
UNIVERSITY OF OSLO

Department of Informatics

Monitoring and

Analyzing a Game

Server Scenario

Stian Opsahl Jelmert

Network and System Administration

Oslo University College

May 19, 2008

1

Monitoring and Analyzing a Game Server Scenario

Stian Opsahl Jelmert

Network and System Administration
Oslo University College

May 19, 2008

1

Abstract

Today, most literature about services in system administration is about conventional
services like email servers. How could one monitor and analyze a scenariowhere
the service in question is a game server? As these two services are technologically
different, conventional monitoring tools may miss vital information in the context of
game servers.

This thesis focuses on developing a monitoring system for a game server in order
to learn and understand the characteristics of a game server process in aproduction
environment. An experiment is carried out to control some of the influencingvariables,
like the number of players and game server instances, and to observe the system under
the different conditions. Results show that the number of instances did notaffect the
overall performance in that way we expected. The concurrent players on the server
dominates the CPU load. We find that a strong linear relationship exist betweenthese
two variables. When it comes to memory usage, players barely affect this resource in
our experiment, but the number of game server instances (Team Fortress2 dedicated
server) does. The server process allocates most of its needed memory inthe beginning.
The amount allocated depends on which map is set when the game server is executed.

This study has shown that the game server, in this case Team Fortress 2, isa predictable
service in terms of resources.

i

Acknowledgements

First and foremost, I would like to thank my supervisor, assistant professor Hårek
Haugerud for his support and guidance throughout this semester. Your help has been
much appreciated. A special thanks goes to Kyrre Begnum for his enthusiasm, fruitful
discussions and coming up with a project idea related to my main interest, games!

I would also like to thank the students at Oslo University College whom volunteered
and Valve Corporation, especially Arsenio Navarro at Academic Licensing for making
the experiment possible.

Finally, i would like to thank my family for motivating talks and for believing in me.
Least but not last, Hanne for bearing out with me in this stressful period.Also for her
patience and endless support.

Oslo, May 2008.

Stian Opsahl Jelmert

ii

iii

Contents

Acknowledgements ii

1 Introduction 2
1.1 The Gaming Industry . 2
1.2 Game Server Provisioning and Performance 3
1.3 Motivation . 4
1.4 Problem To Be Addressed . 4
1.5 Approach . 5
1.6 Thesis Outline . 5

2 Background 6
2.1 Conventional Monitoring Tools . 6

2.1.1 Munin . 6
2.1.2 Nagios . 6
2.1.3 Cacti . 7

2.2 Game Server Tool . 7
2.3 Performance Monitoring and Analysis 7
2.4 Games Are Important . 9

2.4.1 The Industry . 10
2.5 The Game . 13

2.5.1 Getting Started . 13
2.5.2 The Gameplay . 14
2.5.3 The Architecture . 15

2.6 Related Work . 17

3 Approach 20
3.1 The Scientific Method . 20
3.2 Set Up A Real Life Service . 22

3.2.1 Make the Server Attractive 22
3.3 A Monitoring Framework . 24

3.3.1 Online Data Collection . 25
3.3.2 Offline Data Analysis . 31

3.4 Controlled Experiment . 33
3.4.1 Hardware Equipment and Software 33
3.4.2 Preparations In Advance . 33
3.4.3 Performing The Experiment 35

4 Results 38

iv

CONTENTS

4.1 Results From The Questionnaire . 38
4.1.1 Scenario 1 . 38
4.1.2 Scenario 2 . 38
4.1.3 Scenario 3 . 40

4.2 Results From Experiment . 41
4.2.1 Players . 41
4.2.2 CPU% . 42
4.2.3 Memory% . 48
4.2.4 Resident Set Size . 50
4.2.5 Minor Faults . 51
4.2.6 Virtual Memory . 52

5 Discussion 54
5.1 Server Capacity Planning . 54
5.2 Impact . 55
5.3 Review of The Questions . 56

5.3.1 How many game servers can run simultaneously on one ma-
chine? . 56

5.3.2 What is the bottleneck that stops us from running one more
server? . 56

5.3.3 How predictable is a game session in form of resource use? . . 56
5.3.4 What characterize a server which has no resources left? 57
5.3.5 The best time of the day doing maintenance? 57

5.4 Reliability and Validity . 57
5.5 Repeatability . 58

6 Conclusion and Future Work 60
6.1 Future Work . 61

6.1.1 Munin . 61
6.1.2 Other Games and Hardware 61
6.1.3 Improve Monitoring System 61

A Setting Up a TF2 Server (linux) I

B Game Configuration Files III
B.1 Server Configuration (server.cfg) . III
B.2 Message of The Day (motd.txt) . VI

B.2.1 motd.hml . VII
B.3 Map Cycle (mapcycle.txt) . IX
B.4 Autoexec (autoexec.cfg) . IX

C Miscellaneous Installs XI
C.1 Install New Kernel . XI
C.2 Set Up Web Server . XI
C.3 Enable publichtml . XI

