto
33 Series z mainframes. By doing this, it is estimated to reduce the annual
energy consumption by 80% and the total floor area used by 85%. This is
made possible through the use of z/VM virtualization and z compatible
Linux. It is an example of how a large scale virtualization environment
implementation is necessary in a real world scenario, and with it comes the
needs for a mean to consistently manage the environment.

2.4.2 z/OS simplification

The goal of the z/OS simplification initiative is to make the mainframe
more user-friendly for non-experts. The initiative was started in 2006, and
will be running for five years. During this timeperiod, IBM will invest ap-
proximately 100 million US dollars in making it easier to program, manage
and administrate a mainframe system for the administrators and program-
mers. There will also be focus on increased automation when it comes to
the development and deployment of applications on the mainframe envi-
ronment. This shows IBMs interest and commitment in bringing the main-
frame "to the people". At the end of the project, the power, potential and

16

2.5. MLN

utilization of the mainframe should be available to more than just the ex-
perts in the field.

2.5 MLN

MLN [6, 7] is an open source virtual machine administration tool. It was
created by Kyrre Begnum at Oslo University College to improve the man-
agement aspect of a large number of virtual machines. Currently, it sup-
ports the popular virtualization platforms Xen [1] and User-Mode Linux
[2].

MLN lets the administrator design and describe the VM setup in an
easy to understand, declarative language. The language it is built up of
blocks and attributes where the blocks are enclosed by curly brackets and
each attribute normally have one value assigned. It also supports variables,
making it easy to keep consistency and overview of the code. A pre-created
template of the file system is then used to create the VMs. In MLN, logi-
cal groups of VMs are organized in projects. Every part of the project, the
VMs and the network devices, are normally described in a single file. This
makes it easy to administrate the project as a whole, letting the adminis-
trator (among other things) start, stop, create or destroy entire networks of
VMs with a single command.

Two features of the MLN language that should be mentioned are su-
perclasses and plug-ins. Superclasses should be familiar to anyone having
experience in object oriented programming. Superclasses lets the admin-
istrator correlate repetitive, static attributes in a single block, and then let
VMs in the project use the information through inheritance. This has sev-
eral advantages, a few of which are mentioned here. It removes unneces-
sary redundant information, reduces the number of lines in the project file
and reduces the number of (human) errors associated with repetitive tasks.

The second feature, plug-ins, make MLN remarkably flexible. The plug-
in architecture allows MLN to use plug-ins written in the Perl program-
ming language for mainly two purposes:

1. Introduce changes to the project before the project is built.

2. Add to the system configuration capabilities.

17

2.5. MLN

To further illustrate these features, an example is in order:

1 global {
2 project example
3 autoenum {
4 superclass users
5 addresses enum
6 addresses_begin 2
7 numhosts 30
8 network 10.0.0.0
9 }

10 $gateway_address = 10.0.0.1
11 $broadcast_address = 10.0.0.255
12 $netmask = 255.255.255.0
13 }
14

15 superclass common {
16 term screen
17 xen
18 lvm
19 }
20

21 superclass users {
22 superclass common
23 template ubuntu_user.ext3
24 free_space 500M
25 memory 128M
26 network eth0 {
27 netmask $netmask
28 broadcast $broadcast_address
29 gateway $gateway_address
30 switch VirtualSwitch
31 }
32 }
33

34 host gateway {
35 superclass common
36 template ubuntu_gw.ext3
37 free_space 8GB
38 memory 1024M
39 network eth0 {
40 netmask $netmask
41 broadcast $broadcast_address
42 address $gateway_address
43 switch VirtualSwitch
44 }
45 network eth1 {
46 netmask 255.255.255.0
47 broadcast 192.168.1.255
48 address 192.168.1.42
49 gateway 192.168.1.1
50 }
51 }
52

53 switch VirtualSwitch { }

The project starts with a global block which includes, among other
things, the project name (example). This is the minimum requirement that
all projects must contain. Further on in the global block the plug-in autoenum
is used. The purpose of this plug-in is to automatically create a num-

18

2.5. MLN

192.168.1.0/24

VirtualSwitch

eth1

eth0

user
VM

user
VM

user
VM

user
VM

user
VM

user
VM

user
VM

user
VM

user
VM

user
VM

gateway
VM

physical machine

Figure 2.5: Illustration of the end product (The number of users are scaled down).

ber of identical VMs while at the same time giving each of them differ-
ent IP addresses. The information contained in the autoenum block will
be passed to the plug-in and used to create the VMs. The first line in the
block, superclass users, lets the plug-in inherit the information con-
tained in the superclass user further down in the file. It then declares that
IP addresses should be assigned automatically starting with 2. Further, it
specifies the number of VMs to create, and which network they will be part
of. In this case, 30 VMs will be created in the network 10.0.0.0/24 using the
IP range 10.0.0.2 – 10.0.0.31. This plug-in is a nice example of introducing
changes to the project before the project is built. It also shows that scalabil-
ity is not a problem. Without adding a single line of code, one can easily
add 223 additional VMs simply by changing numhosts 30 to numhosts
253.

After the autoenum block, the last part of the global block is used to
demonstrate variables. The three critical IP addresses for the network are
being contained in the three variables $gateway_address,
$broadcast_address and $netmask. By using the variables through
the file, the properties of the network can be changed by simply changing
the values assigned to the variables. The modification will then propagate
through the file the next time the project is built.

The next two blocks after the global block are examples of superclasses.
The common superclass contains attributes that are intended for all the VMs

19

2.6. THE VIABILITY OF MLN ON MAINFRAMES

in this project, like which virtualization platform to use. The next super-
class, users, will be used by the VMs auto-generated by autoenum (as
instructed by the first line in the autoenum block previously discussed).
users contain information like what pre-created template will be used
and how much memory each VM will be assigned, Also note that it inher-
its the attributes from the common superclass. In the network eth0 block,
where the attributes for the VMs eth0 interface are defined, the system vari-
ables are used instead if static values. The final line in the network eth0
block, switch VirtualSwitch, connects the VM to a central switch in
the virtual network.

The next block, host gateway, shows how an individual VM is de-
fined. It contains the same attributes as the user superclass, but with dif-
ferent values since greater hardware resources are necessary. A different
template is also being used; this template would be designed to suite the
needs of a gateway (i.e. contain a firewall and load balancing software).
In addition to the network eth0 block which connects it to the central
switch in the 10.0.0.0/24 LAN, the gateway also has a second interface de-
fined by the network eth1 block. This is the interface that connects it
to the outside network, making it capable of working as a gateway for the
LAN. In the network eth1 block, IP values have been assigned directly to
the attributes. Although system variables of course could have been used,
it was omitted to show this secondary approach.

At the end of the file the central switch, switch VirtualSwitch, is
created.

The environment in which the VMs are to be created does not need to
be one physical system. MLN allows it to be spread out over a number
of physical machines so long as they are connected in a network and run
the MLN network daemon. MLN also supports dynamic changing of the
project properties like memory and disk space used, migrate VMs between
servers and even change the virtualization platform. Although it is not
one of MLNs main functions, it also provides some monitoring capabili-
ties. This makes it easy for an administrator to see the projects, VMs and
memory used on each of the physical machines.

MLN is currently the default management tool for virtual machines at Oslo
University College and has also been used by University of Linköping,
Sweeden and Oregon State University, US.

2.6 The viability of MLN on mainframes

Throughout this introduction chapter some points should have been made
clear to attest the viability of MLN on mainframes. First of all, the capability

20

2.6. THE VIABILITY OF MLN ON MAINFRAMES

of MLN to ease the administration of VMs. What is especially important
is its strength when it comes to scalability in administrating a high num-
ber of identical VMs. Secondly, mainframes suitability for hosting a high
number of VMs. Due to the shear power of the mainframes, it is the ideal
platform to consolidate and contain a large number of VMs. Third, the ben-
efits of giving a Unix administrator a familiar environment. By abstracting
z/VM through MLN it is possible for a Unix administrator already familiar
with MLN to "hit the ground running" without acquiring a knowledgebase
of z/VM. Fourth, z/VMs user-friendliness could generally be greatly im-
proved for new and "casual" users, and the chance for accidental mistakes
reduced.

21

2.6. THE VIABILITY OF MLN ON MAINFRAMES

22

Chapter 3

Approach

In this chapter, the design of the system will be decided. The first hands on
experience with z/VM is described in section 3.1 and some examples are
given to outline the look-and-feel of thef z/VM environment. In Chapter
3.2 the steps necessary to enable a Linux guest to communicate with CP
is outlined and performed. The Programmable Operator is then presented
and explained in section 4.1 followed by storage management in section
3.4. In this section the Directory Maintenance Facility will be presented and
explained. Finally the networking possibilities are considered in section 4.3
before a quick description of the scenarios are given in section 4.6.

3.1 z/VM First Contact

The most common method used to access the z/VM environment on a
mainframe is through the 3270 console. x3270 [8] is an IBM 3270 termi-
nal emulator for the X Window System and Windows. It runs on most
Unix-like operating systems and on Microsoft Windows. As one logs on
to a z/VM environment on a mainframe, it is usual to be greeted by a lo-
gin screen as seen in Figure 3.1. Through the execution of a DIAL com-
mand, access is gained to the specified second z/VM level as seen in Fig-
ure 3.2. When logging in to this environment with the system user MAINT,
access is granted to CP. By executing the command IPL CMS (Initial Pro-
gram Load Conversational Monitor System), the CMS operating system is
loaded. From CMS it is possible to execute a wider specter of commands to
examine or affect the system.

IBM have always placed great value on thorough documentation, the an-
swer to most questions can be found in their multitude of books and pa-
pers. In fact, some answers appear difficult to find because of the abun-
dance of information. Several RedBooks have been found that will be used
and referred to during this project. Especially those documenting all avail-

23

3.1. Z/VM FIRST CONTACT

able CP and CMS commands are predicted to be of immense help and will
probably be consulted frequently:

• z/VM CP Commands and Utilities Reference [9]

• z/VM CP Planning and Administration [10]

• z/VM Directory Maintenance Facility Commands Reference [11]

• z/VM Directory Maintenance Facility Tailoring and Administration
Guide [12]

• Program Directory for IBM z/VM Directory Maintenance Facility Fea-
ture [13]

24

3.1. Z/VM FIRST CONTACT

Figure 3.1: The login screen on the Zeus mainframe.

Figure 3.2: The login screen for the dedicated second z/VM level on the Zeus
mainframe.

25

3.1. Z/VM FIRST CONTACT

The LISTFILE command lists the files in the specified minidisk. If no
minidisk is specified, it will automatically list the files in the MODE A mini-
disk. The A minidisk can be compared to the /home/user folder in Linux.

Fullscreen CMS Lines 96 - 120 of 120
Columns 1 - 79 of 81

Ready; T=0.01/0.01 15:17:05
CMS
listfile
$$NLS$ TEXT A2
$VMFBLD $MSGLOG A1
DMSAMENG LANGMAP A5
DMSGER LANGMAP A5
DMSKANJI LANGMAP A5
DMSUCENG LANGMAP A5
LASTING GLOBALV A1
MBFIND XEDIT A1
MDISKMAP EXEC A1
MDISKMAP XEDIT A1
NLSAMENG DCSSMAP A5
NLSGER DCSSMAP A5
NLSHDR LISTING A1
NLSKANJI DCSSMAP A5
NLSUCENG DCSSMAP A5
PK EXEC A1
PROFILE EXEC A1
PROFILE XEDIT A1
SETUP $LINKS A1
SYN SYNONYM A1
USER MDISKMAP A1
Ready; T=0.01/0.01 15:17:44

PF1=Help 2=Pop_Msg 3=Quit 4=Clear_Top 5=Filelist 6=Retrieve
PF7=Backward 8=Forward 9=Rdrlist 10=Left 11=Right 12=Cmdline
====>

15:17:44 Enter a command or press a PF or PA key
==

As can be seen in the printout, the files are listed in the previously men-
tioned syntax [file name] [file type] [file mode]. File types in CMS are not
strict, but there are common ways to designate filetypes. For example,
EXEC usually means an executable file while XEDIT is usually a text file.

26

3.1. Z/VM FIRST CONTACT

A series of QUERY commands can be executed to learn more about the
environment. Here an example of the QUERY DISK which lists all the ac-
cessed disks.

Fullscreen CMS Lines 109 - 120 of 120
Columns 1 - 79 of 81

Ready; T=0.01/0.01 15:41:41
query disk
LABEL VDEV M STAT CYL TYPE BLKSZ FILES BLKS USED-(%) BLKS LEFT BLK TOT
MNT191 191 A R/W 175 3390 4096 21 132-01 31368 315
MNT5E5 5E5 B R/W 9 3390 4096 132 1284-79 336 16
MNT2CC 2CC C R/W 5 3390 4096 58 423-47 477 9
MNT51D 51D D R/W 13 3390 4096 249 1126-48 1214 23
MNTCF1 CF1 F R/O 120 3390 4096 14 3296-15 18304 216
MNT190 190 S R/O 100 3390 4096 687 14517-81 3483 180
TCM592 592 T R/O 67 3390 4096 885 8496-70 3564 120
MNT19E 19E Y/S R/O 250 3390 4096 1063 27496-61 17504 450
Ready; T=0.01/0.01 15:43:10

PF1=Help 2=Pop_Msg 3=Quit 4=Clear_Top 5=Filelist 6=Retrieve
PF7=Backward 8=Forward 9=Rdrlist 10=Left 11=Right 12=Cmdline
====>

15:43:10 Enter a command or press a PF or PA key
==

This list gives a lot of useful information. It shows the disk label, virtual
device address, mode, read/write access, cylinders on disk, disk type and
information about how much of the disk is utilized.

27

3.1. Z/VM FIRST CONTACT

By using the XAUTOLOG and SIGNAL SHUTDOWN commands, VMs can
be started and stopped. It is shown here in conjunction with the QUERY
NAMES command whose output shows all the running guests (VMs) on the
system.

Fullscreen CMS Lines 49 - 74 of 74
Columns 1 - 79 of 81

CMS
query names
LINUX2 - DSC , DTCVSW2 - DSC , DTCVSW1 - DSC , OPERSYMP - DSC
DISKACNT - DSC , EREP - DSC , OPERATOR - 0009, MAINT - 0020
Ready; T=0.01/0.01 14:18:46
xautolog linux1
Command accepted
Ready; T=0.01/0.01 14:18:59
AUTO LOGON *** LINUX1 USERS = 9
HCPCLS6056I XAUTOLOG information for LINUX1: The IPL command is verified by th

IPL command processor.
CMS
query names
LINUX2 - DSC , DTCVSW2 - DSC , DTCVSW1 - DSC , OPERSYMP - DSC
DISKACNT - DSC , EREP - DSC , OPERATOR - 0009, LINUX1 - DSC
MAINT - 0020
Ready; T=0.01/0.01 14:19:52
signal shutdown linux1
Ready; T=0.01/0.01 14:20:07
HCPSIG2113I User LINUX1 has reported successful termination
USER DSC LOGOFF AS LINUX1 USERS = 8 AFTER SIGNAL
CMS
query names
LINUX2 - DSC , DTCVSW2 - DSC , DTCVSW1 - DSC , OPERSYMP - DSC
DISKACNT - DSC , EREP - DSC , OPERATOR - 0009, MAINT - 0020
Ready; T=0.01/0.01 14:20:56

PF1=Help 2=Pop_Msg 3=Quit 4=Clear_Top 5=Filelist 6=Retrieve
PF7=Backward 8=Forward 9=Rdrlist 10=Left 11=Right 12=Cmdline
====>

14:20:56 Enter a command or press a PF or PA key
==

The QUERY NAMES command lists the running VMs. In the first query,
only LINUX2 of the Linux VMs are running, but no terminal is connected to
it (it is listed with DSC). By executing XAUTOLOG LINUX1 the LINUX1 VM
is started. After the VM has been given time to boot (30-40 seconds in this
case), it can be seen by running QUERY NAMES again. Through the SIGNAL
SHUTDOWN LINUX1 command, a signal is sent to the LINUX1 VM telling
it to shut down. After allowing the VM to shut down (about 30 seconds in
this case), the QUERY NAMES shows that it is no longer running.

28

3.1. Z/VM FIRST CONTACT

The VMs themselves are defined in the USER DIRECT file. A small por-
tion of a USER DIRECT file is shown here through the XEDIT text editor. It
lists the definition for three Linux guests.

USER DIRECT C1 F 80 Trunc=72 Size=1704 Line=1679 Col=1 Alt=0

01679 *
01680 * Linux guests for HIO
01681 USER LINUX1 LBYONLY 256M 512M G
01682 INCLUDE ZEUSCMS
01683 LOGONBY MAINT
01684 DATEFORMAT FULLDATE
01685 OPTION TODENABLE
01686 NICDEF 700 TYPE QDIO LAN SYSTEM LOCALNET
01687 LINK MAINT 1000 191 RR
01688 MDISK 0100 3390 0002 3330 USER01 MR
01689 USER LINUX2 LBYONLY 256M 512M G
01690 INCLUDE ZEUSCMS
01691 LOGONBY MAINT
01692 DATEFORMAT FULLDATE
01693 OPTION TODENABLE
01694 NICDEF 700 TYPE QDIO LAN SYSTEM LOCALNET
01695 LINK MAINT 1000 191 RR
01696 MDISK 0100 3390 0002 3330 USER02 MR
01697 USER LINUX3 LBYONLY 256M 512M G
01698 INCLUDE ZEUSCMS
01699 LOGONBY MAINT
01700 DATEFORMAT FULLDATE
01701 OPTION TODENABLE
01702 NICDEF 700 TYPE QDIO LAN SYSTEM LOCALNET
01703 LINK MAINT 1000 191 RR
01704 MDISK 0100 3390 0002 3330 USER03 MR
01705 * * * End of File * * *

====>
==

This printout needs a somewhat more detailed description. The LINUX1
will be examined in this case, and an explanation of each line will be given.

USER LINUX1 LBYONLY 256M 512M G

This is the first line of the VM configuration. It defines the user LINUX1
with the password LBYONLY. The LBYONLY is not the actual password, but
rather a reserved argument for the password field. Its effect is that to log

29

3.1. Z/VM FIRST CONTACT

on to this guest with the LOGON command, the BY option must be used.
Also, the user ID cannot be used to log on to guests with the BY option, or
in fact perform any function that requires a password. In effect, this user
ID does not actually have a password. The user will run in a VM with 256
MB (256M) of memory. The user will have the possibility to expand this to
512 MB (512M) if necessary. The G at the end of the line represents the CP
privilege class that the user will run under. The default CP privilege classes
ranges from A to G, where A represents the highest administrator while G
represents a normal user.

INCLUDE ZEUSCMS

This INCLUDE statement imports the already defined ZEUSCMS profile. In
this case, the profile is defined higher in the USER DIRECT file:

1 00083 PROFILE ZEUSCMS
2 00084 MACHINE ESA
3 00085 IPL CMS PARM AUTOCR
4 00086 SPOOL 000C 2540 READER *
5 00087 SPOOL 000D 2540 PUNCH A
6 00088 SPOOL 000E 1403 A
7 00089 CONSOLE 009 3215 T
8 00090 LINK MAINT 0190 0190 RR
9 00091 LINK MAINT 019D 019D RR

10 00092 LINK MAINT 019E 019E RR
11 00093 LINK TCPMAINT 0592 0592 RR

Since the profile is used in the definition of the LINUX1 VM, it will be ex-
plained before continuing on the LINUX1 block.

PROFILE ZEUSCMS

The first line defines the block entry as a PROFILEwith the name ZEUSCMS.

MACHINE ESA

This line sets the machine architecture the VM will simulate. The ESA ar-
chitecture is chosen here, other valid choices are XA and XC.

IPL CMS PARM AUTOCR

This line makes the VM automatically boot CMS when the VM starts (IPL
CMS). The PARM AUTOCR simulates the pressing of ENTER as the input to
the VM at the initial VM READ. The PROFILE EXEC will be executed au-
tomatically if it exists in mode A.

30

3.1. Z/VM FIRST CONTACT

SPOOL 000C 2540 READER *

Defines a virtual card reader for the VM. Card Readers and punchers have
not been discussed so far, but they are commonly used to transfer data be-
tween VMs.

SPOOL 000D 2540 PUNCH A

Defines a virtual card puncher for the VM.

SPOOL 000E 1403 A

Defines a virtual printer for the VM. A virtual printer might sound strange,
but it can for instance be connected to a printer server to facilitate actual
printing.

CONSOLE 009 3215 T

Defines the type of virtual I/O support CP provides for the display and its
virtual address.

LINK MAINT 019x 019x RR

Links to a disk owned by another guest. In this case the disk belongs to
MAINT. The two hexadecimal numbers are the disks virtual address on
MAINT and the virtual address it will be linked to on the created guest re-
spectively. RR means that the disk will be Read Only.

That marks the end of the PROFILE ZEUSCMS block, and we continue with
the USER LINUX1 block.

LOGONBY MAINT

Makes it possible for the user MAINT to log on to the guest with MAINTs
own password using LOGON with the BY option.

DATEFORMAT FULLDATE

Sets the default date format for the guest.

OPTION TODENABLE

Makes it possible for the user to change the time and date for the guest.

31

3.2. CP INTERACTION THROUGH LINUX / MANAGING VMS FROM
LINUX

NICDEF 700 TYPE QDIO LAN SYSTEM LOCALNET

Defines a virtual network interface of type Queued Direct Input/Output
(QDIO) and connects it to the virtual switch LOCALNET.

LINK MAINT 1000 191 RR

As previously explained in the PROFILE ZEUSCMS block.

MDISK 0100 3390 0002 3330 USER01 MR

Defines a new minidisk to be owned by this guest. The first number (0100)
is the virtual device number while the second (3390) is the device type.
The next three parameters (0002 3330 USER01) says that the minidisk
starts on cylinder 0002 and allocates 3330 cylinders on the real DASD vol-
ume USER01. MR sets the minidisk to multiple-write access.

3.2 CP interaction through Linux / Managing VMs from
Linux

z/VM allows commands to be issued from a running Linux guest to CP. In
this case this happens through vmcp, a kernel module in Linux that han-
dles the communication. The module is included in SUSE Linux Enterprise
Server 10 (SLES10) which is used in this environment, but it is not acti-
vated by default. Although the module can be loaded manually by running
modprobe vmcp, it is desirable to have it load on startup as default on the
VM LINUX1. To do this, it is necessary to ssh into LINUX1 and edit the file
/etc/sysconfig/kernel . vmcp is simply added to MODULES_LOADED_ON_BOOT
as shown below:

1 ## Type: string
2 ## ServiceRestart: boot.loadmodules
3 #
4 # This variable contains the list of modules to be loaded
5 # once the main filesystem is active
6 # You will find a few default modules for hardware which
7 # can not be detected automatically.
8 #
9 MODULES_LOADED_ON_BOOT="vmcp"

After saving the changed file, restart LINUX1 through CP (from the nor-
mal x3270 console). It is now possible to issue CP commands from the
command line in LINUX1 by using the vmcp command.

hiovm2-linux1:~ # vmcp query names
MAINT - 0020, LINUX2 - DSC , DTCVSW2 - DSC , DTCVSW1 - DSC
OPERSYMP - DSC , DISKACNT - DSC , EREP - DSC , OPERATOR - 0009
LINUX1 - DSC
hiovm2-linux1:~ #

32

3.2. CP INTERACTION THROUGH LINUX / MANAGING VMS FROM
LINUX

As seen the output from CP is sent back to STDOUT on LINUX1. What
commands can be executed is determined by the privilege class the VM
is running in. QUERY NAMES is a command that can be issued by every
standard privilege class, and so it was executed successfully. When trying
to run a higher level command, it becomes clear that LINUX1 runs with
restricted access.

hiovm2-linux1:~ # vmcp xautolog linux3
HCPLGA6050E Your userid is not authorized to automatically logon userid LINUX3
Error: non-zero CP response for command ’XAUTOLOG LINUX3’: #6050
hiovm2-linux1:~ #

When trying to start the LINUX3 VM, CP responds that the used userid
is not authorized to automatically logon userid LINUX3. With a quick
query check, it becomes clear why.

hiovm2-linux1:~ # vmcp query privclass
Privilege classes for user LINUX1
Currently: G
Directory: G
The privilege classes are not locked against changes.
hiovm2-linux1:~ #

LINUX1 runs under privilege class G (normal user). To be able to per-
form administrative tasks like XAUTOLOG and SIGNAL SHUTDOWN it is nec-
essary to run under a higher privilege class (A, B or C). The simplest solu-
tion to this would be to change the privilege class for LINUX1 in USER
DIRECT from G to A. This would give LINUX1 the necessary privileges
to administrate other guests, and therein lies the problem. This solution
would give LINUX1 privileges to control ALL guests under z/VM, not just
the Linux guests that it is in charge of but also guests used by z/VM to
function properly (Figure 3.3). This would present a too great security risk,
and is therefor an unacceptable solution.

Another alternative would be to create a special privilege class for the
administrating Linux guest where the necessary CP commands are added.
This would not really be a noticeable improvement form the previously
mentioned solution, as all the high-risk commands (like SIGNAL SHUTDOWN)
would have to be added to the new class (Figure 3.4).

The third solution is to create a proxy guest for security purposes only.
The proxy would be a service virtual machine running PROP [4] (pro-
grammable operator). All commands from the administrating Linux (LINUX1)
guest to other guests would be sent to this proxy instead. LINUX1 would
still run under privilege class G, but the proxy will run under privilege
class A. The proxy would then receive the command with some additional
parameters like which guest sent the command and which guest was the
target. The proxy checks if the sender is allowed to issue the command, but
more importantly that it is allowed to send to the target. The target name
is checked against a file on the proxy containing the names of the restricted
guests, and if it does not find a match then the target is valid.

33

3.2. CP INTERACTION THROUGH LINUX / MANAGING VMS FROM
LINUX

CP

LINUX1

privilege
class A

LINUX3MAINT

SIGNAL SHUTDOWN MAIN SIGNAL SHUTDOWN LINUX3

Figure 3.3: Privilege class A LINUX1. LINUX1 is able to shut down LINUX3,
but it is also able to shut down MAINT. This is a very bad thing as it does not
protect the integrity of the system at all.

CP

LINUX1

privilege
class H

LINUX3MAINT

SIGNAL SHUTDOWN MAIN SIGNAL SHUTDOWN LINUX3

PRIVILEGE CLASS H
AUTHORIZED COMMANDS:
XAUTOLOG
SIGNAL SHUTDOWN
.....

Figure 3.4: LINUX1 running under custom created H privilege class. In this
case, nothing has really changed from giving LINUX1 privilege class A. LINUX1
still has the possibility to destabilize the system severely.

34

3.3. PROGRAMABLE OPERATOR FACILITY

3.3 Programable Operator Facility

PROP is the solution chosen for this project. The reason being as explained
the increased security. It can be argued that this increases the complexity
of the system, and increases the knowledge requirement for setting up the
system. This is indeed true, but it can also be seen from a slightly differ-
ent perspective. The value of the finished product diminishes greatly if
nobody is willing to use it because of the security risk, security is after all
a very important aspect of virtualization and the mainframe. As for the
increased knowledge requirement in setting up the system, this is only for
the installation phase. For a system like the mainframe, whose operation
time span can easily reach 10 years, this was seen as an acceptable tradeoff.
After all, z/VM knowledge was a requirement for the installation process
from the very beginning. This will however not increase the requirements
for using the established system.

As seen in Figure 3.5, LINUX1 issues a command to shut down the LINUX3
guest. Instead of sending the command to LINUX3, in which case it would
be rejected because LINUX1 only runs under privilege class G, the com-
mand is sent to PROP. When PROP receives the command it runs a number
of checks to verify that this is a legal action. It will check that LINUX1 is al-
lowed to execute this command, and that the target in not on a list contain-
ing the names of guests not to be administrated by LINUX1. If all checks
are cleared, PROP will send the command to LINUX3. Because PROP runs
under privilege class A, the command will be accepted and executed.

In Figure 3.6, LINUX1 tries to issue the SIGNAL SHUTDOWN command
on MAIN. This would be an undesirable action since MAIN is not a linux
guest and is outside the jurisdiction of LINUX1. The command is sent to
PROP, and PROP runs through the checks to clear the command. PROP
sees that LINUX1 is indeed allowed to issue the SIGNAL SHUTDOWN
command. However, when checking the validity of the target PROP finds
the guest name in the list of illegal targets. Because of this, PROP drops the
command and the integrity of the system remains uncompromised.

3.4 Storage Management

DirMaint is certainly not the perfect solution for this project when it comes
to the choice of storage management solution. First of all, it is yet another
underlying subsystem. Secondly, it is not a free IBM product. It is shipped
with z/VM, but it is not activated unless paid for. There are however sev-
eral reasons favoring this solution. The main reason is perhaps the sim-
plest: z/VM storage administration is not what this project is about. Al-

35

3.4. STORAGE MANAGEMENT

CP

LINUX1

privilege
class G

LINUX3MAINT
PROP

privilege
class A

SIGNAL SHUTDOWN LINUX3 SIGNAL SHUTDOWN LINUX3

Is LINUX1 a valid
sender guest?
YES

Is LINUX3 a valid target
guest?
YES

NON-VALID TARGETS:
OPERSYMP
DISKACNT
MAINT
OPERATOR
......

PROP RTABLE
/SIGNAL SHUTDOWN / 1 16 4 LINUX1 PENGUINS SHUTDOWN
.......

Is SIGNAL SHUTDOWN
an allowed command?
YES

Figure 3.5: LINUX1 executes a legal command on a legal target guest. The
command goes to PROP who runs it through several checks. Since everything
seems to be in order, PROP executes the command on the target guest with the
necessary privilege class.

though it would certainly be interesting to create a module that handled
storage allocation, it is not a priority at this time. Which brings up another
reason, time. The time span of this project is quite limited, and so there is
simply not the time to create a satisfactory alternative to DirMaints func-
tionality. As mentioned when first introducing DirMaint, storage allocation

36

3.4. STORAGE MANAGEMENT

CP

LINUX1

privilege
class G

LINUX3MAINT
PROP

privilege
class A

SIGNAL SHUTDOWN MAINT

Is LINUX1 a valid
sender guest?
YES

Is SIGNAL SHUTDOWN
an allowed command?
YES

Is MAINT a valid target
guest?
NO

NON-VALID TARGETS:
OPERSYMP
DISKACNT
MAINT
OPERATOR
......

PROP RTABLE
/SIGNAL SHUTDOWN / 1 16 4 LINUX1 PENGUINS SHUTDOWN
.......

Figure 3.6: LINUX1 executes a legal command on an illegal target guest. The
command goes to PROP who runs it through several checks. Everything seems to
be in order until PROP checks the validity of the target. The target guest, MAIN,
is on PROPs list of non-valid targets and so the command is discarded as illegal.

is extremely delicate and it would take up to much resources to create a sys-
tem with the needed reliability and stability.

Other alternatives was of course also considered. A module to handle the
task would have to have a database with DASD resources made available

37

3.4. STORAGE MANAGEMENT

to the system. It would then need to keep track of which cylinders was
allocated, and update this information when changes to guest configura-
tion were made and when guests were created and destroyed. This system
would run on the administrating Linux guest, and the database contain-
ing the DASD resources would have to be managed manually or fetch data
from a file in z/VM with regular intervals (in which case the file on z/VM
would have to be managed manually).

The system could alternatively reside in CMS, but it would then have to
use flat files instead of databases. This would also increase the communi-
cation between the administrating Linux guest and CP considerably since
the Linux guest would have to consult the flat files for every storage related
change that was made. This approach would however give access to handy
features like DISKMAP (creates a report on disk cylinder use).

As mentioned earlier in this text, DirMaint does more than just handle the
allocation of storage for guests. When installed and activated it takes con-
trol of the entire working of USER DIRECT. This is not optional, an so all
operation that manipulate the configuration of guests, from creation to de-
struction, must go through DirMaint.

DirMaint consists of mainly four service VMs.

DIRMAINT
The Directory Maintenance Service VM is the primary server. It holds
and manipulates the USER DIRECT (actually called the source direc-
tory in DirMaint) file, validates the input it receives and checks that
the input came from an authorized administrator. It is given control
over a pool of DASD storage (cylinders) and is tasked with the allo-
cation of storage to guests. Finally, it controls the other servers that
comprises the Directory Maintenance Facility.

5VMDIR10
The 5VMDIR10 service VM is DirMaints install and service server.
It owns the DASD space containing all the base code shipped with
DirMaint in addition to optional source files, sample files, help files
and files customized by the user. It also owns disks used by DirMaint
for testing and production purposes.

DATAMOVE
The DATAMOVE service VM handles DASD manipulation on behalf
of DirMaint. More specifically it has mainly three tasks. The first
task is to formate newly allocated DASD space for other guests. The
second is to copy or move data from one disk to another. The third is
to formate deallocated disk space to prevent the content from being
exposed to the next user to access the disk area. There may be more

38

3.5. NETWORK

than one DATAMOVE service VM working on a system to share the
workload.

DIRMSAT
The Cluster Satellite Synchronization Service VM is used in multi-
system clusters. One DIRMSAT runs on each system where it controls
its respective systems USER DIRECT. The DIRMSAT servers are then
used by the DIRMAINT server to propagate changes through the
cluster. The DIRMSAT servers will receive instructions from DIRMAINT
to change USER DIRECT, thereby synchronizing it with the central
USER DIRECT on the DIRMAINT server.

3.5 Network

To support the possibility to network the VMs created through MLN, a
virtual networking technology must be chosen. There are several possibil-
ities offered in z/VM. They all have their respective areas of use, and it
is necessary to decide which solution is best for implementation as MLNs
underlying network technology on z/VM.

A term that should be explained before looking at some of the options
is OSA-Express. OSA stands for Open Systems Adapter and is a physi-
cal network controller. The adapter incorporates several hardware features
and supports several network transport protocols, some being fast Ether-
net, gigabit Ethernet, 10 gigabit Ethernet, token ring and ATM.

Also, QDIO stands for Queued Direct Input/Output. It is a highly effi-
cient data transfer interface mechanism. It makes it possible to buffer data
directly in the hosts main storage, thereby bypassing several steps of the
I/O process.

As a final note, the TCP/IP stack in z/VM is actually running in a ded-
icated service VM called TCPIP.

3.5.1 HiperSockets

HiperSockets is an IBM technology providing high speed TCP/IP commu-
nication. It requires no physical network devices as it exists exclusively in
memory. This also accounts for its high transfer speed. HiperSockets are
usually deployed between LPARS, but can also be created and used in a
single LPAR. This seems like an ideal solution, but it has one crucial limita-
tion: There can only be defined 16 HiperSockets on a system. This makes it
unsuitable for use in MLN.

39

3.5. NETWORK

3.5.2 Guest LAN

A more appropriate name for Guest LAN would have been Virtual LAN
had the term not already been well established in the network area. A
Guest LAN, introduced in z/VM 4.2, is a virtualized LAN segment. No
physical networking equipment is required and there is no limitation on
how many Guest LANs can be defined at the same time. The LAN segment
itself cannot be connected to a physical network devise. If the segment is
to have contact with the "outside world" then this must happen through a
dedicated gateway VM connected to both the LAN segment and a physical
device as shown in Figure 3.7.

There are two different types of Guest LANs available [14]:

• QDIO which emulates a OSA-Express device

– IPv4 and IPv6 support

– Easy to migrate from QDIO Guest LAN to VSWITCH

– Ethernet transport

– Asynchronous

– Can be used as an OSA-Express test network

• Internal QDIO (iQDIO) which emulates a HiperSocket connection

– IPv4 support

– Supports multicast router connections

– Deploy MTUs larger than 8 K

– Synchronous

– Can be used as a HiperSockets test network

– Slightly smaller path length in CP than QDIO Guest LAN

3.5.3 Virtual Switch

The Virtual Switch, or VSWITCH, is the newest form of virtualized LAN
available to z/VM. Introduced in z/VM 4.4 it builds on the already exist-
ing Guest LAN technology. Unlike a Guest LAN, the VSWITCH can be
connected directly to a physical OSA-Express port (Figure 3.8). In fact, a
VSWITCH can be connected to up to three separate OSA-Express ports.
The two extra ports would then work as backup ports. The guests con-
nected to the VSWITCH resides on the same subnet as the physical port
the VSWITCH is connected to. It should be noted that a VSWICH does not
have to be connected to a physical device, it would then be compartmen-
talized to the guests connected to it.

40

3.5. NETWORK

CP

LINUX4LINUX3ROUTERTCPIP

Guest LAN 1

OSA-Express switch physical
LAN

Figure 3.7: Architecture of a Guest LAN network. The Guest LAN is able to
connect the guest together in a network, but is unable to provide access to a real
OSA-Express device. Therefore a guest router gateway must be in place for the
network to gain access to the physical LAN.

Although the VSWITCH has removed the need for router guests, an-
other necessity has been introduced. z/VM requires that the OSA-Express
devise used by the VSWITCH must be owned by a guest. These guests
are called VSWITCH controllers and are basically extra TCP/IP stacks that
manage the OSA-Express on behalf of the systems connected to the VSWITCH.
By default, each z/VM environment comes with two VSWITCH controllers,
DTCVSW1 and DTCVSW2, but more can be added manually if more re-
dundancy is required.

A VSWITCH can be created in two ways. It can be created statically in
the SYSTEM CONFIG file, in which case the VSWITCH will be created at
system start up or when the system is told to reread the SYSTEM CONFIG
file. The second method is to create it dynamically using the DEFINE VSWITCH,
in this case the VSWITCH is created instantly without the need to reread
the system configuration settings. However, this makes the dynamically
created VSWITCH volatile so in the case of a system restart or shutdown

41

3.5. NETWORK

the VSWITCH would cease to exist.

CP

LINUX4LINUX3DTCVSW1TCPIP

VSWITCH 1

OSA-Express switch physical
LAN

Figure 3.8: Architecture of a Virtual Switch network. The VSWITCH connects
all the guests in a network and also has the option of being directly connected to
a OSA-Express device and therefor the physical LAN. No guest router gateway is
necessary. (Note that the connection to DTCVSW1 is automatically handled by
z/VM)

When the VSWITCH was introduced in z/VM 4.4 it only operated on
OSI layer 3. This means that it only routes based on IP addresses with-
out considering the MAC address. This effectively limits its use to TCP/IP
applications. For all communication with the physical LAN, the MAC ad-
dress of the OSA-Express port is used. Thus when a guest on the VSWITCH
wants to send a packet to the physical part of the LAN, the packet is en-
capsulated by an Ethernet frame with the OSA-Express port MAC address
as the source. When packets come from the physical LAN with the OSA-
Express port MAC address as the destination, the OSA-Express device sim-
ply strips away the Ethernet frame and sends the remaining part to the
VSWITCH.

In z/VM 5.1 the possibility to operate on OSI layer 2 was introduced
to the VSWITCH in addition to its already existing layer 3 support. This

42

3.5. NETWORK

means that it more closely lives up to its name as it can virtualize a normal,
fully functional physical layer 2 switch (layer 3 switches are usually refer-
eed to as routers). In layer 2 mode the switch sends and receives Ethernet
framed packets using MAC addresses. This greatly increases the usefulness
of the VSWITCH as its use is no longer limited to TCP/IP applications.

Since MLN uses layer 2 switches, the VSWITCH was chosen as the un-
derlaying z/VM networking technology. Also, IBM generally recommends
to use the VSWITCH as opposed to Guest LAN whenever possible.

Figure 3.9 shows an example of an MLN environment where different net-
work solutions have been implemented for the different guest groups. For
simplicities sake, TCPIP and the VSWITCH controller was omitted from the
diagram. The environment has one statically defined VSWITCH, VSWMLN,
that works as the environments gateway, all other VSWITCHes are defined
dynamically by MLN (in this case VSWG1 and VSWG2).

Linux1 Linux2 Linux3 Linux1 Linux2 Linux3 Linux1 Linux2 Linux3

VSWMLN

VSWG1 VSWG2

Group1 Group2 Group3

OSA-Express switch physical
LAN

Figure 3.9: Architecture of an MLN environment using Virtual Switches

In the case of Group 1, the guests are connected to their own dynam-

43

3.6. THE SCENARIOS

ically created VSWITCH VSWG1. In addition, LINUX3 is connected to
VSWMLN and can therefor work as a gateway to the physical LAN for
the rest of the group.

Group 2 is similar to Group 1, but in this case none of the guests are
connected to VSWMLN. Therefor the guests in Group 2 can communicate
with each other, but they have no contact beyond their own group.

Group 3 does not have its own VSWITCH, and the guests are therefor
connected to VSWMLN by default. This means that they can of course
communicate with each other, but it also mean that all of them can reach
the physical LAN without going through a guest gateway.

3.6 The scenarios

Three scenarios will be examined to determine how the administration of a
z/VM environment has changed with the introduction of the new architec-
ture and MLN. The scenarios will be carried out twice, once on a standard,
default z/VM environment and once on the architecture designed in this
project and running MLN.

The first scenario will consist of a single guest. The second scenario
will consist of six guests and three virtual switches in an arbitrary network
topology. The third scenario will consist of eighteen guests and eight vir-
tual switches in an arbitrary network topology.

44

Chapter 4

Results

The purpose of this chapter is to present the practical implementation of
the solutions chosen. Section 4.1 deals with setting up z/MV to receive in-
structions from MLN, while section 4.4 and section 4.5 deals with MLN and
the plugin directly. Section 4.2 describes the storage management solution
and section 4.3 describes the network creation and configuration in both
Linux and z/VM. Finally, section 4.6 contains the scenarios.

4.1 Programable Operator Facility

PROP is a small and simple service VM. It does not require any special
installation or extensive system resources. In fact, most of the already ex-
isting guests on the system could probably function as a PROP guest with
just a little alteration. The reason for this is that the program files used by
PROP resides on MAINTs 0190 disk by default, and practically every nor-
mal guest on the system links to this disk. The PROP service VM created
for this environment is defined by only three lines in USER DIRECT:

1 00001 USER MLNPROP FGRDWAA5 64M 64M ABCDEFG
2 00002 INCLUDE ZEUSCMS
3 00003 MDISK 0191 3390 2850 0005 520W01 MR

The five cylinder minidisk is mainly used to store log files and to contain
the two PROP specific files PROP RTABLE and PENGUINS EXE.

4.1.1 PROP RTABLE

PROP RTABLE is the routing table used by PROP. The file was written man-
ually for this project as most of its content is tailored to the system created
in this project. When PROP receives a message, the first thing it does is
look up in the PROP RTABLE file to see what action to take. If it does not
find an entry matching the received message, no actions will be taken. This
table must be manually created and administrated by the administrator of

45

4.1. PROGRAMABLE OPERATOR FACILITY

the system. Below is a cut-down version of the PROP RTABLE file used in
this environment. This is a fully functional PROP RATBLE file, if not a very
long one. It will be used here to give an explanation of the attributes and
values. The full PROP RTABLE file can be found in Appendix B.

1 00000 * * * Top of File * * *
2 00001 LGLOPR MAINT HIOVM2
3 00002 TEXTSYM / $ ^
4 00003 LOGGING ALL
5 00004 ROUTE
6 00005 *
7 00006 *COMMANDS
8 00007 *
9 00008 /XAUTOLOG / 1 9 4 LINUX1 PENGUINS XAUTOLOG

10 00009 /SIGNALSHUTDOWN / 1 15 4 LINUX1 PENGUINS SIGSHUTD

Here follows an explanation of lines 2 through 10.

LGLOPR MAINT HIOVM2

The first line defines the default Logical Operator. The LGLOPR attribute
begins the statement, while MAINT is the name of the guest that is desig-
nated as logical operator. This can be any guest that exists on the system,
no changes to the guest is necessary. The final part, HIOVM2, is the z/VM
system ID that the chosen logical operator (MAINT in this case) resides on.

TEXTSYM / $ ^

The TEXTSYM statement tells the programmable operator what symbols to
interpret as special characters in the text field of the routing table entries.
The syntax is as following: TEXTSYM [blank_sep] [arbchar_sep]
[not_symbol]. If the statement is specified, all three attributes must be
entered. A short explanation of the attributes:

blank_sep
This special character indicates that blank characters should be skipped
over when scanning the message until is encounters the first non-
blank character. This non-blank character is then the beginning of
the string that will be compared against the text in the routing table.
As an example, the entry /BAR would be triggered by the message
BAR but not FOO BAR. FOO BAR fails because there are non-blank
characters preceding BAR.

arbchar_sep
This special character indicates that all non matching characters should
be skipped over when scanning the message. As an example, the en-
try $BAR would be triggered by any message containing the string
BAR. Both the messages BAR and FOO BAR would in this case trig-
ger the entry.

46

4.1. PROGRAMABLE OPERATOR FACILITY

not_symbol
This special character works as a logical ’not’ operator. It is always
used with one of the other two special characters. As an example, the
entry $ˆBAR would be triggered by any message that does not con-
tain the string BAR. The message FOO would trigger the entry, while
the message FOO BAR would not.

LOGGING ALL

The LOGGING statement tells PROP to what extent it should log informa-
tion. There are three possible levels. If set to OFF, then messages will not
be logged. ON logs messages, while ALL logs messages as well as PROP
command responses. There is also an additional optional argument that
decides how the strings are to be written to the log file. UPCASE makes all
the logged text to be written in uppercase while LOWCASE logs the text in it
original form (UPCASE is the default).

ROUTE

ROUTE indicates the end of the configuration section and the beginning of
the routing table section.

*
*COMMANDS

*

The ’*’ is simply the special character indicating the beginning of a com-
ment in the PROP RTABLE file.

/XAUTOLOG / 1 9 4 LINUX1 PENGUINS XAUTOLOG

This is the first entry in the actual routing table section. An entry in the
routing table will always consist of one line (record) and one line only. This
is because each part of the entry is assigned a fixed, static number of char-
acters all of which adds up to a total of 72. There are a total of eight fields.

1. The first field contains the comparison text and consists of 25 charac-
ters (1-25). In this case the field holds /XAUTOLOG /. Because of the
’/’ in front of XAUTOLOG, this entry will only be triggered if the first
string in the incoming message is ’XAUTOLOG ’ (not case sensitive).

2. The second field consists of three characters (27-29), and is the start
column of the comparison text. 1 indicates the beginning of the mes-
sage.

47

4.1. PROGRAMABLE OPERATOR FACILITY

3. The third field consists of three characters (31-33), and is the end
column of the comparison text. Since XAUTOLOG with a trailing
whitespace consists of nine characters in total, the end column in this
example is 9.

4. The fourth field consists of two characters (35-36) and specifies the
message class that will trigger the entry. There are a total of nine
message classes, and 4 represents messages sent with the command
CP SMSG. CM SMSG messages are special messages in that they are
not displayed on the receiving guests console and therefor does not
fill up the console buffer. This makes them ideal for sending messages
to the guest and not the user of the guest.

5. The fifth field consists of eight characters (38-45) and contains the
name of the guest that must be the sender of the message for the entry
to be triggered. In this case the entry will only be triggered if the mes-
sage is sent by LINUX1. If another guest, say LINUX2, should also
be able to use the XAUTOLOG command, an additional entry would
have to be added to the routing table. This rule would be identical to
the one shown here, except LINUX1 would be replaced by LINUX2.

6. The sixth field consists of eight characters (47-54) and contains the
z/VM system ID on which the sender resides. In this example, the
field is blank meaning that any ID will match.

7. The seventh field consists of eight characters (56-63) and is in this case
the name of the exec that will be called when the entry is triggered.
PENGUINS is an arbitrary REXX script written by the administrator
that contains the actual commands that will be executed on the sys-
tem.

8. The eighth and final field consists of eight characters (65-72) and con-
tains a sting that will be passed to the exec (in this case PENGUINS) as
a parameter. This is usually to tell the exec what subroutines to run.

The columns 73 and beyond are reserved for future use.

/SIGNALSHUTDOWN / 1 15 4 LINUX1 PENGUINS SIGSHUTD

This entry was included in the example to show a somewhat special case.
First of all, the first part of the actual command consists of two words,
SIGNAL SHUTDOWN. However, because PENGUINS expects the target
of the command to be the second word in the message, SIGNAL SHUT-
DOWN was combined to SIGNALSHUTDOWN. This has no effect on the
system as it is simply the command that is issued by MLN "behind the
sceens". Also notice how the command was shortened to SIGSHUTD in the

48

4.1. PROGRAMABLE OPERATOR FACILITY

eighth field because of the eight character limitation. once again this has no
effect on the system as this string is only used by PENGUINS.

4.1.2 PENGUINS EXEC

When PROP gets a message from MLN that matches an entry in PROP
RTABLE, it calls PENGUINS EXEC for further actions to be taken. Note that
the name of the file, PENGUINS in this case, is not predetermined and can
be whatever the administrator wants it to be. This script is written and
maintained by the administrator of the z/VM environment and is therefor
quite flexible. The scripting language used is REXX. This script is where
the actual commands will be sent to the system, and also where some se-
curity measures will be implemented. The complete script can be found in
Appendix C, but the essential parts will be explained here.

1 00000 * * * Top of File * * *
2 00001 /* PROP ACTION SCRIPT USED TO VALIDATE COMMANDS AND SO ON */
3 00002
4 00003 conffile="RESGUEST CONF"
5 00004
6 00005 parse upper arg ruser rnode lglopr msgcode puser pnode netid rtable
7 00006 pull msg
8 00007 pull action
9 00008

10 00009 /*
11 00010 * checks if the username is "legal"
12 00011 */
13 00012 parse var msg . user restofmsg
14 00013 okchars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
15 00014 okchars = okchars !! "0123456789_-$"
16 00015 if verify(user, okchars, "Nomatch") ! length(user)=0 ! length(user)>8
17 00016 then do
18 00017 say "PENGUINS: Syntax error in requested username:" user
19 00018 exit 1
20 00019 end
21 00020
22 00021 /*
23 00022 * do not allow a username which is listed in RESGUEST CONF
24 00023 */
25 00024 found = 0
26 00025 parse value stream(conffile,’c’,’open read’) with ok fh
27 00026 if ok == "ERROR:" then do
28 00027 say "PENGUINS: Error opening config file" conffile ":" fh
29 00028 exit 1
30 00029 end
31 00030
32 00031 do while found == 0 & lines(fh) > 0
33 00032 parse value linein(fh) with cuser .
34 00033 if translate(cuser) == translate(user) then found = 1
35 00034 end
36 00035 ok = stream(fh,’c’,’close’)
37 00036
38 00037 if found == 1 then do
39 00038 say "PENGUINS: Target guest listed as invalid target:" user
40 00039 exit 1
41 00040 end
42 00041

49

4.1. PROGRAMABLE OPERATOR FACILITY

43 00042 /*
44 00043 * the actuall actions to be taken as a result of the incomming msg
45 00044 */
46 00045 select
47 00046 when action = "XAUTOLOG" then
48 00047 address ’CMS’ "XAUTOLOG" user
49 00048 when action = "SIGSHUTD" then
50 00049 address ’CMS’ "SIGNAL SHUTDOWN" user
51 00050 otherwise do
52 00051 say "PENGUINS: Unknown action:" action
53 00052 exit 1
54 00053 end
55 00054 end
56 00055 exit 0

Most people with some programming background should be able to un-
derstand at least the general idea of what the script does. However, a short
explanation of the different parts of the script is in order in any case. Note
that in the select block at line 46, only the commands used in the expla-
nation of PROP RTABLE earlier is included.

conffile="RESGUEST CONF"

The RESGUEST CONF file contains a list of reserved guest names. These are
guests that MLN should not be able to influence, typically guests necessary
for the continued stable operation of the z/VM environment. Examples be-
ing MAINT and OPERATOR.

parse upper arg ruser rnode lglopr msgcode puser pnode netid rtable
pull msg
pull action

This part parses the incoming parameters to uppercase. It also pulls the
the complete message originally sent to PROP and stores it in the variable
’msg’ and the parameter from the eighth field of the PROP RTABLE routing
table, placing it in the variable ’action’.

parse var msg . user restofmsg
okchars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
okchars = okchars !! "0123456789_-\$"
if verify(user, okchars, "Nomatch") ! length(user)=0 ! length(user)>8
then do

say "PENGUINS: Syntax error in requested username:" user
exit 1

end

This part extracts the target guest name and checks if it consists of legal
characters. It also checks that the name is between one and eight characters
in length. If any of these checks fails, the script terminates with an error
message.