D Emails XIII
D.1 Academic licensing at Valve . XIII

v

CONTENTS

D.2 Invitation To Game Evening . XV
D.3 Response To The Requests . XVI

E Letters XIX
E.1 Experiment at School . XIX
E.2 Questionnaire . XXI

F Scripts XXV
F.1 Shell Script . XXV

F.1.1 execute.sh . XXV
F.2 Perl Script . XXVIII

F.2.1 datacollection.pl . XXVIII
F.2.2 analyze.pl . XXXI
F.2.3 update.pl . XXXIII

vi

CONTENTS

vii

List of Tables

3.1 Time variable. 25
3.2 Process Status variables. 25
3.3 Proc variables. 27
3.4 Game variables. 28
3.5 Specifications of the server. 33
3.6 Specifications of the clients. 33
3.7 An brief overview of the execution process.. 36

4.1 Server instance in each scenario.. 41
4.2 Correlation coefficient and coefficient of determination for each server instance.46
4.3 Results from the twenty tests.. 49

viii

LIST OF TABLES

ix

List of Figures

2.1 Illustrates a white box approach. 7
2.2 Illustrates a black box approach. 8
2.3 The server browser in Steam.. 14
2.4 Featuring the character Demoman at RED team on the map named cp dustbowl. 15
2.5 Illustrates a client-server architecture. 16

3.1 Illustrates the process of collecting and analyzing data. 24
3.2 Establishing a socket connection to game server. 29
3.3 Unpack response packet.. 29
3.4 Shows player activity on Tuesday.. 29
3.5 Shows player activity on Wednesday.. 30
3.6 Player activity on the game server, week 10th. The figure shows a a similar

activity pattern for Monday, Tuesday and Wednesday.. 30
3.7 If the response packet is not received after four seconds, fixed values are set. 31
3.8 Example of an auto generated web page for the proc23 log file. 32
3.9 Illustrates the classroom where the experiment takes place. 35

4.1 How smooth did the game run while playing?. 39
4.2 If you were playing on this server in leisure time and the playing was not a

part of a experiment, would you still continue playing or change to another
server? . 39

4.3 How smooth did the game run while playing?. 39
4.4 If you were playing on this server in leisure time and the playing was not a

part of a experiment, would you still continue playing or change to another
server? . 40

4.5 How smooth did the game run while playing?. 40
4.6 If you were playing on this server in leisure time and the playing was not a

part of a experiment, would you still continue playing or change to another
server? . 41

4.7 Comparing the player count in each scenario.. 42
4.8 Comparing the CPU% in each scenario.. 43
4.9 Total CPU usage by server1.. 44
4.10 CPU usage by server2, server3 and total usage.. 44
4.11 CPU usage by server4, server5, server6 and total usage.. 45
4.12 Scatter diagram of the real life data sample.. 47
4.13 Estimation of a new measurement value with a 95% prediction interval (PI). 48
4.14 Comparing the MEM% in each scenario.. 49
4.15 Comparing all official maps impact on MEM%.. 50

x

LIST OF FIGURES

4.16 Comparing the RSS in each scenario.. 51
4.17 Comparing the minor fault in each scenario.. 51
4.18 Comparing the VSZ in each scenario.. 52

B.1 What a user will see after connecting to OUC’s Team Fortress 2 server . . . VI

xi

LIST OF FIGURES

xii

LIST OF FIGURES

1

Chapter 1

Introduction

”The video game industry is entering a new era, an era where technology
and creativity will fuse to produce some of the most stunning entertain-
ment of the 21st Century. Decades from now, cultural historians will look
back at this time and say it is when the definition of entertainment changed
forever.”

Douglas Lowenstein[1]

1.1 The Gaming Industry

Change has always been a keyword in the game industry. Game developers seek to
continuously innovate and produce new games with great game play and stunning
graphics as they compete in a highly competitive marked. The computer- and video
game industry, also referred to entertainment software industry is growingrapidly. In
2006, 204.7 million units of computer and video games were sold. The gaming indus-
try in USA alone took in 7.4 billion dollars in 2006, according to The Entertainment
Software Association (ESA)[2].

The industry is not only important for those who are involved in making games,but
also for those who subsist on it, like complementary markets. A complement is a
product which one might buy as an addition to an already established product. For
example consumers buy an electronic device like a racing wheel with gas andbrake
pedals[3] to enhance the gaming experience in racing games. Crandall and Sidak[4]
divide complementary products of entertainment software into four groups: processor,
content, electronic devices and bandwidth.

Game Server Provider (GSP) is a result of the entertainment software industry. They
earn money by leasing out game servers. Typically they offer two types ofgame
servers, private and public. Public servers are commonly owned by gamecommu-
nities, and is not password protected. This implies that they are available foreveryone
who wish to enjoy a online game with others. A private game server is a password
protected server, and usually owned by clans. A clan can be describedas a group
of players who play together on a regular basis in a specific game, usually motivated

2

1.2. GAME SERVER PROVISIONING AND PERFORMANCE

by common interest or goal. The clans uses their game server to play PCW (Prac-
tice Clan War) matches against other clans. Some play for fun while others play on a
professional level in ranked leagues[5], such players are referred to as cyber athletes.