50

4.1. PROGRAMABLE OPERATOR FACILITY

found = 0
parse value stream(conffile,’c’,’open read’) with ok fh
if ok == "ERROR:" then do

say "PENGUINS: Error opening config file" conffile ":" fh
exit 1

end

do while found == 0 & lines(fh) > 0
parse value linein(fh) with cuser .
if translate(cuser) == translate(user) then found = 1

end
ok = stream(fh,’c’,’close’)

if found == 1 then do
say "PENGUINS: Target guest listed as invalid target:" user
exit 1

end

Here the file containing the reserved guest names (illegal targets) is opened.
Every entry in the file is then compared to the target of the command issued
to PROP. If a match is confirmed, the script terminates with an error mes-
sage. If no match is found, the script continues uninterrupted.

select
when action = "XAUTOLOG" then

address ’CMS’ "XAUTOLOG" user
when action = "SIGSHUTD" then

address ’CMS’ "SIGNAL SHUTDOWN" user
otherwise do

say "PENGUINS: Unknown action:" action
exit 1

end
end

This is the part of the script where the actual commands to z/VM is chosen.
This is based on on the parameter defined in PROP RTABLE. The examples
included here corresponds to the routing table entries in the explanation of
the PROP RTABLE file. If no match is found, the script terminates with an
error message. In the event of an error message at this stage, the chances
are strong that the PROP RTABLE and the PENGUINS EXEC files are not
synchronized.

The script is critical to the workings of the system in that it must contain
every z/VM command requiring higher privilege class than G that MLN
should be able to execute. The script can be easily modified to work in
similar environments as most of the checks are reasonably general. The
part that will most likely require modification is the "select" block since it
contains the actual actions the script carries out.

51

4.2. DIRMAINT

4.2 DirMaint

When setting up DirMaint the main sources of information was the Red-
Books

• z/VM Getting Started with Linux on System z9 and zSeries [15]

• Program Directory for IBM z/VM Directory Maintenance Facility Fea-
ture [13]

Interaction with DirMaint happens through commands issued by autho-
rized DirMaint administrators. These administrators are defined in the
AUTHFOR CONTROL file located on 5VMDIR10. The entries in in this
file has the syntax tUID iUID iNode CmdLevel CmdSets where:

tUID
tUID is the UserID or profileID of the target that access is granted on.
This can be one specific ID or the keyword ALL indicating that the
commandset can be used on all IDs.

iUID
iUID is the UserID that is granted privilege to use the specified com-
mandset.

iNode
iNode is the network nodeID that the iUID resides on.

CMSLevel
CMSLevel is the command level that the authorized user (iUID) can
submit. This attribute can be either 140A or 150A. 140A allows the
user to submit commands using the syntax of DirMaint release 4,
while 150A allows the user to utilize the full function of the DirMaint
release 5 syntax. The intention of 140A is mainly to be used by pro-
grams not yet adapted to use release 5 syntax, but it is usual for a user
to be granted both 140A and 150A command level.

CMSSets
CMSSets defines the command sets that the authorized user is granted
access to. The default IBM command sets are [12]:

• A: Non-DASD user directory Administrator commands.

• D: DASD management user directory administrator commands.

• G: General user commands.

• H: Help Desk commands. Allows looking at things without al-
lowing them to be changed.

• M: Monitoring commands. Allows use of MDAUDIT, PWGEN,
PWMON, and SETPW commands.

52

4.2. DIRMAINT

• O: Operational support commands, such as BACKUP, NOTAPE,
or SHUTDOWN.

• P: Commands needed by automated administration Programs,
such as: CLAS, DFSMS, DSO, IPF, NV/AS, RACF.

• S: Commands needed by the DirMaint owner and Support pro-
grammer.

• Z: Commands needed by the DirMaint service machines to com-
municate with each other.

In the architecture used by MLN, the entire file consists of only four entries:
1 ===== * * * Top of File * * *
2 ===== ALL MAINT * 140A ADGHOPSMZ
3 ===== ALL MAINT * 150A ADGHOPSMZ
4 ===== ALL MLNPROP * 140A ADGHOPSMZ
5 ===== ALL MLNPROP * 150A ADGHOPSMZ
6 ===== * * * End of File * * *

As can be seen, MAINT and MLNPROP has permission to act on behalf of
all guests with every possible authority level.

As mentioned, authorized users interact with DirMaint by issuing special
DirMaint commands. These commands can be easily recognized since the
first part is always DIRMAINT (or DIRM in short form). Most of these com-
mands have a consistent syntax following the pattern
DIRM [prefix keywords] [command] [arguments]
A walkthrough will be given of all the DirMaint commands used by MLN.
This should make the syntax clear and understandable.

DIRM ADD LINUX25 LIKE MLNLINUX PW LBYONLY
The opening part of the command, DIRM, tells CMS that this is a DirMaint
command and sends it to the DIRMAINT guest. The second part is the
command word itself, ADD. This tells DirMaint that it should add a new
entry in the source directory file called LINUX25. LIKE tells DirMaint that
LINUX25 should be created using the prototype file MLNLINUX. DirMaint
will now look through the storage areas it has access to and locate a file
called MLNLINUX PROTODIR. In this case, MLNLINUX PROTODIR looks
like this

1 ===== * * * Top of File * * *
2 ===== USER MLNLINUX NOLOG
3 ===== INCLUDE MLNLINUX
4 ===== * * * End of File * * *

DirMaint uses this to add the following entry to the source directory
1 ===== * * * Top of File * * *
2 ===== USER LINUX25 LBYONLY
3 ===== INCLUDE MLNLINUX
4 ===== * * * End of File * * *

53

4.2. DIRMAINT

Notice that the name in the prototype file, MLNLINUX, has been replaced
with the name specified in the ADD command, LINUX25. DirMaint will
only add this entry if it is able to locate the profile MLNLINUX in the source
directory file. MLNLINUX is a profile specially customized to run a Linux
VM. After the profile has been added manually (DIRM ADD MLNLINUX),
it can easily be used by every new Linux guest as it contains all the entries
necessary for the guest to operate as a normal machine.

DirMaint also comes with a default profile called LINDFLT specifically
tailored for use by Linux guests. LINDFT was however not satisfactory for
use in this case as it contains several entries unnecessary or disruptive to
the finished guests. It also lacks some entries that will be default for all
Linux guests in this system. It was therefor decided to discard LINDFLT
and create a completely new profile (MLNLINUX) for use by MLN.

1 00000 * * * Top of File * * *
2 00001 PROFILE MLNLINUX
3 00002 CLASS G
4 00003 DATEFORMAT FULLDATE
5 00004 IPL CMS PARM AUTOCR
6 00005 LOGONBY MAINT
7 00006 MACHINE ESA
8 00007 OPTION TODENABLE
9 00008 CONSOLE 0009 3215 T

10 00009 SPOOL 000C 2540 READER *
11 00010 SPOOL 000D 2540 PUNCH A
12 00011 SPOOL 000E 1403 A
13 00012 LINK MAINT 0190 0190 RR
14 00013 LINK MAINT 019D 019D RR
15 00014 LINK MAINT 019E 019E RR
16 00015 LINK TCPMAINT 0592 0592 RR
17 00016 LINK MAINT 1000 0191 RR
18 00017 * * * End of File * * *

Most of the entries should be familiar, as they have been explained in earlier
examples. A quick description of the unencountered statements follows.

CLASS G

This defines the privilege class of the new guest. In this case G indicates a
normal unprivileged user.

LINK MAINT 1000 0191 RR

Although the LINK statement has been described before, this entry bears
special meaning. MAINTs 1000 mdisk is a small disk of only 10 cylinders
containing a single PROFILE EXEC file:

54

4.2. DIRMAINT

1 00000 * * * Top of File * * *
2 00001 /* PROFILE EXEC for Linux guests */
3 00002 ’CP SET RUN ON’
4 00003 ’CP SET PF12 RETRIEVE’
5 00004 ’CP SPOOL CONS START TO *’
6 00005 Say ’IPLing Linux from device 0100’
7 00006 ’CP IPL 100 CLEAR’
8 00007 /* Should not get here */
9 00008 Say ’Error IPLing Linux: remaining in CMS’

10 00009 * * * End of File * * *

The special Linux guest specific part of this PROFILE EXEC is the line

’CP IPL 100 CLEAR’

This entry tells CP to IPL the operating system residing on mdisk 0100.
Although not yet defined, the new guests 0100 mdisk will be the system
disk for the Linux filesystem. In other words, this is the line that will boot
Linux.

The last part of the DIRM ADD command states PW LBYONLY. This sets
the z/VM password of the new guest to LBYONLY, as should be the case
for every Linux guest.

This concludes the explanation of the DIRM ADD LINUX25 LIKE MLNLINUX
PW LBYONLY command. Observant readers might have noticed that this
command does not follow the DIRM [prefix keywords] [command]
[arguments] syntax mentioned earlier. This is mainly because the com-
mand does not target a specific guest, but rather DirMaint itself. The next
command however, shows the syntax clearly.

DIRM FOR LINUX25 STORAGE 64M
Once again, the command starts with DIRM. The next part, FOR LINUX25,
is the prefix keyword in this command. It tells DirMaint that this command
is issued on behalf of LINUX25, in effect targeting the LINUX25 guest. The
last part of the command, STORAGE 64M, tells DirMaint to set LINUX25s
STORAGE attribute to 64M (64 MB).

DIRM FOR LINUX25 MAXSTORE 64M
This command differs from the DIRM FOR LINUX25 STORAGE 64M com-
mand above only in that it sets the MAXSTORAGE attribute instead of the
STORAGE attribute.

DIRM FOR LINUX25 AMDISK 0100 X AUTOG 3330 MLN MR PWS ALL
ALL ALL
This command, like the previous ones, targets LINUX25 (DIRM FOR LINUX25).
The function of this command is to add a new minidisk, indicated by AMDISK,
to the target guest. This new mdisk will have the virtual device address

55

4.2. DIRMAINT

0100 and its type will be determined automatically by DirMaint as indi-
cated by the X. AUTOG 3330 MLN tells DirMaint the size of the mdisk and
where this space should be allocated from. 3330 is the size measured in
cylinders, while AUTOG and MLN tells DirMaint to automatically allocate
the cylinders from the group MLN. This group must be manually defined
in the EXTENT CONTROL file on DIRMAINT by a z/VM administrator.
Below is a section of the relevant part of the file.

1 ===== :REGIONS.
2 ===== *RegionId VolSer RegStart RegEnd Dev-Type
3 ===== LINUX01 USER03 1 END 3390-03
4 ===== LINUX02 520W01 2855 3234 3390-03
5 ===== LINUX03 520W02 1478 1527 3390-03
6 ===== LINUX04 520W02 1828 END 3390-03
7 ===== :END.
8 ===== :GROUPS.
9 ===== *GroupName RegionList

10 ===== MLN LINUX01 LINUX02 LINUX03 LINUX04
11 ===== :END.

In the :REGIONS. block, all the continuous DASD sections available to
DirMaint are listed. Each entry specify the target disk (VolSer), what sort
of disk it is (Dev-Type) and the first (RegStart) and last (RegEnd) cylin-
der of the section. Each entry also has its own unique identifier (RegionId)
that is used as a reference in other parts of the file. In the :GROUPS. block,
all the groups available to DirMaint are defined. Each group has a unique
identifier (GroupName) and a list of regions (RegionList) that makes up
the group. In this case, only the beforementioned MLN group is listed,
and it consists for the four entries (LINUX01 - LINUX04) defined in the
:REGIONS. block.

The next part of the command, MR, sets the default access mode that the
guest will get to the mdisk. In this case read-write access will be given un-
less another user has write or exclusive access to the disk, in which case
only read access will be given. The final part of the command, PWS ALL
ALL ALL, sets the access passwords (PWS) for read, write and multi access
respectfully. These passwords must be supplied by other users to link to
the mdisk. In this case, the special value ALL is given, indicating that any-
one can link to the disk without providing a password.

DIRM FOR LINUX25 NICDEF 0700 TYPE QDIO LAN SYSTEM VSWITCH5
This is the command used by MLN to define a new Network Interface Card
for a guest in z/VM, in this case LINUX25 (FOR LINUX25). NICDEF (Net-
work Interface Card DEFinition) is the command word and the rest of the
command describe the new NIC. 0700 is the new cards Virtual Device Ad-
dress. Each NIC actually uses at least three vdev addresses, so this card will
automatically be given 0700, 0701 and 0702. If a guest has multiple NICs
then MLN will increment the vdev address with 10, defining the next NIC

56

4.3. NETWORKING IN Z/VM AND LINUX MANAGED BY MLN

with vdev address 0710. Since the NIC will connect to a virtual switch by
emulating a QDIO device, the type is set to TYPE QDIO. These terms and
technologies are more thoroughly described in the Network (4.3) section of
the Approach chapter. LAN SYSTEM VSWITCH5 tells z/VM that this NIC
should be connected to the virtual switch VSWITCH5. If VSWITCH5 is an
existing virtual switch already defined in z/MV then the NIC will connect
to the switch automatically.

DIRM FOR LINUX25 PURGE NOCLEAN
The PRUGE command is used to completely remove the guest from the sys-
tem. The target (LINUX25) is removed from DirMaints source directory
file, any resources it owned are released and all links it had to other re-
sources are dissolved. Of owned resources, mdisks are most noteworthy.
The NOCLEAN parameter tells DirMaint to release the disk space immedi-
ately without erasing its content. This causes the space to become available
for automatic (re)allocation right away.

In the original design of the system, the admin linux guest (LINUX1) would
issue the DIRM ADD commands through PROP. PROP would then go through
the normal checks and send the DIRM ADD command to DirMaint. Since
PROP has complete authority over DirMaint, the new guest would be added
accordingly. LINUX1 would then need authorization to further change and
administrate the guest directly. It would therefore send a DIRM AUTHFOR
command to PROP who would in turn send it to DirMaint. This DIRM
AUTHFOR command would give LINUX1 complete control over the new
guest, allowing DirMaint commands to be issued directly from LINUX1 to
DIRMAINT.

The problem with this solution was that the DirMaint commands are
normally issued from CMS. When issuing the commands from LINUX1,
they go straight to CP which are not able to handle the DirMaint commands
directly. Since CMS cannot run simultaneously with Linux on the same
guest, a different approach was necessary. The implemented solution was
to run all the DirMaint commands through PROP, not just the DIRM ADD
and DIRM AUTHFOR commands. In fact, the DIRM AUTHFOR command
became unnecessary since LINUX1 would never send a command directly
to DirMaint.

4.3 Networking in z/VM and Linux managed by MLN

The implementation of network capability can be divided into three parts.

I) Internal configuration in Linux

II) z/VM configuration for the individual guests

57

4.3. NETWORKING IN Z/VM AND LINUX MANAGED BY MLN

III) Virtual switches in z/VM

The first part, internally configuring Linux, is what would happen on any
Linux system. This is namely giving the system an IP address, netmask and
broadcast address for each of the used network interfaces. In addition, the
network interfaces themselves must be defined. In SLES10 this happens
through the creation and manipulation of two files. The IP, netmask and
broadcast addressed are defined as attributes in the file /etc/sysconfig/network/ifcfg-
qeth-bus-ccw-0.0.xxxx. The "xxxx" is the virtual device address of the NIC
that this particular file is for, there are in other words one file for each net-
work interface. As an example, the following file is used by LINUX1s eth0.

/etc/sysconfig/network/ifcfg-qeth-bus-ccw-0.0.0700

1 BOOTPROTO="static"
2 UNIQUE=""
3 STARTMODE="onboot"
4 IPADDR="10.5.0.17"
5 NETMASK="255.255.255.0"
6 NETWORK="10.5.0.0"
7 BROADCAST="10.5.0.255"
8 _nm_name=’qeth-bus-ccw-0.0.0700’

The eth0 interface of LINUX1 is connected to a layer 3 virtual switch. Had
it been connected to a layer 2 virtual switch (which is the case with guests
networked by MLN), an additional attribute would have had to be defined,
namely ARP="yes".

The definition of the network interface itself happens in the file
/etc/sysconfig/hardware/hwcfg-qeth-bus-ccw-0.0.0.xxxx. Once again, the
"xxxx" is the virtual device address of the NIC that this particular file is for.
Here is the file for LINUX1s eth0.

/etc/sysconfig/hardware/hwcfg-qeth-bus-ccw-0.0.0.0700

1 STARTMODE="auto"
2 MODULE="qeth"
3 MODULE_OPTIONS=""
4 MODULE_UNLOAD="yes"
5 SCRIPTUP="hwup-ccw"
6 SCRIPTUP_ccw="hwup-ccw"
7 SCRIPTUP_ccwgroup="hwup-qeth"
8 SCRIPTDOWN="hwdown-ccw"
9 CCW_CHAN_IDS="0.0.0700 0.0.0701 0.0.0702"

10 CCW_CHAN_NUM="3"
11 CCW_CHAN_MODE="OSAP700"
12 QETH_LAYER2_SUPPORT="0"

Notice the three distinct channel IDs (CCW_CHAN_IDS). More channel
IDs can be defined, but the minimum is three as shown here. Also note
that had this NIC been connected to a layer 2 virtual switch rather than a
layer 3 virtual switch, QETH_LAYER2_SUPPORT would wave to be set to
"1".

58

4.3. NETWORKING IN Z/VM AND LINUX MANAGED BY MLN

Finally, the default gateway is defined in /etc/sysconfig/network/routes

1 default 10.5.0.1 - -

The second part, z/VM configuration for the individual guest, consists of
simply defining the NIC on the z/VM level. As has been explained ear-
lier this is handled by a single entry in the relevant USER DIRECT guest
block for each NIC. In the case of LINUX1s NIC, the entry looks like this:
NICDEF 700 TYPE QDIO LAN SYSTEM LOCALNET. The different parts
of this entry as been explained earlier in this text, but attention should be
paid to the part 700. This is the virtual device address of the NIC, and it is
vital that it corresponds to the addresses used in the internal Linux config-
uration part. This is handled automatically by MLN through DirMaint as
explained earlier.

The third part, virtual switches in z/VM, mainly consists of generating
scripts that creates and destroys Virtual Switches in z/VM. The terms create
and destroy is used because a VSWITCH does not have an "off" state. Either
it exists and is functioning, or it does not exist. The underlying, statically
defined MLN environment VSWITCH is defined in the SYSTEM CONFIG
file through this line: DEFINE VSWITCH MLNVSW ETHERNET RDEV 700.
Because it resides in the SYSTEM CONFIG file, it is non-volatile and will be
recreated every time the system starts. ETHERNET tells z/VM that this is
a layer 2 switch and RDEV 700 is the real devise address (700) of the physi-
cal devised used to communicate with the "outside world". The VSWITCHes
that MLN creates as they are needed are created with the CP command
DEFINE VSWITCH name ETHERNET. Since they are not defined in SYSTEM
CONFIG they resides completely in memory and is therefor volatile. The
VSWITCH has an access control where only specified guests are allowed to
connect to the switch. This permission is given through the CP command
SET VSWITCH vswitch GRANT guest. In MLN, the VSWITCH is de-
fined and the right permissions given through the automatically generated
script start_VSWITCHname.sh. This script should be executed before any
of the guests using the VSWITCH are started. This is so the guests will
find the VSWITCH when they boot and automatically connect to it. If the
VSWITCH is started after the guests, the connection will not take place au-
tomatically. Note that a guest will boot without problems if it does not
find a VSWITCH it is suppose to connect to, but its network connectivity
will naturally be affected. Finally, to destroy a VSWITCH the CP command
DETACH VSWITCH name is issued. This command is contained in the au-
tomatically generated script stop_VSWITCHname.sh.

59

4.4. THE MLN MODIFICATIONS

4.4 The MLN Modifications

Since MLN was not originally written to use plugins for the purpose of
supporting additional virtualization platforms, some modifications had to
be made to its base code. The default virtualization platform in MLN is
User-Mode Linux, but it also supports Xen. The code to be executed when
using these platforms are hardcoded into MLNs base code, and it often
choses what code to run by testing if the "xen" attribute is set for the host.

1 if (getScalar("/host/$hostname/xen")){
2 configure_host_XEN($hostname);
3 }
4 else {
5 configure_host_UML($hostname);
6 }

As can be seen, it will by default run UML code if the host is not specifically
tagged as xen. If the virtualization platform is neither UML or Xen, as is
the case in this project, UML code will still be executed. Since it is not desir-
able to run UML code on a non-UML system, a solution had to be found to
run the appropriate plugin code and skip the UML code. The solution was
to add strategically placed "hooks" in the base code of MLN. These hooks
checks if any plugins contains the routine to be executed, and executes it
accordingly if found before MLN proceeds as usual. In cases where UML
code has to be skipped over, like the previous example, an exclusive hook
is added before the if check. In the case of exclusive hooks, a task is consid-
ered finished when one code block has carried it out.

Without exclusiveness:

1 my $plugin;
2 foreach $plugin (keys %PLUGIN_LIST){
3 my $subcall = $plugin . "_configureSwitch";
4 verbose("calling $subcall\n");
5 if (defined(&$subcall)){
6 &$subcall($name);
7 }
8 }

With exclusiveness:

1 my $each;
2 foreach $each (keys %PLUGIN_LIST){
3 my $call = $each . "_createFilesystem";
4 if (defined(&$call)){
5 verbose("Calling plugin method $call\n");
6 return if &$call($hostname);
7 }
8 }

The key part of an exclusive hook can be seen on line 6. The return state-
ment makes MLN exit the sub routine without proceeding with the code

60

4.5. THE MLN PLUGIN

after a plugin has successfully executed the task. This addition makes plu-
gins able to "claim" certain operation in the management process. It is the
beginning of adding a layer of transparency to MLN where the details are
handled by plugins.

4.5 The MLN Plugin

The MLN plugin written in Perl to allow MLN to take advantage of z/VM
is attached as Appendix A. While the code is not presented here, a descrip-
tion of the different sub routines can be found in Table 4.1.

Table 4.1: zVM.pl sub routines

Name Description
zVM_postParse zVM_postParse goes through all guests uncondition-

ally and makes general adjustments and changes to
suit the environment in which the guests are to be
created.

execute execute takes a string as input and either executes it
as a command with system() or prints it with out().
It decides what to do by checking the presence of a
"dryrun" attribute in the global block of the project.
If dryrun is set to "1" then it will print the commands
instead of running them, it also wites the scripts to
echo their commands instead of running them.

genzname All guest names in z/VM are restricted to eight char-
acters. genzname takes the name of a guest and the
project it belongs to as parameters. It then strips
away all but the four last characters of each name
and combines them to a eight character name used
in z/VM. Example: A guest with the name testguest
belonging to the project testproject would get the
z/VM name UESTJECT. This sub routine is also
used for VSWITCHes.

Continues on next page

61

4.5. THE MLN PLUGIN

Name Description
zVM_createFilesystem The zVM_createFilesystem sub routine does more

than its name might imply. It starts off by creating
the actual z/VM guest and customizes said guest.
A mdisk is added and the appropriate number of
network interface cards are defined. It then pro-
ceeds with linking and activating the new mdisk
and copying the filesystem from a template to the
new disk. It also formates the disk for Linux-use if it
is necessary. Finally it then unlinks and deactivates
the disk.

zVM_mountFilesystem The zVM_mountFilesystem links the mdisk of the tar-
get VM to the administrator VM in z/VM. It then
activates the disk and mounts it in the administra-
tor Linux VM.

zVM_configure zVM_configure handles the internal configuration of
the new filesystem. At this point, that is exclusively
network configuration. All the instances of the files
/etc/sysconfig/hardware/hwcfg-qeth-bus-ccw-
0.0.0.xxxx, /etc/sysconfig/network/ifcfg-qeth-bus-
ccw-0.0.xxxx and /etc/sysconfig/network/routes
are created in this sub routine.

zVM_unmountFilesystem The zVM_unmountFilesystem unmounts the new
mdisk from the administrator Linux VM. It then de-
activates the disk and unlinks (detaches) it in z/VM.

zVM_createStartStopScripts zVM_createStartStopScripts creates two scripts for
each VM. The start_bootorder_VMname.sh script
tells z/VM to boot the target guest. The
stop_bootorder_VMname.sh takes one argument,
"kill". If no argument is given, it stops the VM in
a clean and orderly fashion. This should be used
whenever possible. kill simply kills the VM without
giving the operating system a chance to shutdown.
The kill argument should only be used as a last re-
sort when the VM does not respond to other input as
it is the equivalent of pulling out the power cord and
can potentially damage the filesystem of the VM.

Continues on next page

62

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Name Description
zVM_checkIfUp zVM_checkIfUp is a simple query sub routine that

asks z/VM if the target guest is running. If the guest
is running it returns "1", if not it returns "-1".

zVM_configureSwitch zVM_configureSwitch generates two scripts for each
virtual switch used to start and stop the switch.
The script start_switchname.sh dynamically creates
the VSWITCH in z/VM. It then grants access to any
guest that, according to the MLN project file, should
connect to the switch. The stop_switchname.sh sim-
ply destroys the VSWITCH in z/VM.

4.6 Analyzing the administration complexity through
scenarios

Three scenarios will be carried out to examine how the administration of
a z/VM environment has changed with the introduction of the new archi-
tecture and MLN. The scenarios will be carried out twice, once on a stan-
dard, default z/VM environment and once on the architecture design in
this project and running MLN. The complexity and size will increase for
each scenario:

• Scenario I: 1 guest.

• Scenario II: 6 guests and 3 virtual switches

• Scenario III: 18 guests and 8 virtual switches

The default z/VM environment will also have a LINUX1 administrator
Linux guest, and when the scenarios begins the mdisks containing the tem-
plates will already be linked to LINUX1. These templates will contain the
appropriate general network settings of the network, like broadcast ad-
dress and netmask. As an example, all templates used in scenario III will
be configured for network 10.0.0.0 with netmask 255.255.255.0. Also, both
environments will have an already defined outgoing virtual switch named
GATEWAY in z/VM. The scenarios will have two main parts. Part one will
be the creation of the architecture described, while part two will consist of
administration tasks on the created environment.

There will basically two tasks considered in part two.
Administration tasks:

Startup
Starting a single VM, starting half of the VMs and starting the entire
site.

63

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Check if up
Check if a single VM is up, check if half of the VMs are up and check
if the entire site is up. Only the status of the specified VMs will be
checked here. MLN can for instance not check the entire project when
checking half of the VMs.

Shutdown
Shutdown was considered as a task, but it was decided not to include
it. The reason being that the task is identical to startup except for
the number of characters in the command used. (Example SINGNAL
SHUTDOWN instead of XAUTOLOG for Non-MLN approach)

Restart
Restarting a VM was also considered, but as this would simply be
Startup + Shutdown for both MLN and Non-MLN approach.

Metrics that will be considered in both creation and administration are:

Number of commands issued
The number of commands needed to be issued can be seen as an in-
dication of the complexity of the task and the amount of time needed
to complete it. This can of course be an extremely crude assessment
as the complexity of the commands themselves vary greatly, but it is
one of the metrics that will make up the evaluation as a whole.

Number of characters used on commands
The total number of characters used to make up the commands issued
will be used to supplement the "number of commands issued" met-
rics. This is because the length of the command can give an indication
of the commands complexity. As an example "QUERY NAMES" and
"DIRM FOR LINUX25 AMDISK 0100 X AUTOG 3338 MLN MR PWS
ALL ALL ALL" will both be noted as one command, but the number
of characters will show that they are clearly not equal.

Metrics that will only be considered in creation are:

Number of lines written to file
The number of lines written to file is a count of all lines written to
any files. As with commands issued, this can be seen as an indication
of a tasks complexity and time consumption. If a line is copied and
modified, it will count as written. Blank lines inserted to make the
files easier to read will not be counted.

Number of characters written to file
As with "number of characters used on commands", number of char-
acters written to file will be used to supplement "numbers of lines
written to file". Again this is to indicate the difference in complexity.

64

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

In several scripting languages, normal human written code spanning
several pages can be reformatted to one really long line. Tricks like
that will of course not be used in the scenarios, but it is important to
note that one metric alone proves to unreliable. Copied lines will not
affect this metric.

Number of lines copied
The number of lines copied in files is taken into account because of the
small amount of work and time it takes to copy a line. An action will
be counted in this category only if the line is copied without being
modified afterwards. Also, the line must first have been written once
during the scenario before it is copied.

Number of files edited
The number of files edited gives an indication of the complexity and
level of consolidation of information in the administration process.

Number of systems logged on to
The number of systems logged on to tells us how many systems had
to be logged on to (not just accessed). This gives an indication to the
centralization of the administration process.

65

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

4.6.1 Scenario I

In this first scenario, a single web server guest will be created and con-
nected to the existing outgoing gateway switch as shown in Figure 4.1. The
template for the web server will be /dev/dasdb on LINUX1. The attributes
unique to each host, like IP address, must be set accordingly.

web
serv.

OutgoingSwitch

192.168.1.50

Figure 4.1: Scenario I Architecture Overview

The non-MLN approach

Create

First z/VM is logged on to as the user MAINT, then the creation of the sites
z/VM layer can begin. The new web server guest must be granted access
to the outgoing gateway switch.

SET VSWITCH GATEWAY GRANT WS1RIO1

Then the guest itself is created by defining it in the USER DIRECT file
X USER DIRECT

1 USER WS1RIO1 1G 1G G
2 DATEFORMAT FULLDATE
3 IPL CMS PARM AUTOCR
4 LOGONBY MAINT
5 MACHINE ESA
6 OPTION TODENABLE
7 CONSOLE 0009 3215 T
8 SPOOL 000C 2540 READER *
9 SPOOL 000D 2540 PUNCH A

10 SPOOL 000E 1403 A
11 NICDEF 700 TYPE QDIO LAN SYSTEM GATEWAY
12 LINK MAINT 0190 0190 RR
13 LINK MAINT 019D 019D RR
14 LINK MAINT 019E 019E RR
15 LINK TCPMAINT 0592 0592 RR
16 LINK MAINT 1000 0191 RR
17 MDISK 0100 3390 0001 24000 DISK01 MR ALL ALL ALL

66

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

After the guest have been defined, the entry for MAINT is located and the
following line added

MDISK 1000 3390 2840 010 520W01 MR READ WRITE MULTIPLE

When all changes have been made to USER DIRECT the file is saved and
exited with the command
FILE
A check is executed to make sure USER DIRECT has no syntax error
DIRECTXA USER DIRECT (EDIT
and if the no syntax errors were found, USER DIRECT is re-read to the sys-
tem
DIRECTXA USER DIRECT
Now MAINT must access its new disk and create the appropriate PROFILE
EXEC file
ACCESS 1000 X
X PROFILE EXEC X

1 /* PROFILE EXEC for Linux guests */
2 ’CP SET RUN ON’
3 ’CP SET PF12 RETRIEVE’
4 ’CP SPOOL CONS START TO *’
5 Say ’IPLing Linux from device 0100’
6 ’CP IPL 100 CLEAR’
7 Say ’Error IPLing Linux: remaining in CMS’

FILE
RELEASE X
The part of the creation process that takes place in z/VM is now complete.
The next part takes place on LINUX1. After logging on to LINUX1 it is
time to copy the template on to the new guest and configure its network
settings.

First the mdisk of the guest is linked to LINUX1, placed online and then
formated. The linked disk will appear as /dev/dasdc since this is the next
available designation.
vmcp link ws1rio1 0100 8472 mr
chccwdev -e 8472
dasdfmt -b 4096 -y -f /dev/dasdc
The appropriate template, in this case /dev/dasdb which is the web server
template, is then applied to the newly formated disk
dd if=/dev/dasdb of=/dev/dasdc
chccwdev -d 8472
chccwdev -e 8472
The disk is then mounted so the filesystem can be manipulated
mount /dev/dasdc1 /mnt/mdisk
Now the guest must be configured with the correct network settings
cd /mnt/mdisk/etc/sysconfig/network/

67

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

joe ifcfg-qeth-bus-ccw-0.0.0.0700
The IP address is set to 192.168.1.50

IPADDR=192.168.1.50

Finally the hostname is changed
joe /mnt/mdisk/etc/HOSTNAME

WebServer1

Now that all changes are complete, the disk can be unmounted, placed of-
fline and detached
umount /mnt/mdisk
chccwdev -d 8472
vmcp det 8472
The new guest is now ready to be used

Table 4.2: Scenario I Create: The non-MLN approach

Number of commands issued 22
Number of characters used on commands 448
Number of lines written to file 24
Number of characters written to file 550
Number of lines copied 0
Number of files edited 4
Number of systems logged on to 2

Administrate

Since this scenario only contains one VM, the "half of the VMs " and "entire
site" will be one. In the non-MLN approach, the administrative tasks takes
place in z/VM.

One VM

Startup:

XAUTOLOG WS1RIO1

Check if up:

Q USERS WS1RIO1

68

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Table 4.3: Scenario I Administrate: The non-MLN approach

One Half All
Startup

Number of commands issued 1 1 1
Number of characters used on commands 16 16 16

Check if up
Number of commands issued 1 1 1
Number of characters used on commands 15 15 15

The MLN approach

Create

LINUX1 is logged on to and the entire creation process takes place form
this system. When creating the site with MLN, the whole architecture is
described in the project file.

First the project file is created
joe scenario1.mln

1 global {
2 project scenario1
3 $netmask 255.255.255.0
4 $broadcast_address 192.168.1.255
5 }
6

7 host WS1 {
8 template /dev/dasdc
9 size 20G

10 memory 1G
11 network eth0 {
12 netmask $netmask
13 broadcast $broadcast_address
14 address 192.168.1.50
15 }
16 }

Then the project is built
mln build -f scenario1.mln
The new web server guest is now ready to be used

Administrate

Since this scenario only contains one VM, the "half of the VMs " and "entire
site" will be one. In the MLN approach, the administrative tasks takes place
in Linux

69

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Table 4.4: Scenario I Create: The MLN approach

Number of commands issued 2
Number of characters used on commands 43
Number of lines written to file 15
Number of characters written to file 208
Number of lines copied 0
Number of files edited 1
Number of systems logged on to 1

One VM

Startup:

mln start -p scenario1 -h sw1

Check if up:

mln status -p scenario1 -h sw1

Entire site

Startup:

mln start -p scenario1

Check if up:

mln status -p scenario1

Table 4.5: Scenario I Administrate: The MLN approach

One Half All
Startup

Number of commands issued 1 1 1
Number of characters used on commands 29 29 22

Check if up
Number of commands issued 1 1 1
Number of characters used on commands 30 30 23

70

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

4.6.2 Scenario II

In the second scenario, an environment with three independent but iden-
tical web servers will be created. Each web server will have a gateway
as a link to the physical network as shown in Figure 4.2. The reason vir-
tual switches are used instead of point-to-point connections is partially be-
cause MLN does not support point-to-point and partially because switches
makes the architecture more open to changes in the future.

LINUX1 will have the following templates:

• /dev/dasdb -> gateway

• /dev/dasdc -> web server

Tier 1
Tier 1 consists of three VMs working as gateways. Each gateway
stands in front of their own independent but identical virtual LAN.

Tier 2
Tier 2 consists of three VMs running web servers. These are com-
pletely independent of each other, and can therefore have completely
identical configuration in the Linux layer. Their z/VM configuration
will of course not be identical.

Tier 1

Tier 2

GW GW GW

switch switch switch

web
serv.

web
serv.

web
serv.

OutgoingSwitch

192.168.1.50
192.168.1.60

10.0.0.1

10.0.0.11

Figure 4.2: Scenario II Architecture Overview

71

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

The non-MLN approach

Create

First z/VM is logged on to as the user MAINT, then the creation of the sites
z/VM layer can begin. The first part to be created are the VSWITCHes,
along with granting guests access to them.

DEFINE VSWITCH SW1RIO2 ETHERNET
DEFINE VSWITCH SW2RIO2 ETHERNET
DEFINE VSWITCH SW3RIO2 ETHERNET
SET VSWITCH GATEWAY GRANT GW1RIO2
SET VSWITCH GATEWAY GRANT GW2RIO2
SET VSWITCH GATEWAY GRANT GW3RIO2
SET VSWITCH SW1RIO2 GRANT GW1RIO2
SET VSWITCH SW2RIO2 GRANT GW2RIO2
SET VSWITCH SW2RIO2 GRANT GW3RIO2
SET VSWITCH SW1RIO2 GRANT WS1RIO2
SET VSWITCH SW2RIO2 GRANT WS2RIO2
SET VSWITCH SW2RIO2 GRANT WS3RIO2

Then the guests themselves are created by defining them in the USER DI-
RECT file
X USER DIRECT

1 PROFILE MLNLINUX
2 CLASS G
3 DATEFORMAT FULLDATE
4 IPL CMS PARM AUTOCR
5 LOGONBY MAINT
6 MACHINE ESA
7 OPTION TODENABLE
8 CONSOLE 0009 3215 T
9 SPOOL 000C 2540 READER *

10 SPOOL 000D 2540 PUNCH A
11 SPOOL 000E 1403 A
12 LINK MAINT 0190 0190 RR
13 LINK MAINT 019D 019D RR
14 LINK MAINT 019E 019E RR
15 LINK TCPMAINT 0592 0592 RR
16 LINK MAINT 1000 0191 RR
17

18 USER GW1RIO2 1G 1G
19 PROFILE MLNLINUX
20 NICDEF 700 TYPE QDIO LAN SYSTEM GATEWAY
21 NICDEF 710 TYPE QDIO LAN SYSTEM SW1RIO2
22 MDISK 0100 3390 0001 1665 DISK01 MR ALL ALL ALL
23 USER GW1RIO2 1G 1G
24 PROFILE MLNLINUX
25 NICDEF 700 TYPE QDIO LAN SYSTEM GATEWAY
26 NICDEF 710 TYPE QDIO LAN SYSTEM SW2RIO2
27 MDISK 0100 3390 1666 3330 DISK01 MR ALL ALL ALL
28 USER GW1RIO2 1G 1G
29 PROFILE MLNLINUX
30 NICDEF 700 TYPE QDIO LAN SYSTEM GATEWAY

72

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

31 NICDEF 710 TYPE QDIO LAN SYSTEM SW3RIO2
32 MDISK 0100 3390 0001 1665 DISK02 MR ALL ALL ALL
33

34 USER WS1RIO2 1G 1G
35 PROFILE MLNLINUX
36 NICDEF 700 TYPE QDIO LAN SYSTEM SW1RIO2
37 MDISK 0100 3390 0001 24000 DISK03 MR ALL ALL ALL
38 USER WS2RIO2 1G 1G
39 PROFILE MLNLINUX
40 NICDEF 700 TYPE QDIO LAN SYSTEM SW2RIO2
41 MDISK 0100 3390 0001 24000 DISK04 MR ALL ALL ALL
42 USER WS3RIO2 1G 1G
43 PROFILE MLNLINUX
44 NICDEF 700 TYPE QDIO LAN SYSTEM SW3RIO2
45 MDISK 0100 3390 0001 24000 DISK05 MR ALL ALL ALL

After these guests have been defined, the entry for MAINT is located and
the following line added

MDISK 1000 3390 2840 010 520W01 MR READ WRITE MULTIPLE

When all changes have been made to USER DIRECT the file is saved and
exited with the command
FILE
A check is executed to make sure USER DIRECT has no syntax error
DIRECTXA USER DIRECT (EDIT
and if the no syntax errors were found, USER DIRECT is re-read to the sys-
tem
DIRECTXA USER DIRECT
Now MAINT must access its new disk and create the appropriate PROFILE
EXEC file
ACCESS 1000 X
X PROFILE EXEC X

1 /* PROFILE EXEC for Linux guests */
2 ’CP SET RUN ON’
3 ’CP SET PF12 RETRIEVE’
4 ’CP SPOOL CONS START TO *’
5 Say ’IPLing Linux from device 0100’
6 ’CP IPL 100 CLEAR’
7 Say ’Error IPLing Linux: remaining in CMS’

FILE
RELEASE X
The part of the creation process that takes place in z/VM is now complete.
The next part takes place on LINUX1. After logging on to LINUX1 it is time
to copy the templates on to the new guests and configure their network
settings. This process is basically identical for all the new guests and so will
not be shown for all 6. The example shown here is of one of the gateways.

First the mdisk of the guest is linked to LINUX1, placed online and then
formated. The linked disk will appear as /dev/dasdd since this is the next

73

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

available designation.
vmcp link gw1rio2 0100 8472 mr
chccwdev -e 8472
dasdfmt -b 4096 -y -f /dev/dasdd
The appropriate template, in this case /dev/dasdb which is the SQL server
template, is then applied to the newly formated disk
dd if=/dev/dasdb of=/dev/dasdd
chccwdev -d 8472
chccwdev -e 8472
The disk is then mounted so the filesystem can be manipulated
mount /dev/dasdd1 /mnt/mdisk
Now the guest must be configured for its place in the network
cd /mnt/mdisk/etc/sysconfig/network/
Because the gateway has two network interface cards, one must be added
manually
cp ifcfg-qeth-bus-ccw-0.0.0.0700 ifcfg-qeth-bus-ccw-0.0.0.0710
joe ifcfg-qeth-bus-ccw-0.0.0.0700
This is the NIC that connects the gateway to the outgoing gateway switch.
The IP address is set to 192.168.1.50 and the broadcast address is set to
192.168.1.255

IPADDR=192.168.1.50
BROADCAST=192.168.1.255

The outgoing NIC also needs a gateway on the outside network
joe routes
The following line is entered

default 192.168.1.42 - -

joe ifcfg-qeth-bus-ccw-0.0.0.0710
This is the NIC used by the gateway to connect to the private LAN. Since
the three LANs are separated form each other, all the gateways will use the
local address 10.0.0.1, and all the web servers will use 10.0.0.5

IPADDR=10.0.0.1
_nm_name=’qeth-bus-ccw-0.0.0710’

The hardware definition must also be updated for the new card
cd /mnt/mdisk/etc/sysconfig/hardware/
cp hwcfg-qeth-bus-ccw-0.0.0.0700 hwcfg-qeth-bus-ccw-0.0.0.0710
joe hwcfg-qeth-bus-ccw-0.0.0.0710

CCW_CHAN_IDS="0.0.0710 0.0.0711 0.0.0712"

Finally the hostname is changed
joe /mnt/mdisk/etc/HOSTNAME

Gateway1

74

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Now that all changes are complete, the disk can be unmounted, placed of-
fline and detached
umount /mnt/mdisk
chccwdev -d 8472
vmcp det 8472
The new guest is now ready to be used

The web servers only has one NIC, and so the creation and configuration
of the second NIC in the gateways will of course not take place in the web
servers.

Table 4.6: Scenario II Create: The non-MLN approach

Number of commands issued 116
Number of characters used on commands 3066
Number of lines written to file 67
Number of characters written to file 1680
Number of lines copied 7
Number of files edited 23
Number of systems logged on to 2

Administrate

Since this scenario contains six VMs, the "half of the VMs " will consist of
the three web servers. In the non-MLN approach, the administrative tasks
takes place in z/VM.

One VM

Startup:

XAUTOLOG WS1RIO2

Check if up:

Q USERS WS1RIO2

Half of the VMs

Startup:

XAUTOLOG WS1RIO2
XAUTOLOG WS2RIO2
XAUTOLOG WS3RIO2

Check if up:

75

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Q USERS WS1RIO2
Q USERS WS2RIO2
Q USERS WS3RIO2

Entire site

Startup:

XAUTOLOG WS1RIO2
XAUTOLOG WS2RIO2
XAUTOLOG WS3RIO2
XAUTOLOG GW1RIO2
XAUTOLOG GW2RIO2
XAUTOLOG GW3RIO2

Check if up:

Q USERS WS1RIO2
Q USERS WS2RIO2
Q USERS WS3RIO2
Q USERS GW1RIO2
Q USERS GW2RIO2
Q USERS GW3RIO2

Table 4.7: Scenario II Administrate: The non-MLN approach

One Half All
Startup

Number of commands issued 1 3 6
Number of characters used on commands 16 48 96

Check if up
Number of commands issued 1 3 6
Number of characters used on commands 15 45 90

The MLN approach

Create

LINUX1 is logged on to and the entire creation process takes place form
this system. When creating the site with MLN, the whole architecture is
described in the project file. Note that because each of the web servers and
gateways connects to different switches, autoenum cannot be used.

First the project file is created
joe scenario2.mln

76

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

1 global {
2 project scenario2
3 $LAN_broadcast = 10.0.0.255
4 $GW_broadcast = 192.168.1.255
5 $GW_gateway = 192.168.1.42
6 $netmask = 255.255.255.0
7 $WS_IP_address = 10.0.0.5
8 $GW_IP_address = 10.0.0.1
9 }

10

11 superclass gateway {
12 template /dev/dasdb
13 size 1G
14 memory 1G
15 network eth0 {
16 netmask $netmask
17 broadcast $GW_broadcast
18 gateway $GW_gateway
19 }
20 network eth1 {
21 netmask $netmask
22 broadcast $LAN_broadcast
23 address $GW_IP_address
24 }
25 }
26

27 superclass webserver {
28 template /dev/dasdc
29 size 20G
30 memory 1G
31 network eth0 {
32 netmask $netmask
33 broadcast $LAN_broadcast
34 address $WS_IP_address
35 }
36 }
37

38 host GW1 {
39 superclass gateway
40 network eth0 {
41 address 192.168.1.51
42 }
43 network eth1 {
44 switch vsw1
45 }
46 }

47

48 host GW2 {
49 superclass gateway
50 network eth0 {
51 address 192.168.1.52
52 }
53 network eth1 {
54 switch vsw2
55 }
56 }
57

58 host GW3 {
59 superclass gateway
60 network eth0 {
61 address 192.168.1.53
62 }
63 network eth1 {
64 switch vsw3
65 }
66 }
67

68 host WS1 {
69 superclass webserver
70 network eth0 {
71 switch vsw1
72 }
73 }
74

75 host WS2 {
76 superclass webserver
77 network eth0 {
78 switch vsw2
79 }
80 }
81

82 host WS3 {
83 superclass webserver
84 network eth0 {
85 switch vsw3
86 }
87 }
88

89 switch vsw1 { }
90 switch vsw2 { }
91 switch vsw3 { }

Then the project is built
mln build -f scenario2.mln
The site is now ready to be used

Administrate

Since this scenario contains six VMs, the "half of the VMs " will consist of
the three web servers. In the MLN approach, the administrative tasks takes
place in Linux.

77

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Table 4.8: Scenario II Create: The MLN approach

Number of commands issued 2
Number of characters used on commands 43
Number of lines written to file 48
Number of characters written to file 736
Number of lines copied 34
Number of files edited 1
Number of systems logged on to 1

One VM

Startup:

mln start -p scenario2 -h ws1

Check if up:

mln status -p scenario2 -h ws1

Half of the VMs

Startup:

mln start -p scenario2 -h ws1
mln start -p scenario2 -h ws2
mln start -p scenario2 -h ws3

Check if up:

mln status -p scenario2 -h ws1
mln status -p scenario2 -h ws2
mln status -p scenario2 -h ws3

Entire site

Startup:

mln start -p scenario2

Check if up:

mln status -p scenario2

78

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Table 4.9: Scenario II Administrate: The MLN approach

One Half All
Startup

Number of commands issued 1 3 1
Number of characters used on commands 29 87 22

Check if up
Number of commands issued 1 3 1
Number of characters used on commands 30 90 23

79

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

4.6.3 Scenario III

The scenario will revolve around a site used for web serving. The scenario
architecture [Figure 4.3] consists of four tiers of virtual machines. The tiers
will be connected with each others through layers of virtual switches.

LINUX1 will have the following templates:

• /dev/dasdb -> load balancer

• /dev/dasdc -> web server

• /dev/dasdd -> SQL server

Tier 1
Tier 1 consists of four VMs tasked with load balancing the incoming
traffic. Since this is the first tier in the architecture, failure in this
part would cause the entire system to become unavailable to anyone
on the outside. Because of this, four VMs are used for the sake of
redundancy.

Tier 2
Tier 2 consists of eight VMs running the main service of the site, the
web servers. Because of this, a relatively high number of VMs resides
in this tier. Both to provide a high level of redundancy, and to spread
the load over several VMs.

Tier 3
Tier 3 consists of two VMs tasked with load balancing the traffic be-
tween the web servers in tier 2 and the SQL servers in tier 4. Each VM
serves four web servers and links to all the SQL servers on tier 4.

Tier 4
Tier 4 consists of four VMs running SQL servers for the web servers
in tier 2. Each server can be accessed by any of the web servers. This
is to ensure redundancy and to make it possible to balance the load
as equally as possible over each of the servers.

The non-MLN approach

Create

First z/VM is logged on to as the user MAINT, then the creation of the sites
z/VM layer can begin. The first part to be created are the VSWITCHes,
along with granting guests access to them.
Because of the number of commands needed to create and configure the
VSWITCHes, they have been omitted from this report but can be found in

80

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Tier 1

Tier 2

Tier 3

Tier 4

LB LB LB LB

switch switch switch switch

web
serv.

web
serv.

web
serv.

web
serv.

web
serv.

web
serv.

web
serv.

web
serv.

switch switch

LB LB

SQL
serv.

SQL
serv.

SQL
serv.

SQL
serv.

switch switch

OutgoingSwitch

192.168.1.50
192.168.1.60

10.0.0.1
10.0.0.10

10.0.0.11
10.0.0.110

10.0.0.111
10.0.0.140

10.0.0.141
10.0.0.150

10.0.0.151
10.0.0.160

10.0.0.161
10.0.0.200

Figure 4.3: Scenario III Architecture Overview

81

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Appendix G
Then the guests themselves are created by defining them in the USER DI-
RECT file
X USER DIRECT
Because of the size of the USER DIRECT section, it can be found appended
to this report as Appendix H
After these guests have been defined, the entry for MAINT is located and
the following line added

MDISK 1000 3390 2840 010 520W01 MR READ WRITE MULTIPLE

When all changes have been made to USER DIRECT the file is saved and
exited with the command
FILE
A check is executed to make sure USER DIRECT has no syntax error
DIRECTXA USER DIRECT (EDIT
and if the no syntax errors were found, USER DIRECT is re-read to the sys-
tem
DIRECTXA USER DIRECT
Now MAINT must access its new disk and create the appropriate PROFILE
EXEC file
ACCESS 1000 X
X PROFILE EXEC X

1 /* PROFILE EXEC for Linux guests */
2 ’CP SET RUN ON’
3 ’CP SET PF12 RETRIEVE’
4 ’CP SPOOL CONS START TO *’
5 Say ’IPLing Linux from device 0100’
6 ’CP IPL 100 CLEAR’
7 Say ’Error IPLing Linux: remaining in CMS’

FILE
RELEASE X
The part of the creation process that takes place in z/VM is now complete.
The next part takes place on LINUX1. After logging on to LINUX1 it is time
to copy the templates on to the new guests and configure their network
settings. This process is basically identical for all the new guests and so
will not be shown for all 18. The example shown here is of one of the SQL
servers.

First the mdisk of the guest is linked to LINUX1, placed online and then
formated. The linked disk will appear as /dev/dasde since this is the next
available designation.
vmcp link qls1rio3 0100 8472 mr
chccwdev -e 8472
dasdfmt -b 4096 -y -f /dev/dasde
The appropriate template, in this case /dev/dasdd which is the SQL server

82

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

template, is then applied to the newly formated disk
dd if=/dev/dasdd of=/dev/dasde
chccwdev -d 8472
chccwdev -e 8472
The disk is then mounted so the filesystem can be manipulated
mount /dev/dasde1 /mnt/mdisk
Now the guest must be configured for its place in the network
cd /mnt/mdisk/etc/sysconfig/network/
joe ifcfg-qeth-bus-ccw-0.0.0.0700
The IP address is set to 10.0.0.161
IPADDR=10.0.0.161

Because the SQL server has two network interface cards, one must be added
manually
cp ifcfg-qeth-bus-ccw-0.0.0.0700 ifcfg-qeth-bus-ccw-0.0.0.0710
joe ifcfg-qeth-bus-ccw-0.0.0.0710
Some changes are necessary
IPADDR=10.0.0.162
_nm_name=’qeth-bus-ccw-0.0.0710’

The hardware definition must also be updated for the new card
cd /mnt/mdisk/etc/sysconfig/hardware/
cp hwcfg-qeth-bus-ccw-0.0.0.0700 hwcfg-qeth-bus-ccw-0.0.0.0710
joe hwcfg-qeth-bus-ccw-0.0.0.0710

CCW_CHAN_IDS="0.0.0710 0.0.0711 0.0.0712"

Finally the hostname is changed
joe /mnt/mdisk/etc/HOSTNAME

SQLserver1

Now that all changes are complete, the disk can be unmounted, placed of-
fline and detached
umount /mnt/mdisk
chccwdev -d 8472
vmcp det 8472
The new guest is now ready to be used

From this example it is clear that if the guest has more than one NIC, the
number of commands increase with 1+4*number of NICs beyond the first
one. Since all guests in this scenario have more than one NIC, the total
number of commands used per guest while in LINUX1 is 14+4*(NIC-1).
Also the number of files edited increases with 2 per NIC and the number of
lines written to file increases with 3 per NIC. In addition to this each of the
load balancers in tier 1 has one more line written to file since the broadcast
address of their outgoing NIC must be changed as well.

83

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

In the end, this is how the metrics were calculated:
Number of commands issued

76 commands in z/VM
10 guests with 2 NICs: 10*(14+4*(2-1))+41=184
8 guests with 5 NICs: 8*(14+4*(5-1))=240

Number of characters used on commands
2405 from z/VM
10 guests with 2 NICs: 10*(347+190*(2-1))+42+(4*10)3=5414
8 guests with 5 NICs: 8*(347+190*(5-1))=8856

Number of lines written to file
75 lines in z/VM 10 guests with 2 NICs: 10*(2+3*(2-1))+44+45=58
8 guests with 5 NICs: 8*(2+3*(5-1))=112

Number of characters written to file
2348 characters from z/VM
10 guests with 2 NICs: 10*(15+88*(2-1))+(3*6)6+47+(12*2)8+(4*4)9+(23*4)10+(4*24)11=1376
8 guests with 5 NICs: 8*(15+88*(5-1))+3212+(8*2)13=3064

Number of lines copied
60 lines in z/VM

Number of files edited
2 files in z/VM
10 guests with 2 NICs: 10*(2+2*(2-1))+414=44
8 guests with 5 NICs: 8*(2+2*(5-1))=80

1Four guests must change gateway
2The name of the SQL servers are one character longer than the other guests
3The entries for the outside gateway is 10 characters long
4The load balancers in tier 1 must in addition change the broadcast address of their

outgoing NIC
5The entry for a new gateway is 1 line
6The load balancers uses three more characters in their name
7Four NICs have one extra number in the IP address
812 NICs have two extra digits in their IP address
9Four NICs are connected to the external network. These have four more digits in their

IP address
10The four NICs connected to the external network must change broadcast address. Each

entry takes 23 characters
11The entry for the gateway to the outside network is 24 characters long
1232 NICs have one extra digit in the IP address
138 NICs have two extra digits in their IP address
14One file for each gateway changed

84

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Table 4.10: Scenario III Create: The non-MLN approach

Number of commands issued 500
Number of characters used on commands 16675
Number of lines written to file 245
Number of characters written to file 6788
Number of lines copied 60
Number of files edited 126
Number of systems logged on to 2

Administrate

Since this scenario contains eighteen VMs, the "half of the VMs " will con-
sist of the nine VMs on the left half of Figure 4.3. In the non-MLN approach,
the administrative tasks takes place in z/VM.

One VM

Startup:

XAUTOLOG WS1RIO3

Check if up:

Q USERS WS1RIO3

Half of the VMs

Startup:

XAUTOLOG LB1RIO3
XAUTOLOG LB2RIO3
XAUTOLOG WS1RIO3
XAUTOLOG WS2RIO3
XAUTOLOG WS3RIO3
XAUTOLOG WS4RIO3
XAUTOLOG LB5RIO3
XAUTOLOG QLS1RIO3
XAUTOLOG QLS2RIO3

Check if up:

Q USERS LB1RIO3
Q USERS LB2RIO3
Q USERS WS1RIO3

85

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Q USERS WS2RIO3
Q USERS WS3RIO3
Q USERS WS4RIO3
Q USERS LB5RIO3
Q USERS QLS1RIO3
Q USERS QLS2RIO3

Entire site

Startup:

XAUTOLOG LB1RIO3
XAUTOLOG LB2RIO3
XAUTOLOG LB3RIO3
XAUTOLOG LB4RIO3
XAUTOLOG WS1RIO3
XAUTOLOG WS2RIO3
XAUTOLOG WS3RIO3
XAUTOLOG WS4RIO3
XAUTOLOG WS5RIO3
XAUTOLOG WS6RIO3
XAUTOLOG WS7RIO3
XAUTOLOG WS8RIO3
XAUTOLOG LB5RIO3
XAUTOLOG LB6RIO3
XAUTOLOG QLS1RIO3
XAUTOLOG QLS2RIO3
XAUTOLOG QLS3RIO3
XAUTOLOG QLS4RIO3

Check if up:

Q USERS LB1RIO3
Q USERS LB2RIO3
Q USERS LB3RIO3
Q USERS LB4RIO3
Q USERS WS1RIO3
Q USERS WS2RIO3
Q USERS WS3RIO3
Q USERS WS4RIO3
Q USERS WS5RIO3
Q USERS WS6RIO3
Q USERS WS7RIO3
Q USERS WS8RIO3
Q USERS LB5RIO3

86

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Q USERS LB6RIO3
Q USERS QLS1RIO3
Q USERS QLS2RIO3
Q USERS QLS3RIO3
Q USERS QLS4RIO3

Table 4.11: Scenario III Administrate: The non-MLN approach

One Half All
Startup

Number of commands issued 1 9 18
Number of characters used on commands 16 146 292

Check if up
Number of commands issued 1 9 18
Number of characters used on commands 15 137 274

The MLN approach

Create

LINUX1 is logged on to and the entire creation process takes place form
this system. When creating the site with MLN, the whole architecture is
described in the project file. Note that because every VM in this scenario
has more than one network interface card, the autoenum plugin cannot be
used. In its current state autoenum only supports one NIC per VM.

First the project file is created
joe scenario3.mln
Because of the size of the file, it is appended to this report as Appendix I
Then the project is built
mln build -f scenario3.mln
The site is now ready to be used

Table 4.12: Scenario III Create: The MLN approach

Number of commands issued 2
Number of characters used on commands 43
Number of lines written to file 141
Number of characters written to file 2217
Number of lines copied 190
Number of files edited 1
Number of systems logged on to 1

87

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Administrate

Since this scenario contains eighteen VMs, the "half of the VMs " will con-
sist of the nine VMs on the left half of Figure 4.3. In the MLN approach, the
administrative tasks takes place in Linux.

One VM

Startup:

mln start -p scenario3 -h ws1

Check if up:

mln status -p scenario3 -h ws1

Half of the VMs

Startup:

mln start -p scenario3 -h lb1
mln start -p scenario3 -h lb2
mln start -p scenario3 -h ws1
mln start -p scenario3 -h ws2
mln start -p scenario3 -h ws3
mln start -p scenario3 -h ws4
mln start -p scenario3 -h lb5
mln start -p scenario3 -h sqls1
mln start -p scenario3 -h sqls2

Check if up:

mln status -p scenario3 -h lb1
mln status -p scenario3 -h lb2
mln status -p scenario3 -h ws1
mln status -p scenario3 -h ws2
mln status -p scenario3 -h ws3
mln status -p scenario3 -h ws4
mln status -p scenario3 -h lb5
mln status -p scenario3 -h sqls1
mln status -p scenario3 -h sqls2

Entire site

Startup:

mln start -p scenario3

Check if up:

mln status -p scenario3

88

4.6. ANALYZING THE ADMINISTRATION COMPLEXITY THROUGH
SCENARIOS

Table 4.13: Scenario III Administrate: The MLN approach

One Half All
Startup

Number of commands issued 1 9 1
Number of characters used on commands 29 265 22

Check if up
Number of commands issued 1 9 1
Number of characters used on commands 30 274 23

89

4.7. ANALYSIS OF THE COLLECTED METRICS

4.7 Analysis of the collected metrics

The metrics collected in the scenario will now be analyzed each by them-
selves, and in the end a summary and overall impression will be presented.

4.7.1 Number of commands issued

Table 4.14: Number of commands issued
non-MLN MLN Factor

Scenario I 22 2 11
Scenario II 116 2 58
Scenario III 500 2 250

Scenario I Scenario II Scenario III
Scenario

1

10

100

Co
m

m
an

ds
 (l

og
rit

hm
ic)

0

50

100

150

200

250

Factor of reduced com
plexity

Non-MLN approach
MLN approach
Factor

Number of commands issued

Figure 4.4: Number of commands issued

In the non-MLN approach, the metric shows interesting characteristics.
If compared against the number of VMs in each scenario: As the scenarios
contains 1, 6 and 18 VMs and the number of commands are 22, 116 and 500,
we can see that it is not linear.

22
1

= 22

116
6

= 19.33

90

4.7. ANALYSIS OF THE COLLECTED METRICS

500
18

= 27.78

We see that the number of commands per VM decreases after the first sce-
nario. That is to be expected since the extra VMs after the first does not
need to go through the z/VM commands once more. From scenario II to
scenario III there is an increase in in the average. The reason for this is the
increased network complexity, and this is an important point considering
metrics of this nature. It is often easy to forget that the increased complexity
is mainly because of the networking aspect of the virtual system. It appears
that the number of commands issued will increase in a way similar to

O(v · s)

where v is the number of VMs and s is the number of switches.
When both v and s becomes large

O(v · s) → O(n2)

If there are no network topology, the VMs simply being connected to the
outgoing switch as in "Scalable deployment and configuration of high-performance
virtual clusters" [7], the increase of the number of VMs is predicted to in-
crease the metric in a more linear pattern.

O(v)

As will be shown later, the average of characters per command also in-
creases with the size and complexity of the scenario. This indicates that the
command aspect of the non-MLN approach scales poorly when the size
and complexity of a site increases.

In the MLN approach, it is easy to se the trend and development as the
number of commands stays constant. Unless the complexity of the two
commands increases notably then this indicates that commands in this ap-
proach are unaffected by size and complexity of the scenario. As can be
seen from "Number of characters used on commands", the number of char-
acters stays constant as well. It can therefore be argued that commands in
this approach scales perfectly.

When comparing the two approaches based on commands, it is quite clear
that MLN comes out as the superior solution. Since MLN stays constant
while non-MLN increases rapidly, the number of commands with non-
MLN increases by an increasingly rising factor compared to the MLN ap-
proach.

91

4.7. ANALYSIS OF THE COLLECTED METRICS

4.7.2 Number of characters used on commands

It is interesting to observe the data from the non-MLN approach. It ap-
pears that the number of characters used on commands increases in a non-
linear manner when the size and complexity increases. As will be seen
later, the average number of characters per command increases as well.
An explanation to this may be that longer, more complex commands out-
weighs smaller ones to a greater extent when the complexity and size of a
site increases. With this metric we see further proof that this aspect of the
non-MLN approach scales badly with increased size and complexity.

As with "Number of commands issued", "Number of characters used on
commands" stay constant in the MLN approach. This strengthens the cred-
ibility of perfect scalability when considering commands.

Table 4.15: Number of characters used on commands
non-MLN MLN Factor

Scenario I 448 43 10.42
Scenario II 3066 43 71.3
Scenario III 16675 43 387.79

Scenario I Scenario II Scenario III
Scenario

10

100

1000

10000

Ch
ar

ac
te

rs
 (l

og
ar

ith
m

ic)

0

100

200

300

400

Factor of reduced com
plexity

Non-MLN approach
MLN approach
Factor

Number of characters used on commands

Figure 4.5: Number of characters used on commands

92

4.7. ANALYSIS OF THE COLLECTED METRICS

Once again the factor of reduction of complexity increases dramatically
since the MLN approach remains constant while the non-MLN approach
increases at a considerable rate.

4.7.3 Number of lines written to file

Table 4.16: Number of lines written to file
non-MLN MLN Factor

Scenario I 24 15 1.6
Scenario II 67 48 1.4
Scenario III 245 141 1.74

Scenario I Scenario II Scenario III
Scenario

50

100

150

200

250

Li
ne

s

1

1.2

1.4

1.6

1.8

2

Factor of reduced com
plexity

Non-MLN approach
MLN approach
Factor

Number of lines written to file

Figure 4.6: Number of lines written to file

In the non-MLN approach we see the same pattern as with "Number of
commands issued". This was expected since the first VM has to set several
attributes and settings that will be used by later VMs. Also, for the first VM,
all lines has to be written. No lines can be copied since there are nowhere
to copy them from.

It is once again probable that the factor of which lines increase from sce-
nario II to scenario III is because of the increased complexity of the network.
This is mainly because of the definition and configuration of the additional

93

4.7. ANALYSIS OF THE COLLECTED METRICS

Table 4.17: Non-MLN Lines increase factor
Factor

Scenario I -> Scenario II 2.79
Scenario II -> Scenario III 3.66
Scenario I -> Scenario III 10.21

network interface cards in both z/VM and Linux.

In the MLN approach we also observe a distinct rise in the number of lines
written, although not as steep as with the non-MLN approach. We calculate
the increase factor to derive more information.

Table 4.18: MLN Lines increase factor
Factor

Scenario I -> Scenario II 3.2
Scenario II -> Scenario III 2.94
Scenario I -> Scenario III 9.4

The cause of the factor decrease from 3.2 to 2.94 is the high reusability
of code, as can be seen by "Number of lines copied", and the use of super-
classes. It is features like these that help the scalability of this approach.
Also we see the affect of the network complexity has a reduced effect as the
MLN approach automatically handles the configuration of the Linux level
network interfaces.

When comparing the two approaches, we see that the MLN approach comes
out with less lines in all scenarios. The factor of difference is not constant
but shows that the MLN offers an increased reduction on the first VM cre-
ated compared to the immediately following. It then increases the gain as
the size and complexity increases.

4.7.4 Number of characters written to file

Table 4.19: Number of characters written to file
non-MLN MLN Factor

Scenario I 550 208 2.64
Scenario II 1680 736 2.28
Scenario III 6788 2217 3.06

94

4.7. ANALYSIS OF THE COLLECTED METRICS

Scenario I Scenario II Scenario III
Scenario

0

1000

2000

3000

4000

5000

6000

7000
Ch

ar
ac

te
rs

2

2.2

2.4

2.6

2.8

3

3.2

3.4
Factor of reduced com

plexity

Non-MLN approach
MLN approach
Factor

Number of characters written to file

Figure 4.7: Number of characters written to file

In the non-MLN approach the characters written to file increases at a
higher rate than lines written to file as can be seen in Table 4.20.

Table 4.20: Non-MLN Lines and Character increase factor
Factor

Lines Characters
Scenario I -> Scenario II 2.79 3.05
Scenario II -> Scenario III 3.66 4.04
Scenario I -> Scenario III 10.21 12.34

This tells us that the length, and therefore probably the complexity, of
the lines increases as the size and complexity of the scenario increases. This
is further supported by the average number of characters per written line
in section 4.7.9.

In the MLN approach we see the same trend as in the non-MLN approach
as shown in Table 4.21.

As is the case in the non-MLN approach, this tells us that the length,
and therefore probably the complexity, of the lines increases as the size and
complexity of the scenario increases. This is also further supported by the
average number of characters per written line in section 4.7.9.

95

4.7. ANALYSIS OF THE COLLECTED METRICS

Table 4.21: MLN Lines and Character increase factor
Factor

Lines Characters
Scenario I -> Scenario II 3.2 3.54
Scenario II -> Scenario III 2.94 3.71
Scenario I -> Scenario III 9.4 10.66

This is in accordance with the experience from the scenarios. As a fre-
quently copied line was "}", these had a smaller impact on the metric when
the size and complexity increased.

When comparing the two approaches, we see that the factor of increased
characters starts off at 2.64, then drops to 2.28 before it increases beyond
the previous two at 3.06. It is also apparent from Table 4.20 and Table 4.21
that the non-MLN approach has a higher factor of increased line and char-
acter number except when going from Scenario I to Scenario II.

4.7.5 Number of lines copied

Table 4.22: Number of lines copied

non-MLN MLN Factor
Scenario I 0 0 0
Scenario II 7 34 4.86
Scenario III 60 190 3.17

In the non-MLN approach we see that the number of lines starts on
zero, as there is nowhere to copy the lines from. It then starts out low at
7 in Scenario II before it increases dramatically in Scenario III. From Sce-
nario II to Scenario III the number increases with a factor of 8.57, hinting
that the reuse of code in the non-MLN approach scales impressively with
increased size and complexity of the scenario. It does however not tell us
all that much before we take the total number of lines written to file into
consideration.

When calculating the percentage of the total number of lines that were
copied using "Number of lines written to file" and "Number of lines copied",
we get

100%
67 + 7

· 7 = 9.46%

for Scenario II, and
100%

245 + 60
· 60 = 19.67%

96

4.7. ANALYSIS OF THE COLLECTED METRICS

Scenario I Scenario II Scenario III
Scenario

0

20

40

60

80

100

120

140

160

180

Li
ne

s

0

1

2

3

4

5

Factor of reduced com
plexity

Non-MLN approach
MLN approach
Factor

Number of lines copied

Figure 4.8: Number of lines copied

for Scenario III. We can indeed see that it has been possible to reuse a larger
part of the lines.

In the MLN approach, as with the non-MLN approach, the number starts
at zero. It the increases to 34 in Scenario II and ends up at 190 in Scenario
III. From scenario II to Scenario III it increases by a factor of 5.59. To get
a more accurate picture, we calculate what percentage of the total written
lines where copied. Starting with Scenario II, we get

100%
48 + 34

· 34 = 41.46%

and for Scenario III, we get

100%
141 + 190

· 190 = 57.4%

We see here that the MLN approach is able to reuse an impressive number
of the lines. In Scenario III, more than half of the lines are actually reused.

Comparing the two approaches, we see that the non-MLN approach in-
creases its number of copied lines with a much higher factor than the MLN
approach. However, when we take into account the total number of lines,
and what percentage of this has been reused; the MLN approach shows a
higher aptitude for reusing code.

97

4.7. ANALYSIS OF THE COLLECTED METRICS

4.7.6 Number of files edited

Table 4.23: Number of files edited
non-MLN MLN Factor

Scenario I 4 1 4
Scenario II 23 1 23
Scenario III 126 1 126

Scenario I Scenario II Scenario III
Scenario

1

10

100

Fi
le

s
(lo

ga
rit

hm
ic)

0

20

40

60

80

100

120

Factor of reduced com
plexity

Non-MLN approach
MLN approach
Factor

Number of files edited

Figure 4.9: Number of files edited

In the non-MLN approach, distinct pattern can be deduced by consid-
ering what the files are used for. In any project, two files are always edited
in z/VM (one of these files, PROFILE EXEC, only has to be created once
on the system and will be reused by future projects). On the Linux side,
a minimum of two files are edited. One for setting the hostname, and one
for configuring the network interface card with IP address and so on. Sub-
sequently, any additional files edited are for additional NICs. This metric
is therefore largely dependent on the complexity of the network. When
the number of NICs becomes much greater than the number of VMs, this
metric approaches

O(n)

where n is the number of NICs in the scenario. It also approaches this form

98

4.7. ANALYSIS OF THE COLLECTED METRICS

if the number of VMs increases while networking is limited to their direct
connection to the outgoing switch. In this case n is the number of VMs in
the scenario.

In the MLN approach, there is always only one file to consider, the MLN
project file. As with the other metrics that stays constant with this ap-
proach, it indicates that it scales extremely well on this point when the size
and complexity increases. It also makes the operations related to the ma-
nipulation of files extremely centralized. It can be argued that this has the
drawback of making the one file big and difficult to keep track of when the
size and complexity of the scenario increases.

Since the number of files in the MLN approach is constant while the num-
ber of files in the non-MLN approach continues to rise when the size and
complexity of the scenario increases, the factor of reduction increases with
the same speed as the number of files edited in the non-MLN approach.

4.7.7 Number of systems logged on to

Table 4.24: Number of systems logged on to

non-MLN MLN Factor
Scenario I 2 1 2
Scenario II 2 1 2
Scenario III 2 1 2

"Number of systems logged on to" is probably the least informative met-
ric measured in the scenarios. Both approaches therefore seems to scale
perfectly on this point as the size and complexity of the scenarios have ab-
solutely no effect on the metric.

4.7.8 Average number of characters per command

Average number of characters per command is calculated by

Number of characters used on commands

Number of commands issued
(4.1)

The average number of characters per command were calculated to give
a better impression of the average complexity of the commands.

In the non-MLN approach, we see that the average number of characters
per command increases by each scenario. This is an indication that the

99

4.7. ANALYSIS OF THE COLLECTED METRICS

Scenario I Scenario II Scenario III
Scenario

0

1

2

3
Sy

st
em

s

1

1.5

2

2.5

3
Factor of reduced com

plexity

Non-MLN approach
MLN approach
Factor

Number of systems logged on to

Figure 4.10: Number of systems logged on to

Table 4.25: Average number of characters per command

non-MLN MLN Factor
Scenario I 20.36 21.5 0.95
Scenario II 26.43 21.5 1.23
Scenario III 33.35 21.5 1.55

length (and thereby complexity) of the commands increases with the in-
creased size and complexity of the scenarios. It can also indicate that as the
size and complexity of the scenarios increases, the number of long com-
mands increases at a greater speed than the number of short commands.
To derive more information, we calculate the increase factor between the
scenarios.

Table 4.26: Non-MLN Average number of characters per command increase
factor

Factor
Scenario I -> Scenario II 1.3
Scenario II -> Scenario III 1.26
Scenario I -> Scenario III 1.64

100

4.7. ANALYSIS OF THE COLLECTED METRICS

Scenario I Scenario II Scenario III
Scenario

20

22

24

26

28

30

32

Ch
ar

ac
te

rs
 p

er
 c

om
m

an
d

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Factor of reduced com

plexity

Non-MLN approach
MLN approach
Factor

Average number of characters per command

Figure 4.11: Average number of characters per command

From these calculations we see that, although the average number of
characters per command increases, the rate of which it increases decreases
between the scenarios. This can indicate that the factor flattens out as the
size and complexity of the scenarios increases.

In the MLN approach the average number of characters per command stays
constant. This is hardly surprising as the metrics used to calculate the av-
erage are both constants for the MLN approach.

When comparing the non-MLN approach with the MLN approach, we see
the same trend as previously when the metric of one approach stays con-
stant. The non-MLN approach starts out with a lower average than the
MLN approach in Scenario I; then it increases beyond the MLN approach
while the MLN approach stays constant. The factor of reduced complexity
rises as the average number of characters per command for the non-MLN
approach increases.

4.7.9 Average number of characters per written line

Average number of characters per written line is calculated by

Number of characters written to file

Number of lines written to file
(4.2)

101

4.7. ANALYSIS OF THE COLLECTED METRICS

Table 4.27: Average number of characters per written line

non-MLN MLN Factor
Scenario I 22.92 13.87 1.65
Scenario II 25.07 15.33 1.64
Scenario III 27.71 15.72 1.76

Scenario I Scenario II Scenario III
Scenario

14

16

18

20

22

24

26

28

Ch
ar

ac
te

rs
 p

er
 w

rit
te

n
lin

e

1.5

1.6

1.7

1.8

1.9

2

Factor of reduced com
plexity

Non-MLN approach
MLN approach
Factor

Average number of characters per written line

Figure 4.12: Average number of characters per written line

Like "Average number of characters per command", "Average number
of characters per written line" was calculated to give an indication of the
complexity of the lines.

In the non-MLN approach, we see a steady rise in the calculated average. It
is comparable to the "Average number of characters per command" in that
it indicates that the length (and thereby complexity) of the lines increases
with the increased size and complexity of the scenarios. It can also that
as the size and complexity of the scenarios increases, the number of long
lines increases at a greater speed than the number of short lines. This can
be because a greater number of the shorter lines could be copied instead of
being written. To derive more information, we calculate the increase factor
between the scenarios.

The factor with which the average increases between the scenarios ap-
pears to be steadily rising. This is consistent with the behavior of the met-

102

4.7. ANALYSIS OF THE COLLECTED METRICS

Table 4.28: Non-MLN Average number of characters per line increase factor

Factor
Scenario I -> Scenario II 1.09
Scenario II -> Scenario III 1.11
Scenario I -> Scenario III 1.21

rics from which the average was calculated.

In the MLN approach we also see a trend similar to the non-MLN approach
much for the same reason. The number of short lines does not increase with
the same speed as the number of long lines when the size and complexity
of the scenarios increases. A significant reason for this is that the frequency
of which short lines like "}" are copied appears to increase as the size and
complexity of the scenarios increases. We calculate the increase factor be-
tween the scenarios.

Table 4.29: MLN Average number of characters per line increase factor

Factor
Scenario I -> Scenario II 1.11
Scenario II -> Scenario III 1.03
Scenario I -> Scenario III 1.13

Interestingly, the factor decreases when going from Scenario II to Sce-
nario III compared to going from Scenario I to Scenario II. This might indi-
cate that the factor with which the average number of characters per line in-
creases with as the size and complexity of the scenario increases decreases.
If this is indeed the case, then it would a promising trend when considering
scalability.

When comparing the two approaches, the MLN approach appears to be-
have most promisingly. Not only is the average number of characters per
line lower, but the factor of reduced complexity increases from Scenario
II to Scenario III after having changed minimally between Scenario I and
Scenario II.

4.7.10 Average number of lines per file

Average number of lines per file is calculated by

Number of lines written to file + Number of lines copied

Number of files edited
(4.3)

103

4.7. ANALYSIS OF THE COLLECTED METRICS

Table 4.30: Average number of lines per file

non-MLN MLN Factor
Scenario I 6 15 2.5
Scenario II 3.22 82 25.47
Scenario III 2.42 331 136.78

Scenario I Scenario II Scenario III
Scenario

1

10

100

Li
ne

s
pe

r fi
le

 (l
og

ar
ith

m
ic)

20

40

60

80

100

120

140

Factor of reduced com
plexity

Non-MLN approach
MLN approach
Factor

Average number of lines per file

Figure 4.13: Average number of lines per file

In the non-MLN approach we see a decrease in the average number of
lines per file. The reason for this is that each of the files changed on the
Linux side usually only has one line manipulated. This means that if the
complexity of the scenario increases at a greater rate than the size, the aver-
age number of lines per file will decrease. This is because the creation and
configuration of the VSWITCHes happens outside of files. The network in-
terface cards of the hosts are the only network parts defined in files.

As the MLN approach only uses one file, the average number of lines per
file is simply the number of lines in this one file. For more information, we
calculate the increase factor between the scenarios.

The factor of which the file increases between scenarios is relatively big.
Although it decreases from 5.47 to 4.04 when looking at the single jumps
between scenarios, we see that it increases with as much as 22.07 when go-

104

4.7. ANALYSIS OF THE COLLECTED METRICS

Table 4.31: MLN Average number of lines per file increase factor

Factor
Scenario I -> Scenario II 5.47
Scenario II -> Scenario III 4.04
Scenario I -> Scenario III 22.07

ing from Scenario I to Scenario III. Something to take note of is that the
project file for Scenario I contained 3 lines with just "}" while the project
file for Scenario III contained 94 lines of the same type. This type of line
therefore has a surprising impact on this calculated metric.

When comparing the two approaches, the MLN approach clearly has the
highest metric. And while value for the MLN approach rises, the value for
the non-MLN approach decreases. It is interesting to consider which one
is favorable. The non-MLNs approach low and decreasing value indicates
low complexity in the changes made to the files, while the MLN approach
centralizes the information in one file. The preferred method here depends
somewhat on personal preferences. When considering that the high num-
ber of files accessed in the non-MLN approach resides on all the different
Linux VMs, the task of getting to the files becomes much more cumbersome
than in the MLN approach. It therefor seems logical to favor the single-file
solution.

4.7.11 The administrational metrics

We will now take a look at the metrics form the administrational tasks
"startup" and "check if up". Because of the uniform trend in the metrics,
they will be analyzed in groups.

105

4.7. ANALYSIS OF THE COLLECTED METRICS

4.7.12 Startup

Table 4.32: Scenario I Startup:
Commands issued

Non-MLN MLN
One 1 1
Half 1 1
All 1 1

Table 4.33: Scenario I Startup:
Characters used on commands

Non-MLN MLN
One 16 29
Half 16 29
ALL 16 22

Table 4.34: Scenario II Startup:
Commands issued

Non-MLN MLN
One 1 1
Half 3 3
All 6 1

Table 4.35: Scenario II Startup:
Characters used on commands

Non-MLN MLN
One 16 29
Half 48 87
All 96 22

Table 4.36: Scenario III Startup:
Commands issued

Non-MLN MLN
One 1 1
Half 9 9
All 18 1

Table 4.37: Scenario III Startup:
Characters used on commands

Non-MLN MLN
One 16 29
Half 146 265
All 292 22

We can see from these metrics that the two approaches handles the task
of starting VMs in the same manner, except for in one exception. In both
approaches startup commands are issued to the individual VMs. The only
difference between non-MLN and MLN being the length of the command
used. Because of this, the task increases in workload according to

O(n)

Where n is the number of VMs being started. The only other variable it the
length of the VM and MLN project names (The effect of this can be seen
in the metrics). Since the non-MLN approach uses a shorter command and
only uses a maximum eight character name, it can be seen as more scalable
than the MLN approach when dealing with individual VMs. The notable
exception is when all of the VMs in the scenario are to be started. In this
case the non-MLN approach starts every VM individually, while the MLN
approach runs one single command to start the whole project. This means
that for the MLN approach, the size of the scenario has no effect on the size
of the task of starting all the VMs.

106

4.7. ANALYSIS OF THE COLLECTED METRICS

One Half All
VMs

2

4

6

8

10

12

14

16

18
Co

m
m

an
ds

0

5

10

15

20
Factor of reduced com

plexity

Non-MLN approach
MLN approach
Factor

Commands issued

Figure 4.14: Scenario III Commands issued on startup task

One Half All
VMs

50

100

150

200

250

300

Ch
ar

ac
te

rs

0

2

4

6

8

10

12

14

Factor of reduced com
plexity

Non-MLN approach
MLN approach
Factor

Characters used on commands

Figure 4.15: Scenario III Characters used on commands during startup task

107

4.7. ANALYSIS OF THE COLLECTED METRICS

4.7.13 Check if up

Table 4.38: Scenario I Check if up:
Commands issued

Non-MLN MLN
One 1 1
Half 1 1
All 1 1

Table 4.39: Scenario I Check if up:
Characters used on commands

Non-MLN MLN
One 15 30
Half 15 30
All 15 23

Table 4.40: Scenario II Check if up:
Commands issued

Non-MLN MLN
One 1 1
Half 3 3
All 6 1

Table 4.41: Scenario II Check if up:
Characters used on commands

Non-MLN MLN
One 15 30
Half 45 90
All 90 23

Table 4.42: Scenario III Check if
up: Commands issued

Non-MLN MLN
One 1 1
Half 9 9
All 18 1

Table 4.43: Scenario III Check
if up: Characters used on com-
mands

Non-MLN MLN
One 15 30
Half 137 274
All 274 23

When looking at the results from the task "check if up" we see that it
follows the exact same pattern as the task "startup". As long as specific
VMs are being checked, the size of the task increases according to

O(n)

Where n is the number of VMs being checked.
The notable exception being when checking all the VMs in the scenario

in the MLN approach. In that case MLN can check all the VM with a single
command. This makes the workload of that particular case constant and
independent from the number of VMs being checked.

108

4.7. ANALYSIS OF THE COLLECTED METRICS

One Half All
VMs

2

4

6

8

10

12

14

16

18
Co

m
m

an
ds

0

5

10

15

20
Factor of reduced com

plexity

Non-MLN approach
MLN approach
Factor

Commands issued

Figure 4.16: Scenario III Commands issued on check if up task

One Half All
VMs

50

100

150

200

250

Ch
ar

ac
te

rs

0

2

4

6

8

10

12

Factor of reduced com
plexity

Non-MLN approach
MLN approach
Factor

Characters used on commands

Figure 4.17: Scenario III Characters used on commands during check if up task

109

4.7. ANALYSIS OF THE COLLECTED METRICS

4.7.14 Overall metrics summary

Looking back at the metrics as a whole, it becomes apparent that the MLN
approach shows improvements in most of the cases. Most notably is per-
haps the number of files edited (Table 4.23) and the number of commands
issued (Table 4.14). The significant advantage of the reduction of files edited
becomes more apparent when considering the wide dispersion of files over
the VMs in the non-MLN approach. The number of commands issued also
indicates that the MLN approach scales better with increased network com-
plexity, much thanks to the automation of VSWITCH creation and config-
uration on the z/VM layer. The areas where the non-MLN shows better
scalability are mostly in the administration section. More specifically, the
complexity of the commands issued when working with individual guests
(Table 4.15 and Table 4.17), the exception in these cases being when the
entire site is administrated.

In addition, some of the metrics indicates a predictable trend. Most
notably in number of commands issued (Table 4.14) and number of files
edited (Table 4.23). For some of the others however, it is more difficult to
see the trend, examples being the number of lines copied (Table 4.22) and
the number of characters written to file (Table 4.19).

110

Chapter 5

Discussion

The purpose of this chapter is to discuss the finished system and the pro-
cess that the project has gone through. The final architecture will be looked
at and compared to the originally planned architecture in section 5.1. The
possibility for replicating the system and the results from this project is
discussed in section 5.2 and alternative approaches will be considered in
section 5.3. The experience with MLN is outlined in section 5.4, and possi-
bilities for further development of MLN is also explored. Alternative prob-
lem statements not chosen are mentioned in section 5.5. The validity of
the scenarios and the metrics measured are discussed in section 5.6. Some
limitations are observed and further testing proposed. Compromises made
during the project are addressed in section 5.7, as well as their cause. Fi-
nally, experience and knowledge acquired during the project, along with
some advice, brings the chapter to an end with section 5.8.

5.1 The Final Architecture Complexity

The final architecture did not contain any additional major modules other
than those planned from the beginning. So on the high level of the archi-
tecture, the complexity did not supersede that which was expected. On the
lower level however, the situation is somewhat different. Some of the mod-
ules, more specifically DirMaint, were not exactly plug-and-play. Although
DirMaint is not to complicated to set up and use if it works as intended all
the time. However, considerable more knowledge is needed if an error oc-
curs. This is of course true for all the modules, but it applies especially to
DirMaint, as its workings are supposed to be completely closed and auto-
mated when set up.

The level of necessary z/VM knowledge assumed in the beginning of
the project can therefore be perceived as somewhat naive. Not only is a cer-
tain familiarity with z/VM necessary, but experience and knowledge about
DirMaint beyond simply installing it can with a high degree of certainty be

111

5.2. REPLICATION

seen as a necessity. This is of course only a requirement for the administra-
tor(s) directly responsible for the z/VM layer.

5.2 Replication

In a practical project like this, meant to be a guide, starting point or even
just an encouragement for others that might find the topic interesting, repli-
cation is critical. The ability to recreate the results of this endeavor, to use
it or develop it further. In this case, it is relatively safe to claim that replica-
tion should not be a problem. If the necessary resources are available, more
specifically access to certain IBM hardware and software, no other require-
ments needs to be satisfied. All code and configurations created during this
project are freely available and should be supplied with this text. The na-
ture of the metrics measured in the scenarios makes them predictable and
constant in the closed environment of the system, therefore a replicated
system should produce the same results.

5.3 Alternative Approaches

Looking back at the project with hindsight and reconsidering the alterna-
tives and choices made regarding the architecture in the design phase, no
significant changes would be made should the choices arise again. How-
ever, had time not been the limiting factor, more resources would be dele-
gated to finding an alternative to DirMaint. One could also consider seri-
ously to look into the possibility of developing a disk space management
module specifically for the system. The main reason this would be desir-
able is to remove the only non-free module in the system, but also to move
as much as possible of the system to open source.

5.4 Adding virtualization platforms to MLN

All in all, MLN was quite friendly when it came to modifications as it did
not require extensive modification to its pre-existing architecture and code.
The hooks that were added were not specified toward the z/VM plugin,
but has the possibility to be used by plugins in general. Because of this, the
project has had a beneficial but somewhat unexpected side effect in that
MLN is now much more capable of using future plugins without modi-
fications to its core code. It should therefor be easier to add support for
additional virtualization platforms in the future.

That being said, the changes might give the impression of being "slapped
on" as an afterthought (hardly surprising since that was what actually hap-
pened). This is mostly because of the hardcoded, virtualization platform

112

5.5. ALTERNATIVE PROBLEM STATEMENTS

specific code embedded in MLN. Although the solution and approach in
this project worked nicely this time, it is hard to say if this method will
scale. If every new plugin just have to make "a few modifications" to MLNs
base code, MLN might turn out to consist of clumsy and bloated code. This
approach seems somewhat backwards and counter productive. Therefore,
if MLN is to increase its base of supported virtualization platforms, more
drastical changes to MLNs base code and architecture can prove beneficial.

One solution would be to make MLN itself completely platform inde-
pendent. The platform specific code (the code for UML and Xen) would
then be moved to plugins, preferably one plugin per platform. MLN could
then have a strict, standardized way of using these plugins thereby making
the plugins adapt to MLN and not the other way around. This way, MLNs
core code could be kept clean and efficient.

The z/VM plugin created in this project can be seen as a first step in
this direction. The base code of MLN does not contain any code specifically
written for z/VM, and z/VM therefor becomes the very first virtualization
technology that MLN can use while being completely unaware of its ex-
istence. This is to a high degree why it should be relatively easy to reuse
this approach for other virtualization technologies, and can therefore be
seen as an important proof-of-concept for the possibility of making MLN
technology-independent. It is not unreasonable to predict that the experi-
ence from this project can be of great help if MLN is to be further developed
in this direction.

5.5 Alternative Problem Statements

Alternative problem statements to this project could have involved mak-
ing and using only open source, and not using any non-free software. As
this would have been an added constraint, it is likely that the time needed
to complete the project would have increased. Another possible problem
statement would be to create a more user friendly and automated front end
in z/VM itself, this would however shift the project in a completely differ-
ent direction as the Linux part would be completely removed. This would
also have the effect that the new guests could not have their filesystem al-
tered from the system.

5.6 Validity of the scenarios and metrics

Looking back at the scenarios and the results obtained from them, one can
ask if they were objectively chosen. Certainly the majority of the results
speak in favor of the new system. It is important to keep in mind however,
the main strength of MLN: To handle a great number of identical VMs. In

113

5.6. VALIDITY OF THE SCENARIOS AND METRICS

none of the scenarios was this trait used to its fullest as features like au-
toenum could not be used. Had more time been available, more scenarios
tailored for the two different approaches could have been conducted. In
this report however, the scenarios were an attempt to be a neutral middle
ground between the approaches so as not to favor any of them.

After a practical project like this, with goals like automation, simplifica-
tion and easing a process, it is difficult to measure the result in simple met-
rical terms. How does one measure strain, or a persons impression of a
task? The metrics chosen to be measured in the scenarios where chosen
because they reasonably well could represent the workload for a system
administrator. Some of them proved to be more reliable representations
than other. Especially when considering the two metrics "number of lines
written to file" and "number of lines copied" it is important to remember
the definitions described earlier. Several lines in "number of lines written
to file" were copied lines that just had a single numeric digit incremented,
like names and IP addresses. Still, the metric reasonably represents the task
of remembering to make the changes and not make an error when doing
so.

Some might find it strange that no time factor was measured or calcu-
lated. The reason time was completely excluded as a metric is all the factors
that affects time. Not only is the speed of the person typing a factor, but also
at what speed the system completes commands. Estimates could be made,
but these would most likely not be representative. Other factors that comes
into play when evaluating scenarios like these are the users knowledge and
familiarity with the system. It is unreasonable to assume that a normal user
can type commands continually without needing to stop to think, consider
or look up a command. It can be assumed, however, that when the diver-
sity of commands increases, so does the likelihood for the need to look up
information in manuals.

In the end, the scenarios were the best reasonable way of illustrating
the change the new system has made to the administration environment.
It would most likely have given more realistic and representative data if
the two approaches were tested over a longer time period by a group of
actual system administrators. In this project, that is however somewhat
unrealistic. Not only are the human resources, hardware resources and
time unavailable, but the system is not yet in a state where it should be used
in a production environment. It would on the other hand be an interesting
future follow-up project.

114

5.7. COMPROMISES

5.7 Compromises

During the project, compromises has been made in some areas. This has
mainly been because of time constraints. The most notable areas are the
robustness of the MLN plugin and the level of feedback from PROP and
DirMaint to the administrating Linux guest.

The MLN plugin works as intended in its current state, but it is highly
dependent on only receiving correct input and data. It contains very little
checks to ensure that the commands it executes will not fail. This is be-
cause of the objective prioritization followed during the project: First make
it work, then make it fault tolerant. The first part, make it work, has been
achieved; the second part, make it fault tolerant, remains an ongoing pro-
cess. The MLN plugin can therefore be described as currently existing in a
beta state ready for publishing to the community for further testing.

The level of feedback from PROP and DirMaint to the administrative
Linux guest is at this time non-existent. In praxis this means that the ad-
ministrator must simply assume that the commands sent to PROP and
DirMaint are executed successfully, no error messages will be received should
a problem occur. The reason this has not been incorporated into the system
is that, to the knowledge of the writer, no "official" solution to this situation
exist. After talking to IBM experts in the mainframe area about the matter
and consulting IBM documentation, it became apparent that to solve this
problem would be quite time consuming. Although certainly something
that should be added before the system is considered complete, it was not
deemed realistic to incorporate it during this projects time frame.

5.8 Practical Experience

A lot of knowledge and experience has been gained through this project
that is not covered or mentioned in this report. The reason it is not to be
found in the report is because it is not necessarily relevant and because it
would have made the report quite chaotic. Simple things like the fact that
you can’t just reboot a mainframe or even parts of it easily. Some situa-
tions are impossible to solve by yourself. For instance, in the early days of
the project, I managed to shut down my entire z/VM environment with a
single, unlucky command. There was no way I could do anything to solve
this myself, all I could do was send an e-mail to the administrator (Mal-
colm Beattie) of the first level z/VM environment and ask for help. Luckily
for me, he had my environment up and running in no time, and I was one
important experience richer.

For anyone who considers embarking on a similar project, some advice
can be given based on the experience gained during this period. First of
all: Mainframes are a very specialized area, and the people who can give

115

5.8. PRACTICAL EXPERIENCE

quality help and advise are limited in numbers. In the end, we were lucky
enough to have several people to turn to and all of them were incredible
assets.

Secondly, don’t be afraid to try things out. As with all new things, that’s
the way you learn. I probably learned the most about the workings of the
system when I made errors and mistakes and had to fix them. Just be sure
to know who to contact if one of those "impossible to solve by yourself"
problems should appear.

Thirdly, time is a luxury and there will probably not be enough of it. Be
sure to structure the work accordingly. It is therefore also important to plan
ahead for emergencies.

116

Chapter 6

Conclusion

The primary goal of this thesis was to explore the possibility of simplify-
ing the administration of guests in z/VM. The knowledge and expertise
threshold for using the z/VM environment were considered to be to high
for non-mainframe users. The scope was specified down to automating
and abstracting the administration of Linux guests. It was planned from
the beginning to use MLN as the administration tool and a plugin contain-
ing the z/VM specific code was developed. Changes were also made to the
MLN base code to enable it to use plugins for technology specific code in
general.

For the system to work, an underlying z/VM architecture had to be de-
signed and created capable of working with MLN. This architecture had to
be able to work independently without direct intervention from an admin-
istrator once the system was set up. The finished architecture consisted of
three main modules:

• The administrating Linux guest running MLN with the plugin, used
for administration of the environment

• The Programmable Operator, used mainly for security and safety

• The Directory Maintenance Facility, used mainly for storage manage-
ment

When the system was operational, it was used in three scenarios and com-
pared with a default z/VM environment. Several metrics were measured
in each scenario to indicate the complexity of the tasks and the amount of
work conducted by the system administrator. The size and complexity of
the scenarios were varied between each scenario to give an indication of
the trends for the metrics measured. As the collected data was analyzed, it
became clear that administration of an environment had indeed been sim-
plified and more automated with the approach developed in this project.

117

6.1. FUTURE WORK

In the bigger picture, this thesis has shown that the viability of increased
automation in z/VM is considerable. It has also given an estimation of the
extent of the possible gains that can be achieved through automation. Mak-
ing z/VM administration more scalable is an important endeavor, and this
project has displayed significant improvement in that area.

With some further work outlined in this report, it is believed that the
plugin can be implemented in a production environment.

Looking back at the problem statement of the thesis, it is believed to have
been answered in a satisfactory manner. Although MLN does not currently
offer all of its original functionality for z/VM, it is not predicted to present
significant problems to add the remaining functionality.

6.1 Future Work

6.1.1 Improve MLN z/VM plugin

Although the MLN z/VM plugin works in its current state, it is dependent
on completely correct user input and a problem free execution of the code.
In the future, checks and failover code should be added to bring it up to
the robustness level that MLN currently has. Also, the flexibility must be
improved to handle more situations like multiple template formats.

6.1.2 DirMaint independence

DirMaint is currently the only non-free IBM product used in the architec-
ture. It would be an interesting project to remove it from the architecture
by introducing a free alternative or designing an alternative storage man-
agement system from scratch. To create a system that could rival DirMaint
in security and speed will probably be quite a challenge and a large scale
undertaking.

6.1.3 z/VM options in MLN z/VM plugin

A future project could revolve around introducing z/VM specific options
and features in the plugin. The plugin would still retain its original pur-
pose, to be used by users without z/VM knowledge, but would offer more
to users with z/VM experience. This could be a set of attributes giving
more direct z/VM control. Examples are support for more networking
technologies and linking to minidisks.

118

6.1. FUTURE WORK

6.1.4 MLN redesign

This project has been a big step in making MLN technology independent.
MLN now has much better capabilities for using plugins for the Virtualiza-
tion platform code. There are however still a lot more that can be done. A
complete reworking of the current MLN base code could move the User-
Mode Linux and Xen specific code to separate plugins and design MLN
to use plugins for all platform specific code. By making MLN completely
technology independent and plugin based, it would make it possible to add
new virtualization technologies without changing the MLN base code.

119

Bibliography

[1] XenSource. Xen. http://www.xen.org/.

[2] Jeff Dike. User-mode linux. http://user-mode-linux.sourceforge.net/.

[3] Lydia Parziale, Edi Lopes Alves, Eli M. Dow, Klaus Egeler, Jason J.
Herne, Clive Jordan, Eravimangalath P. Naveen, Manoj S. Pattabhira-
man, and Kyle Smith. Introduction to the New Mainframe: z/VM Basics.
IBM, 2007.

[4] Gregory Geiselhart, Malcolm Beattie, Vic Cross, Michael Donovan,
Aaron Kirby, Lutz Kühner, Julie Murhpy, and Michael Weisbach.
Linux on IBM eServer zSeries and S/390: Large Scale Linux Deployment.
IBM, 2002.

[5] z/VM CMS Planning and Administration Version 4 Release 3.0. IBM, 2002.

[6] Kyrre M. Begnum. Managing large networks of virtual machines.
Proceedings of the Twentieth System Administration Conference (LISA XX)
(USENIX Association: Berkeley, CA), 2006.

[7] Kyrre M. Begnum and Matthew Disney. Scalable deployment and con-
figuration of high-performance virtual clusters. CISE/CGCS 2006: "3rd
International Conference on Cluster and Grid Computing Systems", 2006.

[8] Paul Mattes. x2370. http://www.geocities.com/siliconvalley/peaks/7814/index.html.

[9] z/VM CP Commands and Utilities Reference Version 5 Release 2. IBM,
2005.

[10] z/VM CP Planning and Administration Version 5 Release 1. IBM, 2007.

[11] z/VM Directory Maintenance Facility Commands Reference Version 5 Re-
lease 3. IBM, 2007.

[12] z/VM Directory Maintenance Facility Tailoring and Administration Guide
Version 5 Release 3. IBM, 2007.

[13] Program Directory for IBM z/VM Directory Maintenance Facility Feature
function level 510. IBM, 2005.

121

BIBLIOGRAPHY

[14] Gregory Geiselhart, Robert Brenneman, Eli Dow, Klaus Egeler, Torsten
Gutenberger, Bruce Hayden, and Livio Sousa. Linux for IBM System z9
and IBM zSeries. IBM, 2006.

[15] z/VM Getting Started with Linux on System z9 and zSeries Version 5 Re-
lease 2. IBM, 2005.

122

Appendices

123

Appendix A

zVM.pl

1 # The z/VM guest name of the PROP Service VM
2 $mlnprop = "mlnprop";
3 # The virtual device number used by the admin penguin to link target

penguins 0100 mdisk
4 $dasdVirtDevNum = 1337;
5 # The first virtual device number used to create network interface cards
6 $qethVirtDev = 700;
7 # How much to increment $qethVirtDev with for each nic
8 $qethVirtDevInc = 10;
9 # The systems outgoing vswitch. used by gateways and NICs with no defined

switch
10 $mlnvsw = LOCALNET;
11 # Cylinder size in bytes
12 $cylsize = 849960;
13

14 sub zVM_postParse {
15 out("zVM_postParse called\n");
16

17 # we need to check all the hosts in the same method.
18

19 # we use ’getHosts()’ instead of ’keys getHash("/host")’
20 # because it has better performance and we
21 # dont need the entire hash anyway
22

23 # checks if this is a IBM mainframe environment by looking at the cpu
24 if (‘cat /proc/cpuinfo | grep IBM/S390‘)
25 {
26 my $host;
27 foreach $host (getHosts()){
28 setScalar("/host/$host/zVM","1");
29 if (getScalar("/host/$host/xen") == "1") {
30 setScalar("/host/$host/xen","0");
31 }
32 if (getScalar("/host/$host/uml") == "1") {
33 setScalar("/host/$host/uml","0");
34 }
35 my $zname = genzname($host, getScalar("/global/project"));
36 setScalar("/host/$host/zname", $zname);
37 }
38 }
39

40 out("zVM_postParse finished\n");
41 }

42

43 sub execute {
44 if (getScalar("/global/dryrun")) {
45 out(" Dryrun: " . $_[0] . "\n");
46 }
47 else {
48 system($_[0]);
49 }
50 }
51

52 sub genzname {
53 my $name = $_[0];
54 my $proj = $_[1];
55

56 $name =~ s/^.*(\S\S\S\S)$/$1/;
57 $proj =~ s/^.*(\S\S\S\S)$/$1/;
58

59 return uc($name) . uc($proj);
60 }
61

62 sub zVM_createFilesystem {
63 out("zVM_createFilesystem called\n");
64

65 my $hostname = $_[0];
66 my $zname = genzname($hostname,$PROJECT);
67

68 out("Generating z/VM guest name: $hostname $PROJECT -> $zname\n");
69

70 my $memsize = getScalar("/host/$hostname/memory");
71 my $template = getScalar("/host/$hostname/template");
72 my $maxmemsize = $memsize;
73 my $disksize = getScalar("/host/$hostname/size");
74 $disksize = $DEFAULTS{FILESYSTEM_SIZE} unless $disksize;
75

76 my %BLOCK_UNITS = (
77 ’b’ => 512,
78 ’kB’ => 1000,
79 ’KB’ => 1000,
80 ’K’, => 1024,
81 ’MB’ => 1000 * 1000,
82 ’M’ => 1024 * 1024,
83 ’GB’ => 1000 * 1000 * 1000,
84 ’G’ => 1024 * 1024 * 1024,
85);
86

87 my $unit = $disksize;
88 $unit =~ tr/0-9//d;
89 $disksize =~ tr/A-Za-z//d;
90 my $cylinders = ceil(($disksize * $BLOCK_UNITS{$unit})/$cylsize);
91

92 out("Disksize $disksize$unit -> $cylinders cylinders\n");
93

94 ## DirMaint commands
95 ## Although the ideal solution would be to have the admin linux guest

issue the dirmaint
96 ## commands directly, it is (as far as I know) difficult at best,

imposibe at worst.
97 ## Since dirmaint commands are CMS commands, they cannot be issued

directly to CP.
98 ## And because Linux and CMS cannot run simultaniously in a guest, the

commands must
99 ## go through a guest running CMS. In this case the PROP.

100 ## For convenience, and in case a solution to the problem is found, the
apropriate

101 ## dirmaint commands are provided as comments.
102

103 # creates the guest from a prototype template
104 $linuxPrototype = mlnlinux;
105 # Since the admin linux guest does not initially have any rights in

dirmaint, the creation
106 # of a new guest must always go through PROP.
107 # execute("vmcp dirmaint add $zname like $linuxPrototype pw lbyonly");
108 out("$mlnprop -> Create new z/VM guest $zname from prototype

$linuxPrototype\n");
109 execute("vmcp smsg $mlnprop dirmadd $zname $linuxPrototype");
110 sleep 5;
111 # This command would give the admin guest authority to directly

influence the new guest
112 # Since all commands must go through PROP, this command is currently

unnecessary.
113 # execute("vmcp smsg $mlnprop dirmauth $zname");
114 # sets the available memory (storage) and max memory for the guest
115 # execute("vmcp dirmaint for $zname maxstore $maxmemsize");
116 # execute("vmcp dirmaint for $zname storage $memsize");
117 out("$mlnprop -> Give $zname $memsize of memory\n");
118 execute("vmcp smsg $mlnprop dirmstorage $zname $memsize");
119 sleep 4;
120 # creates a new mdisk of size $disksize for the guest
121 # execute("vmcp dirmaint for $zname amdisk 0100 x autog $disksize mln mr

pws all all all");
122 out("$mlnprop -> Create $cylinders cylinder disk for $zname\n");
123 execute("vmcp smsg $mlnprop dirmamdisk $zname 0100 x autog $cylinders

mln mr pws all all all");
124 sleep 5;
125 # creates network interface cards for the new guest
126 my $qethVirtDevLocal = $qethVirtDev;
127 my %network = getHash("/host/$hostname/network");
128 my $vswitch;
129 foreach my $if (keys %network) {
130 out("$mlnprop -> Create network interface card for $zname\n");
131 if (getScalar("/host/$hostname/network/$if/switch")) {
132 $vswitch = getScalar("/host/$hostname/network/$if/switch");
133 # execute("vmcp dirmaint for $zname nicdef $qethVirtDevLocal type

qdio lan system $vswitch");
134 execute("vmcp smsg $mlnprop dirmnicdef $zname $qethVirtDevLocal type

qdio lan system $vswitch");
135 }
136 else {
137 # execute("vmcp dirmaint for $zname nicdef $qethVirtDevLocal type

qdio lan system $mlnvsw");
138 execute("vmcp smsg $mlnprop dirmnicdef $zname $qethVirtDevLocal type

qdio lan system $mlnvsw");
139 # convergant, so ok to run several times
140 execute("vmcp smsg $mlnprop setvswitch $mlnvsw grant $zname");
141 }
142 $qethVirtDevLocal += $qethVirtDevInc;
143 }
144

145 # Link new 0100 disk to admin penguin
146 execute("vmcp link $zname 0100 $dasdVirtDevNum mr");
147 sleep 3;
148 # FlashCopy can be done at this point:
149 # execute("vmcp flashcopy $templateDisk 0 end to $dasdVirtDevNum 0 end");
150 # Activate disk

151 execute("chccwdev -e $dasdVirtDevNum");
152 # Copy template to disk
153 # As an alternative to FlashCopy, dd can be done at this point
154 # If dd is to be used, the new disk must first be formated for linux
155 my $lsdasd_line = ‘lsdasd 0.0.$dasdVirtDevNum‘;
156 my @lsdasd = split /\s+/, $lsdasd_line;
157 my $dasdDev = $lsdasd[6];
158

159 out("Formating /dev/$dasdDev\n");
160 execute("dasdfmt -b 4096 -y -f /dev/$dasdDev");
161

162 out("Unzipping and applying $template to /dev/$dasdDev\n");
163 out("Please wait. This may take a while...\n");
164 execute("dd if=$template | gunzip | dd of=/dev/$dasdDev");
165

166 execute("chccwdev -d $dasdVirtDevNum");
167 execute("vmcp detach $dasdVirtDevNum");
168

169 out("zVM_createFilesystem finished\n");
170 return 1;
171 }
172

173 sub zVM_mountFilesystem {
174 out("zVM_mountFilesystem called\n");
175

176 my $hostname = $_[0];
177 my $zname = genzname($hostname,$PROJECT);
178

179 execute("vmcp link $zname 0100 $dasdVirtDevNum mr");
180 execute("chccwdev -e $dasdVirtDevNum");
181

182 # the dasd device name as it appears in /dev/
183 my $dasdDev;
184 my $lsdasd_line = ‘lsdasd 0.0.$dasdVirtDevNum‘;
185 my @lsdasd = split /\s+/, $lsdasd_line;
186 $dasdDev = $lsdasd[6];
187 # because there is only one partition in the root filesystem, it will be

identified as /dev/dasdX1
188 $dasdDev .= "1";
189 out("mounting /dev/$dasdDev on $MOUNTDIR\n");
190 execute("mount /dev/$dasdDev $MOUNTDIR");
191 execute("df -H");
192

193 out("zVM_mountFilesystem finished\n");
194 return 1;
195 }
196

197 sub zVM_removeHost {
198 out("zVM_removeHost called\n");
199

200 my $hostname = $_[0];
201 my $project = $_[1];
202 my $zname = genzname($hostname,$project);
203 my $checkIfUp = zVM_checkIfUp($hostname,$project);
204 if ($checkIfUp == -1) {
205 execute("vmcp smsg $mlnprop setvswitch $mlnvsw revoke $zname");
206 out("$mlnprop -> Revoke access to $mlnvsw for $zname\n");
207 execute("vmcp smsg $mlnprop dirmpurge $zname");
208 out("$mlnprop -> PURGE $zname command issued\n");
209 }
210 elsif ($checkIfUp == 1) {

211 out("Warning: $zname appears to be running. Please stop project
before removing it\n");

212 }
213

214 out("zVM_removeHost finished\n");
215 return 1;
216 }
217

218 sub zVM_configure {
219 out("zVM_configure called\n");
220

221 my $host;
222 foreach $host (getHosts()) {
223 my $qethVirtDevLocal = $qethVirtDev;
224 my %network = getHash("/host/$host/network");
225 foreach my $if (keys %network){
226 my $ipaddr = getScalar("/host/$host/network/$if/address");
227 my $netmask = getScalar("/host/$host/network/$if/netmask");
228 my $broadcast = getScalar("/host/$host/network/$if/broadcast");
229 print "NIC ".$if." -> ".$ipaddr."\n";
230 print "NIC ".$if." -> ".$qethVirtDevLocal."\n";
231

232 execute ("mkdir -p $MOUNTDIR/etc/sysconfig/network/");
233 out("Writing $MOUNTDIR/etc/sysconfig/network/ifcfg-qeth-bus-ccw

-0.0.0.$qethVirtDevLocal on $host\n");
234 open(IFCFG, ">$MOUNTDIR/etc/sysconfig/network/ifcfg-qeth-bus-ccw

-0.0.0".$qethVirtDevLocal)
235 or warn "Failed to open ifcfg-qeth-bus-ccw-0.0.0".

$qethVirtDevLocal;
236 print IFCFG "BOOTPROTO=\"static\"\n";
237 print IFCFG "UNIQUE=\"\"\n";
238 print IFCFG "STARTMODE=\"onboot\"\n";
239 print IFCFG "IPADDR=\"$ipaddr\"\n";
240 print IFCFG "NETMASK=\"$netmask\"\n";
241 print IFCFG "BROADCAST=\"$broadcast\"\n";
242 # because the current outgoing vswitch is layer 3
243 if (getScalar("/host/$host/network/$if/switch")) {
244 print IFCFG "ARP=\"yes\"\n";
245 }
246 print IFCFG "_nm_name=’qeth-bus-ccw-0.0.0".$qethVirtDevLocal."’\n";
247 close(IFCFG);
248

249 execute ("mkdir -p $MOUNTDIR/etc/sysconfig/hardware/");
250 out("Writing $MOUNTDIR/etc/sysconfig/hardware/hwcfg-qeth-bus-ccw

-0.0.0.$qethVirtDevLocal on $host\n");
251 open(HWCFG, ">$MOUNTDIR/etc/sysconfig/hardware/hwcfg-qeth-bus-ccw

-0.0.0".$qethVirtDevLocal)
252 or warn "Failed to open hwcfg-qeth-bus-ccw-0.0.0".

$qethVirtDevLocal;
253 print HWCFG "STARTMODE=\"auto\"\n";
254 print HWCFG "MODULE=\"qeth\"\n";
255 print HWCFG "MODULE_OPTIONS=\"\"\n";
256 print HWCFG "MODULE_UNLOAD=\"yes\"\n";
257 print HWCFG "SCRIPTUP=\"hwup-ccw\"\n";
258 print HWCFG "SCRIPTUP_ccw=\"hwup-ccw\"\n";
259 print HWCFG "SCRIPTUP_ccwgroup=\"hwup-qeth\"\n";
260 print HWCFG "SCRIPTDOWN=\"hwdown-ccw\"\n";
261 print HWCFG "CCW_CHAN_IDS=\"0.0.0".$qethVirtDevLocal." 0.0.0".(

$qethVirtDevLocal+1)." 0.0.0".($qethVirtDevLocal+2)."\"\n";
262 print HWCFG "CCW_CHAN_NUM=\"3\"\n";
263 # because the current outgoing vswitch is layer 3
264 if (getScalar("/host/$host/network/$if/switch")) {

265 print HWCFG "QETH_LAYER2_SUPPORT=\"1\"\n";
266 }
267 else {
268 print HWCFG "QETH_LAYER2_SUPPORT=\"0\"\n";
269 }
270 close(HWCFG);
271

272 my $gateway_address = getScalar("/host/$host/network/$if/gateway");
273 if ($gateway_address) {
274 out("Writing gateway $gateway_address to $MOUNTDIR/etc/sysconfig/

network/routes\n");
275 open(GW, ">$MOUNTDIR/etc/sysconfig/network/routes")
276 or warn "Failed to open routes";
277 print GW "default ".$gateway_address." - -\n";
278 close(GW);
279 }
280

281 out("Writing hostname $host to $MOUNTDIR/etc/HOSTNAME\n");
282 open(HOST, ">$MOUNTDIR/etc/HOSTNAME")
283 or warn "Failed to open HOSTNAME";
284 print HOST $host."\n";
285 close(HOST);
286

287 $qethVirtDevLocal += $qethVirtDevInc;
288 }
289 }
290

291 out("zVM_configure finished\n");
292 }
293

294 sub zVM_unmountFilesystem {
295 out("zVM_unmountFilesystem called\n");
296

297 out("Unmounting $MOUNTDIR\n");
298 execute("umount $MOUNTDIR");
299 execute("chccwdev -d $dasdVirtDevNum");
300 execute("vmcp detach $dasdVirtDevNum");
301

302 out("zVM_unmountFilesystem finished\n");
303 return 1;
304 }
305

306 sub zVM_createStartStopScripts {
307 out("zVM_createStartStopScripts called\n");
308

309 ## create start and stop scripts for each vm and switch
310 # create host startscript
311 my $hostname = $_[0];
312 my $boot_order = getScalar("/host/$hostname/boot_order");
313 $boot_order = $DEFAULTS{’BOOT_ORDER’} unless $boot_order;
314 my $zname = genzname($hostname,$PROJECT);
315

316 # remove existing start and stop scripts
317 my $old_order = getScalar("/host/$hostname/boot_order",$OLD_DATA_ROOT)

;
318 if ($old_order and $old_order != $boot_order) {
319 verbose("Removing old start and stop script\n");
320 execute("$shell{’RM’} $PROJECT_PATH/$PROJECT/start_${old_order}

_$hostname.sh");
321 execute("$shell{’RM’} $PROJECT_PATH/$PROJECT/stop_${old_order}

_$hostname.sh");
322 }

323

324 # writing start script
325 out("Writing $PROJECT_PATH/$PROJECT/start_${boot_order}_$hostname.sh\n"

);
326 open(HOSTSTART,">$PROJECT_PATH/$PROJECT/start_${boot_order}_$hostname.

sh")
327 or warn "failed to open start_$hostname\n";
328 print HOSTSTART "#! /bin/sh\n";
329 print HOSTSTART "echo " if (getScalar("/global/dryrun"));
330 print HOSTSTART "vmcp smsg $mlnprop xautolog $zname\n";
331 close (HOSTSTART);
332 system("chmod 755 $PROJECT_PATH/$PROJECT/start_${boot_order}_$hostname.

sh");
333

334 # writing stop script
335 out("Writing $PROJECT_PATH/$PROJECT/stop_${boot_order}_$hostname.sh\n"

);
336 open(STOP, ">$PROJECT_PATH/$PROJECT/stop_${boot_order}_$hostname.sh")
337 or warn "Failed to open $STOP_SCRIPT\n";
338 print STOP "#!/bin/sh\n";
339 print STOP "if \[\$1 \]; then\n";
340 print STOP "echo " if (getScalar("/global/dryrun"));
341 print STOP "vmcp smsg $mlnprop force $zname\n";
342 print STOP "exit\n";
343 print STOP "else\n";
344 print STOP "echo " if (getScalar("/global/dryrun"));
345 print STOP "vmcp smsg $mlnprop signalshutdown $zname\n";
346 print STOP "exit\n";
347 print STOP "fi\n";
348 close(STOP);
349 system("chmod 755 $PROJECT_PATH/$PROJECT/stop_${boot_order}_$hostname.sh

");
350

351 out("zVM_createStartStopScripts finished\n");
352 }
353

354 sub zVM_checkIfUp {
355 out("zVM_checkIfUp called\n");
356

357 ## checks if a given z/VM guest is running
358 my $hostname = $_[0];
359 my $project = $_[1];
360 # this is needed for all getScalar operations
361 my $root = $_[2];
362

363 if (getScalar("/host/$hostname/zVM",$root) == "1") {
364 my $zname = genzname($hostname,$project);
365

366 my $guestquery = ‘vmcp query users $zname 2>/dev/null‘;
367 my @gqarray = split(/ /, $guestquery);
368

369 if ($gqarray[0] eq $zname) {
370 out("zVM_checkIfUp finished (returning 1)\n");
371 return 1;
372 }
373 else {
374 out("zVM_checkIfUp finished (returning -1)\n");
375 return -1;
376 }
377 }
378 else {
379 out("zVM_checkIfUp finished (returning 0)\n");

380 return 0;
381 }
382 }
383

384 sub zVM_checkIfSwitchIsUp {
385 out("zVM_checkIfSwitchIsUp called\n");
386

387 ## checks if a given z/VM VSWITCH is running
388 my $switchname = $_[0];
389 my $project = $_[1];
390 my $zname = genzname($switchname,$project);
391

392 my $vswitchquery = ‘vmcp query vswitch $zname 2>/dev/null‘;
393 my @vswqarray = split(/ /, $vswitchquery);
394

395 if ($vswqarray[0].$vswqarray[1].$vswqarray[2] eq "VSWITCH SYSTEM".$zname
) {

396 out("zVM_checkIfSwitchIsUp finished (returning 1)\n");
397 return 1;
398 }
399 elsif ($vswqarray[1].$vswqarray[2].$vswqarray[3] eq "VSWITCH SYSTEM".

$zname) {
400 out("zVM_checkIfSwitchIsUp finished (returning -1)\n");
401 return -1;
402 }
403 else {
404 out("zVM_checkIfSwitchIsUp finished (returning 0)\n");
405 return 0;
406 }
407 }
408

409 sub zVM_configureSwitch {
410 out("zVM_configureSwitch called\n");
411

412 my $name = $_[0];
413 my $zname = genzname($name,$PROJECT);
414

415 printBlock($DATA_ROOT);
416

417 out("Writing $PROJECT_PATH/$PROJECT/start_$name.sh\n");
418 open(START, ">$PROJECT_PATH/$PROJECT/start_$name.sh")
419 or warn "Failed to open $PROJECT_PATH/$PROJECT/start_$name.sh\n";
420 print START "#!/bin/sh\n";
421 print START "echo " if (getScalar("/global/dryrun"));
422 print START "vmcp smsg $mlnprop definevswitch $zname\n";
423

424 my $host;
425 foreach $host (getHosts()) {
426 my $zhost = getScalar("/host/$host/zname");
427 my %network = getHash("/host/$host/network");
428 foreach my $if (keys %network){
429 if (getScalar("/host/$host/network/$if/switch") eq $name) {
430 out("Assigning $host.$if -> $name\n");
431 print START "echo " if (getScalar("/global/dryrun"));
432 print START "vmcp smsg $mlnprop setvswitch $zname grant $zhost\n";
433 }
434 }
435 }
436

437 close(START);
438

439 out("Writing $PROJECT_PATH/$PROJECT/stop_$name.sh\n");

440 open(STOP, ">$PROJECT_PATH/$PROJECT/stop_$name.sh")
441 or warn "Failed to open $PROJECT_PATH/$PROJECT/stop_$name.sh\n";
442 print STOP "#!/bin/sh \n\n";
443 print START "echo " if (getScalar("/global/dryrun"));
444 print STOP "vmcp smsg $mlnprop detachvswitch $zname\n";
445 close(STOP);
446

447 out("zVM_configureSwitch finished\n");
448 }
449

450 1;

Appendix B

PROP RTABLE

1 ===== * * * Top of File * * *
2 ===== LGLOPR MAINT HIOVM2
3 ===== TEXTSYM / $ ^
4 ===== LOGGING ALL
5 ===== ROUTE
6 ===== *
7 ===== *COMMANDS
8 ===== *
9 ===== /XAUTOLOG / 1 9 4 LINUX1 PENGUINS

XAUTOLOG
10 ===== /SIGNALSHUTDOWN / 1 15 4 LINUX1 PENGUINS

SIGSHUTD
11 ===== /FORCE / 1 6 4 LINUX1 PENGUINS

FORCE
12 ===== /DEFINEVSWITCH / 1 14 4 LINUX1 PENGUINS

DEFVSW
13 ===== /SETVSWITCH / 1 11 4 LINUX1 PENGUINS

SETVSW
14 ===== /DETACHVSWITCH / 1 14 4 LINUX1 PENGUINS

DETVSW
15 ===== /DIRMADD / 1 8 4 LINUX1 PENGUINS

DIRMADD
16 ===== /DIRMAUTH / 1 9 4 LINUX1 PENGUINS

DIRMAUTH
17 ===== /DIRMSTORAGE / 1 12 4 LINUX1 PENGUINS

DIRMSTOR
18 ===== /DIRMAMDISK / 1 11 4 LINUX1 PENGUINS

DIRMAMD
19 ===== /DIRMNICDEF / 1 11 4 LINUX1 PENGUINS

DIRMNICD
20 ===== /DIRMPURGE / 1 10 4 LINUX1 PENGUINS

DIRMPRG
21 ===== * * * End of File * * *

Appendix C

PENGUINS EXEC

1 ===== * * * Top of File * * *
2 ===== /* PROP ACTION SCRIPT USED TO VALIDATE COMMANDS AND SO ON */
3 =====
4 ===== conffile="RESGUEST CONF"
5 =====
6 ===== parse upper arg ruser rnode lglopr msgcode puser pnode netid rtable
7 ===== pull msg
8 ===== pull action
9 =====

10 ===== /*
11 ===== * checks if the username is "legal"
12 ===== */
13 ===== parse var msg . user restofmsg
14 ===== okchars = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
15 ===== okchars = okchars !! "0123456789_-$"
16 ===== if verify(user, okchars, "Nomatch") ! length(user)=0 ! length(user)

>8
17 ===== then do
18 ===== say "PENGUINS: Syntax error in requested username:" user
19 ===== exit 1
20 ===== end
21 =====
22 ===== /*
23 ===== * do not allow a username which is listed in RESGUEST CONF
24 ===== */
25 ===== found = 0
26 ===== parse value stream(conffile,’c’,’open read’) with ok fh
27 ===== if ok == "ERROR:" then do
28 ===== say "PENGUINS: Error opening config file" conffile ":" fh
29 ===== exit 1
30 ===== end
31 =====
32 ===== do while found == 0 & lines(fh) > 0
33 ===== parse value linein(fh) with cuser .
34 ===== if translate(cuser) == translate(user) then found = 1
35 ===== end
36 ===== ok = stream(fh,’c’,’close’)
37 =====
38 ===== if found == 1 then do
39 ===== say "PENGUINS: Target guest listed as invalid target:" user
40 ===== exit 1
41 ===== end
42 =====

43 ===== /*
44 ===== * the actuall actions to be taken as a result of the incomming msg
45 ===== */
46 ===== select
47 ===== when action = "XAUTOLOG" then
48 ===== address ’CMS’ "XAUTOLOG" user
49 ===== when action = "SIGSHUTD" then
50 ===== address ’CMS’ "SIGNAL SHUTDOWN" user
51 ===== when action = "FORCE" then
52 ===== address ’CMS’ "FORCE" user
53 ===== when action = "DEFVSW" then
54 ===== address command CP "DEFINE VSWITCH" user "ETHERNET"
55 ===== when action = "SETVSW" then
56 ===== address command CP "SET VSWITCH" user restofmsg
57 ===== when action = "DETVSW" then
58 ===== address command CP "DETACH VSWITCH" user
59 ===== when action = "DIRMADD" then
60 ===== address ’CMS’ "DIRM ADD" user "LIKE" restofmsg "PW LBYONLY"
61 ===== when action = "DIRMAUTH" then do
62 ===== address ’CMS’ "DIRM FOR" user "AUTHFOR LINUX1 CMDL 140A CMDS

ADGHMOPSZ"
63 ===== address ’CMS’ "DIRM FOR" user "AUTHFOR LINUX1 CMDL 150A CMDS

ADGHMOPSZ"
64 ===== end
65 ===== when action = "DIRMSTOR" then do
66 ===== address ’CMS’ "DIRM FOR" user "MAXSTORE" restofmsg
67 ===== address ’CMS’ "DIRM FOR" user "STORAGE" restofmsg
68 ===== end
69 ===== when action = "DIRMAMD" then
70 ===== address ’CMS’ "DIRM FOR" user "AMDISK" restofmsg
71 ===== when action = "DIRMNICD" then
72 ===== address ’CMS’ "DIRM FOR" user "NICDEF" restofmsg
73 ===== when action = "DIRMPRG" then
74 ===== address ’CMS’ "DIRM FOR" user "PURGE NOCLEAN"
75 ===== otherwise do
76 ===== say "PENGUINS: Unknown action:" action
77 ===== exit 1
78 ===== end
79 ===== end
80 ===== exit 0
81 ===== * * * End of File * * *

Appendix D

RESGUEST CONF

1 ===== * * * Top of File * * *
2 ===== MAINT
3 ===== DTCVSW1
4 ===== DTCVSW2
5 ===== OPERSYMP
6 ===== DISKACNT
7 ===== EREP
8 ===== OPERATOR
9 ===== MLNPROP

10 ===== LINUX1
11 ===== DIRMAINT
12 ===== DATAMOVE
13 ===== 5VMDIR10
14 ===== * * * End of File * * *

Appendix E

EXTENT CONTROL

1 ===== * * * Top of File * * *
2 ===== *

**
3 ===== * CopyRight Notice
4 ===== * LICENSED MATERIALS - PROGRAM PROPERTY OF IBM.
5 ===== * RESTRICTED MATERIALS OF IBM.
6 ===== * 5741-A05 (C) COPYRIGHT IBM CORPORATION 1979, 2004.
7 ===== * All rights reserved.
8 ===== * US Government Users Restricted Rights -
9 ===== * Use, duplication, or disclosure restricted by GSA ADP

10 ===== * schedule contract with IBM Corporation.
11 ===== * Status: 510
12 ===== * PITS: @Z----ID
13 ===== * APAR: @VA-----
14 ===== *
15 ===== * Purpose: Default Extent Control file.
16 ===== *
17 ===== * Change Activity: (IBM)
18 ===== * @V715DSR - New for DirMaint Version 1 Release 5 Mod 0.
19 ===== * @VA61019 - Support for Multiprise 2000 variable size DASD.
20 ===== * @VA61648 - Support 1084 cylinder emulated 3390 DASD.
21 ===== * @VRA8FHA - Remove AUTOBLK and DEFAULTS sections.
22 ===== * Note: Valid TYPE values for REGIONS are now defined
23 ===== * in the DEFAULTS DATADVH file.
24 ===== * Overrides may still be included here.
25 ===== * @VRFCWRS - Re-structure the REGIONS section header to support
26 ===== * 10 digits for RegStart & RegEnd.
27 ===== * ... (reserved for future change activity) ...
28 ===== * ... (reserved for future change activity) ...
29 ===== * ... (reserved for future change activity) ...
30 ===== * ... (reserved for future change activity) ...
31 ===== * ... (reserved for future change activity) ...
32 ===== * ... (reserved for future change activity) ...
33 ===== * ... (reserved for future change activity) ...
34 ===== * Change Activity: (Local)
35 ===== * None (yet).
36 ===== *
37 ===== *

**
38 ===== :REGIONS.
39 ===== *RegionId VolSer RegStart RegEnd Dev-Type Comments
40 ===== LINUX01 USER03 1 END 3390-03
41 ===== LINUX02 USER02 1 END 3390-03

42 ===== LINUX03 520W01 2855 3234 3390-03
43 ===== * LINUX03 520W02 1478 1527 3390-03
44 ===== * LINUX04 520W02 1828 END 3390-03
45 ===== :END.
46 ===== :GROUPS.
47 ===== *GroupName RegionList
48 ===== MLN LINUX01 LINUX02 LINUX03
49 ===== :END.
50 ===== :EXCLUDE.
51 ===== * USERID ADDRESS
52 ===== MAINT 012*
53 ===== SYSDUMP1 012*
54 ===== $FULLPK$ *
55 ===== :END.
56 ===== :AUTOBLOCK.
57 ===== * IBM supplied defaults are contained in the AUTOBLK DATADVH file.
58 ===== * The following are customer overrides and supplements.
59 ===== *
60 ===== *DASDType BlockSize Blocks/Unit Alloc_Unit Architecture
61 ===== :END.
62 ===== :DEFAULTS.
63 ===== * IBM supplied defaults are contained in the DEFAULTS DATADVH file

.
64 ===== * The following are customer overrides and supplements.
65 ===== *
66 ===== *DASDType Max-Size
67 ===== 3390-03 3338
68 ===== :END.
69 ===== * * * End of File * * *

Appendix F

AUTHFOR CONTROL

1 ===== * * * Top of File * * *
2 ===== ALL MAINT * 140A ADGHOPSMZ
3 ===== ALL MAINT * 150A ADGHOPSMZ
4 ===== ALL MLNPROP * 140A ADGHOPSMZ
5 ===== ALL MLNPROP * 150A ADGHOPSMZ
6 ===== * * * End of File * * *

Appendix G

Scenario III VSWITCH
commands

DEFINE VSWITCH SW11RIO3 ETHERNET
DEFINE VSWITCH SW12RIO3 ETHERNET
DEFINE VSWITCH SW13RIO3 ETHERNET
DEFINE VSWITCH SW14RIO3 ETHERNET
DEFINE VSWITCH SW21RIO3 ETHERNET
DEFINE VSWITCH SW22RIO3 ETHERNET
DEFINE VSWITCH SW31RIO3 ETHERNET
DEFINE VSWITCH SW32RIO3 ETHERNET
SET VSWITCH GATEWAY GRANT LB1RIO3
SET VSWITCH GATEWAY GRANT LB2RIO3
SET VSWITCH GATEWAY GRANT LB3RIO3
SET VSWITCH GATEWAY GRANT LB4RIO3
SET VSWITCH SW11RIO3 GRANT LB1RIO3
SET VSWITCH SW11RIO3 GRANT WS1RIO3
SET VSWITCH SW11RIO3 GRANT WS2RIO3
SET VSWITCH SW11RIO3 GRANT WS3RIO3
SET VSWITCH SW11RIO3 GRANT WS4RIO3
SET VSWITCH SW11RIO3 GRANT WS5RIO3
SET VSWITCH SW11RIO3 GRANT WS6RIO3
SET VSWITCH SW11RIO3 GRANT WS7RIO3
SET VSWITCH SW11RIO3 GRANT WS8RIO3
SET VSWITCH SW12RIO3 GRANT LB2RIO3
SET VSWITCH SW12RIO3 GRANT WS1RIO3
SET VSWITCH SW12RIO3 GRANT WS2RIO3
SET VSWITCH SW12RIO3 GRANT WS3RIO3
SET VSWITCH SW12RIO3 GRANT WS4RIO3
SET VSWITCH SW12RIO3 GRANT WS5RIO3
SET VSWITCH SW12RIO3 GRANT WS6RIO3

SET VSWITCH SW12RIO3 GRANT WS7RIO3
SET VSWITCH SW12RIO3 GRANT WS8RIO3
SET VSWITCH SW13RIO3 GRANT LB3RIO3
SET VSWITCH SW13RIO3 GRANT WS1RIO3
SET VSWITCH SW13RIO3 GRANT WS2RIO3
SET VSWITCH SW13RIO3 GRANT WS3RIO3
SET VSWITCH SW13RIO3 GRANT WS4RIO3
SET VSWITCH SW13RIO3 GRANT WS5RIO3
SET VSWITCH SW13RIO3 GRANT WS6RIO3
SET VSWITCH SW13RIO3 GRANT WS7RIO3
SET VSWITCH SW13RIO3 GRANT WS8RIO3
SET VSWITCH SW14RIO3 GRANT LB4RIO3
SET VSWITCH SW14RIO3 GRANT WS1RIO3
SET VSWITCH SW14RIO3 GRANT WS2RIO3
SET VSWITCH SW14RIO3 GRANT WS3RIO3
SET VSWITCH SW14RIO3 GRANT WS4RIO3
SET VSWITCH SW14RIO3 GRANT WS5RIO3
SET VSWITCH SW14RIO3 GRANT WS6RIO3
SET VSWITCH SW14RIO3 GRANT WS7RIO3
SET VSWITCH SW14RIO3 GRANT WS8RIO3
SET VSWITCH SW21RIO3 GRANT WS1RIO3
SET VSWITCH SW21RIO3 GRANT WS2RIO3
SET VSWITCH SW21RIO3 GRANT WS3RIO3
SET VSWITCH SW21RIO3 GRANT WS4RIO3
SET VSWITCH SW21RIO3 GRANT LB5RIO3
SET VSWITCH SW22RIO3 GRANT WS5RIO3
SET VSWITCH SW22RIO3 GRANT WS6RIO3
SET VSWITCH SW22RIO3 GRANT WS7RIO3
SET VSWITCH SW22RIO3 GRANT WS8RIO3
SET VSWITCH SW22RIO3 GRANT LB6RIO3
SET VSWITCH SW31RIO3 GRANT LB5RIO3
SET VSWITCH SW31RIO3 GRANT QLS1RIO3
SET VSWITCH SW31RIO3 GRANT QLS2RIO3
SET VSWITCH SW31RIO3 GRANT QLS3RIO3
SET VSWITCH SW31RIO3 GRANT QLS4RIO3
SET VSWITCH SW32RIO3 GRANT LB6RIO3
SET VSWITCH SW32RIO3 GRANT QLS1RIO3
SET VSWITCH SW32RIO3 GRANT QLS2RIO3
SET VSWITCH SW32RIO3 GRANT QLS3RIO3
SET VSWITCH SW32RIO3 GRANT QLS4RIO3

Appendix H

Scenario III USER DIRECT file

1 PROFILE MLNLINUX
2 CLASS G
3 DATEFORMAT FULLDATE
4 IPL CMS PARM AUTOCR
5 LOGONBY MAINT
6 MACHINE ESA
7 OPTION TODENABLE
8 CONSOLE 0009 3215 T
9 SPOOL 000C 2540 READER *

10 SPOOL 000D 2540 PUNCH A
11 SPOOL 000E 1403 A
12 LINK MAINT 0190 0190 RR
13 LINK MAINT 019D 019D RR
14 LINK MAINT 019E 019E RR
15 LINK TCPMAINT 0592 0592 RR
16 LINK MAINT 1000 0191 RR
17

18 USER LB1RIO3 512M 512M
19 PROFILE MLNLINUX
20 NICDEF 700 TYPE QDIO LAN SYSTEM GATEWAY
21 NICDEF 710 TYPE QDIO LAN SYSTEM SW11RIO3
22 MDISK 0100 3390 0001 1665 DISK01 MR ALL ALL ALL
23 USER LB2RIO3 512M 512M
24 PROFILE MLNLINUX
25 NICDEF 700 TYPE QDIO LAN SYSTEM GATEWAY
26 NICDEF 710 TYPE QDIO LAN SYSTEM SW12RIO3
27 MDISK 0100 3390 1666 3330 DISK01 MR ALL ALL ALL
28 USER LB3RIO3 512M 512M
29 PROFILE MLNLINUX
30 NICDEF 700 TYPE QDIO LAN SYSTEM GATEWAY
31 NICDEF 710 TYPE QDIO LAN SYSTEM SW13RIO3
32 MDISK 0100 3390 0001 1665 DISK02 MR ALL ALL ALL
33 USER LB4RIO3 512M 512M
34 PROFILE MLNLINUX
35 NICDEF 700 TYPE QDIO LAN SYSTEM GATEWAY
36 NICDEF 710 TYPE QDIO LAN SYSTEM SW14RIO3
37 MDISK 0100 3390 1666 3330 DISK02 MR ALL ALL ALL
38 USER LB5RIO3 512M 512M
39 PROFILE MLNLINUX
40 NICDEF 700 TYPE QDIO LAN SYSTEM SW21RIO3
41 NICDEF 710 TYPE QDIO LAN SYSTEM SW31RIO3
42 MDISK 0100 3390 0001 1665 DISK03 MR ALL ALL ALL
43 USER LB6RIO3 512M 512M

44 PROFILE MLNLINUX
45 NICDEF 700 TYPE QDIO LAN SYSTEM SW22RIO3
46 NICDEF 710 TYPE QDIO LAN SYSTEM SW32RIO3
47 MDISK 0100 3390 1666 3330 DISK03 MR ALL ALL ALL
48

49 USER WS1RIO3 1G 1G
50 PROFILE MLNLINUX
51 NICDEF 700 TYPE QDIO LAN SYSTEM SW11RIO3
52 NICDEF 710 TYPE QDIO LAN SYSTEM SW12RIO3
53 NICDEF 720 TYPE QDIO LAN SYSTEM SW13RIO3
54 NICDEF 730 TYPE QDIO LAN SYSTEM SW14RIO3
55 NICDEF 740 TYPE QDIO LAN SYSTEM SW21RIO3
56 MDISK 0100 3390 0001 24000 DISK04 MR ALL ALL ALL
57 USER WS2RIO3 1G 1G
58 PROFILE MLNLINUX
59 NICDEF 700 TYPE QDIO LAN SYSTEM SW11RIO3
60 NICDEF 710 TYPE QDIO LAN SYSTEM SW12RIO3
61 NICDEF 720 TYPE QDIO LAN SYSTEM SW13RIO3
62 NICDEF 730 TYPE QDIO LAN SYSTEM SW14RIO3
63 NICDEF 740 TYPE QDIO LAN SYSTEM SW21RIO3
64 MDISK 0100 3390 0001 24000 DISK05 MR ALL ALL ALL
65 USER WS3RIO3 1G 1G
66 PROFILE MLNLINUX
67 NICDEF 700 TYPE QDIO LAN SYSTEM SW11RIO3
68 NICDEF 710 TYPE QDIO LAN SYSTEM SW12RIO3
69 NICDEF 720 TYPE QDIO LAN SYSTEM SW13RIO3
70 NICDEF 730 TYPE QDIO LAN SYSTEM SW14RIO3
71 NICDEF 740 TYPE QDIO LAN SYSTEM SW21RIO3
72 MDISK 0100 3390 0001 24000 DISK06 MR ALL ALL ALL
73 USER WS4RIO3 1G 1G
74 PROFILE MLNLINUX
75 NICDEF 700 TYPE QDIO LAN SYSTEM SW11RIO3
76 NICDEF 710 TYPE QDIO LAN SYSTEM SW12RIO3
77 NICDEF 720 TYPE QDIO LAN SYSTEM SW13RIO3
78 NICDEF 730 TYPE QDIO LAN SYSTEM SW14RIO3
79 NICDEF 740 TYPE QDIO LAN SYSTEM SW21RIO3
80 MDISK 0100 3390 0001 24000 DISK07 MR ALL ALL ALL
81 USER WS5RIO3 1G 1G
82 PROFILE MLNLINUX
83 NICDEF 700 TYPE QDIO LAN SYSTEM SW11RIO3
84 NICDEF 710 TYPE QDIO LAN SYSTEM SW12RIO3
85 NICDEF 720 TYPE QDIO LAN SYSTEM SW13RIO3
86 NICDEF 730 TYPE QDIO LAN SYSTEM SW14RIO3
87 NICDEF 740 TYPE QDIO LAN SYSTEM SW22RIO3
88 MDISK 0100 3390 0001 24000 DISK08 MR ALL ALL ALL
89 USER WS6RIO3 1G 1G
90 PROFILE MLNLINUX
91 NICDEF 700 TYPE QDIO LAN SYSTEM SW11RIO3
92 NICDEF 710 TYPE QDIO LAN SYSTEM SW12RIO3
93 NICDEF 720 TYPE QDIO LAN SYSTEM SW13RIO3
94 NICDEF 730 TYPE QDIO LAN SYSTEM SW14RIO3
95 NICDEF 740 TYPE QDIO LAN SYSTEM SW22RIO3
96 MDISK 0100 3390 0001 24000 DISK09 MR ALL ALL ALL
97 USER WS7RIO3 1G 1G
98 PROFILE MLNLINUX
99 NICDEF 700 TYPE QDIO LAN SYSTEM SW11RIO3

100 NICDEF 710 TYPE QDIO LAN SYSTEM SW12RIO3
101 NICDEF 720 TYPE QDIO LAN SYSTEM SW13RIO3
102 NICDEF 730 TYPE QDIO LAN SYSTEM SW14RIO3
103 NICDEF 740 TYPE QDIO LAN SYSTEM SW22RIO3
104 MDISK 0100 3390 0001 24000 DISK10 MR ALL ALL ALL
105 USER WS8RIO3 1G 1G

106 PROFILE MLNLINUX
107 NICDEF 700 TYPE QDIO LAN SYSTEM SW11RIO3
108 NICDEF 710 TYPE QDIO LAN SYSTEM SW12RIO3
109 NICDEF 720 TYPE QDIO LAN SYSTEM SW13RIO3
110 NICDEF 730 TYPE QDIO LAN SYSTEM SW14RIO3
111 NICDEF 740 TYPE QDIO LAN SYSTEM SW22RIO3
112 MDISK 0100 3390 0001 24000 DISK11 MR ALL ALL ALL
113

114 USER QLS1RIO3 1G 1G
115 PROFILE MLNLINUX
116 NICDEF 700 TYPE QDIO LAN SYSTEM SW31RIO3
117 NICDEF 710 TYPE QDIO LAN SYSTEM SW32RIO3
118 MDISK 0100 3390 0001 12000 DISK012 MR ALL ALL ALL
119 USER QLS2RIO3 1G 1G
120 PROFILE MLNLINUX
121 NICDEF 700 TYPE QDIO LAN SYSTEM SW31RIO3
122 NICDEF 710 TYPE QDIO LAN SYSTEM SW32RIO3
123 MDISK 0100 3390 12001 24000 DISK012 MR ALL ALL ALL
124 USER QLS3RIO3 1G 1G
125 PROFILE MLNLINUX
126 NICDEF 700 TYPE QDIO LAN SYSTEM SW31RIO3
127 NICDEF 710 TYPE QDIO LAN SYSTEM SW32RIO3
128 MDISK 0100 3390 0001 12000 DISK013 MR ALL ALL ALL
129 USER QLS4RIO3 1G 1G
130 PROFILE MLNLINUX
131 NICDEF 700 TYPE QDIO LAN SYSTEM SW31RIO3
132 NICDEF 710 TYPE QDIO LAN SYSTEM SW32RIO3
133 MDISK 0100 3390 12001 24000 DISK013 MR ALL ALL ALL

Appendix I

Scenario III MLN project file

1 global {
2 project scenario3
3 $broadcast_address = 10.0.0.255
4 $netmask = 255.255.255.0
5 }
6

7 superclass loadbalancer {
8 template /dev/dasdb
9 size 1G

10 memory 512M
11 network eth1 {
12 netmask $netmask
13 broadcast $broadcast_address
14 }
15 }
16

17 superclass webserver {
18 template /dev/dasdc
19 size 20G
20 memory 1G
21 network eth0 {
22 netmask $netmask
23 broadcast $broadcast_address
24 switch vsw11
25 }
26 network eth1 {
27 netmask $netmask
28 broadcast $broadcast_address
29 switch vsw12
30 }
31 network eth2 {
32 netmask $netmask
33 broadcast $broadcast_address
34 switch vsw13
35 }
36 network eth3 {
37 netmask $netmask
38 broadcast $broadcast_address
39 switch vsw14
40 }
41 network eth4 {

42 netmask $netmask
43 broadcast $broadcast_address
44 }
45 }
46

47 superclass sqlserver {
48 template /dev/dasdd
49 size 10G
50 memory 1G
51 network eth0 {
52 netmask $netmask
53 broadcast $broadcast_address
54 switch vsw31
55 }
56 network eth1 {
57 netmask $netmask
58 broadcast $broadcast_address
59 switch vsw32
60 }
61 }
62

63 superclass loadbaltier1 {
64 superclass loadbalancer
65 network eth0 {
66 netmask 255.255.255.0
67 broadcast 192.168.1.255
68 gateway 192.168.1.42
69 }
70 }
71

72 superclass loadbaltier3 {
73 superclass loadbalancer
74 network eth0 {
75 netmask $netmask
76 broadcast $broadcast_address
77 }
78 }
79

80 host LB1 {
81 superclass loadbaltier1
82 network eth0 {
83 address 192.168.1.51

84 }
85 network eth1 {
86 address 10.0.0.1
87 switch vsw11
88 }
89 }
90

91 host LB2 {
92 superclass loadbaltier1
93 network eth0 {
94 address 192.168.1.52
95 }
96 network eth1 {
97 address 10.0.0.2
98 switch vsw12
99 }

100 }
101

102 host LB3 {
103 superclass loadbaltier1
104 network eth0 {
105 address 192.168.1.53
106 }
107 network eth1 {
108 address 10.0.0.3
109 switch vsw13
110 }
111 }
112

113 host LB4 {
114 superclass loadbaltier1
115 network eth0 {
116 address 192.168.1.54
117 }
118 network eth1 {
119 address 10.0.0.4
120 switch vsw14
121 }
122 }
123

124 host LB5 {
125 superclass loadbaltier3
126 network eth0 {
127 address 10.0.0.141
128 switch vsw21
129 }
130 network eth1 {
131 address 10.0.0.151
132 switch vsw31
133 }
134 }
135

136 host LB6 {
137 superclass loadbaltier3
138 network eth0 {
139 address 10.0.0.142
140 switch vsw22
141 }
142 network eth1 {
143 address 10.0.0.152
144 switch vsw32
145 }

146 }
147

148 host WS1 {
149 superclass webserver
150 network eth0 {
151 address 10.0.0.11
152 }
153 network eth1 {
154 address 10.0.0.12
155 }
156 network eth2 {
157 address 10.0.0.13
158 }
159 network eth3 {
160 address 10.0.0.14
161 }
162 network eth4 {
163 address 10.0.0.111
164 switch vsw21
165 }
166 }
167

168 host WS2 {
169 superclass webserver
170 network eth0 {
171 address 10.0.0.15
172 }
173 network eth1 {
174 address 10.0.0.16
175 }
176 network eth2 {
177 address 10.0.0.17
178 }
179 network eth3 {
180 address 10.0.0.18
181 }
182 network eth4 {
183 address 10.0.0.112
184 switch vsw21
185 }
186 }
187

188 host WS3 {
189 superclass webserver
190 network eth0 {
191 address 10.0.0.19
192 }
193 network eth1 {
194 address 10.0.0.20
195 }
196 network eth2 {
197 address 10.0.0.21
198 }
199 network eth3 {
200 address 10.0.0.22
201 }
202 network eth4 {
203 address 10.0.0.113
204 switch vsw21
205 }
206 }
207

208 host WS4 {
209 superclass webserver
210 network eth0 {
211 address 10.0.0.23
212 }
213 network eth1 {
214 address 10.0.0.24
215 }
216 network eth2 {
217 address 10.0.0.25
218 }
219 network eth3 {
220 address 10.0.0.26
221 }
222 network eth4 {
223 address 10.0.0.114
224 switch vsw21
225 }
226 }
227

228 host WS5 {
229 superclass webserver
230 network eth0 {
231 address 10.0.0.27
232 }
233 network eth1 {
234 address 10.0.0.28
235 }
236 network eth2 {
237 address 10.0.0.29
238 }
239 network eth3 {
240 address 10.0.0.30
241 }
242 network eth4 {
243 address 10.0.0.115
244 switch vsw22
245 }
246 }
247

248 host WS6 {
249 superclass webserver
250 network eth0 {
251 address 10.0.0.31
252 }
253 network eth1 {
254 address 10.0.0.32
255 }
256 network eth2 {
257 address 10.0.0.33
258 }
259 network eth3 {
260 address 10.0.0.34
261 }
262 network eth4 {
263 address 10.0.0.116
264 switch vsw22
265 }
266 }
267

268 host WS7 {
269 superclass webserver

270 network eth0 {
271 address 10.0.0.35
272 }
273 network eth1 {
274 address 10.0.0.36
275 }
276 network eth2 {
277 address 10.0.0.37
278 }
279 network eth3 {
280 address 10.0.0.38
281 }
282 network eth4 {
283 address 10.0.0.117
284 switch vsw22
285 }
286 }
287

288 host WS8 {
289 superclass webserver
290 network eth0 {
291 address 10.0.0.39
292 }
293 network eth1 {
294 address 10.0.0.40
295 }
296 network eth2 {
297 address 10.0.0.41
298 }
299 network eth3 {
300 address 10.0.0.42
301 }
302 network eth4 {
303 address 10.0.0.118
304 switch vsw22
305 }
306 }
307

308 host SQLS1 {
309 superclass sqlserver
310 network eth0 {
311 address 10.0.0.161
312 }
313 network eth1 {
314 address 10.0.0.162
315 }
316 }
317

318 host SQLS2 {
319 superclass sqlserver
320 network eth0 {
321 address 10.0.0.163
322 }
323 network eth1 {
324 address 10.0.0.164
325 }
326 }
327

328 host SQLS3 {
329 superclass sqlserver
330 network eth0 {
331 address 10.0.0.165

332 }
333 network eth1 {
334 address 10.0.0.166
335 }
336 }
337

338 host SQLS4 {
339 superclass sqlserver
340 network eth0 {
341 address 10.0.0.167
342 }
343 network eth1 {
344 address 10.0.0.168

345 }
346 }
347

348 switch vsw11 { }
349 switch vsw12 { }
350 switch vsw13 { }
351 switch vsw14 { }
352 switch vsw21 { }
353 switch vsw22 { }
354 switch vsw31 { }
355 switch vsw32 { }