Multiplayer online games are different from traditional single user games since the
game is shared with other players. Quake, released in 1996 by id Software,was the
first game to support multiplayer over the internet. The game belongs in the First
Person Shooter (FPS) genre. In a FPS game, the player takes a first person perspective,
hence the name. Multiplayer games belonging to this genre are often ”sessionbased”,
which mean that the users play a map for a certain amount of time and then move
on to a new map. Another characteristic is that they are depended of the low Round
Trip Time (RTT). RTT is the time a packet with information describing the player’s
action (e.g. keyboard input) spends on to get to the server, and then back again to the
client with information describing the result of the player’s action. If the packet gets
delayed, the player will experience so called ”lag” (the game stutters), which again
affects the player experience of the user. Therefore players seek out game servers
offering the lowest RTT. A study by Chambers et al.[6] shows that gamersas customers
are extremely difficult to satisfy since they lose interest if their expectations are not
met. For GSPs it is crucial in order to reach business goals to provide services which
satisfy their customers’ expectations.

1.2 Game Server Provisioning and Performance

Abdelkhalek et al.[7] states two conditions for successfully providing bothtraditional
and novel services (e.g. game server) to a great number of clients. Thefirst is enhanced
networks, while the latter is powerful servers. A game server requires fast CPU, RAM
and high bandwidth for optimal game play. The server must be capable of process-
ing the data from all connected clients on the server and then send it back tothem.
Understanding how a running service scales is crucial in order to support it[7], and
monitoring is a way of of gaining this insight.

Monitoring the performance of a running service is one of many important tasks for a
system administrator. By monitoring the service you receive ”up to date information”
about the behavior of system resources. This makes it easier to detect when problems
occur and to determine the cause[8]. Picture yourself in a situation where you are
running a game server hosting company, what information is important for you to
know in order to run a successfully business? What metrics are considered important?
You may want to know the best time of the day doing maintenance. If there is a need
for provisioning, when is the server stable? When will the service become degraded?
Is there a possibility to run other services or multiple game servers simultaneously to
increase revenue?

Are monitoring tools used today capable to assist answering these questions? To-
day, most literature about services in system administration is about conventional ser-
vices like web- and email servers. How could one monitor and analyze a scenario
where the service in question is a game server? A dedicated game server and an email
server serve the same purpose, to serve their clients. However, these two services are

3

1.3. MOTIVATION

technologically different, thus place emphasis on different factors. Therefore existing
tools like Munin, Nagios and Cacti may miss vital information in the context of game
servers. Today, most of the available tools for game servers seek to provide game play
statistics (HLstatsX[9]) and ease of in-game administration (Half-Life Server Watch
(HLSW)[10]). HLstatsX, along with serverspy.net and game-monitor.comdoes how-
ever provide some graphs, but these are limited to player count on the given server.
It is reasonable to believe that most companies involved in game server hosting have
their own customized scripts for monitoring the performance of their own servers.

1.3 Motivation

In the context of computers, games are truly an area of importance. The author consid-
ers himself as an active gamer, playing computer games since the discovery of dad’s
286 in the late 80’s. He has experienced the evolution of gaming technology on both
PC and on third to seventh generation consoles as graphic changed fromsimple one
dimensional pixel, to vector, polygons and till now High Definition. During the period
of study the author has realized that today, most literature about servicesin the context
of system administration focus on conventional services like web- and emailservers,
but not game servers as a service.

1.4 Problem To Be Addressed

Based on the motivation above the following statement is formulated:

How can one make a monitoring system for a game server?

Some of the terms can be described further:

• A Monitoring System, means in this context a ”performance monitoring and pro-
filing” system of the game server. The system should both collect and analyze
important data at regular intervals.

• Game Server: A computer which is set to run one or more server applications. In
this case, the game application is a Source Dedicated Server (SRDS) instance. It
is common practice to name the computer after its running application, therefore
this computer will be referred to as ”game server”.

• How can one make, focus on identifying the right variables and which methods
of analysis that can give better information or so called decision support.

4

1.5. APPROACH

1.5 Approach

The approach of solving a particular problem often reflects a person’sway of think-
ing. The author’s approach is divided into four phases. In the first phase a real life
service is installed and configured. The next step deals with creating a monitoring
framework. The framework should be easy to use, flexible and contain many process
related variables. In phase three the author will analyze real life data captured from the
game server through the monitoring tool and try to identify important variables.In the
very last phase a controlled experiment will be conducted to test variable usefulness
by addressing the following five questions:

1. How many game servers can run simultaneously on one machine?

2. How predictable is a game session in form of resource use?

3. What characterize a server which has no resources left?

4. What is the bottleneck(s) that stops us from running one more server?

5. The best time of the day doing maintenance?

These questions are considered to be important for successful maintenance. Although
there may be other questions which are equally important, the author choose tofocus
on the mentioned.

1.6 Thesis Outline

Chapter 2: Background This chapter gives a brief presentation of some monitoring
tools for both conventional and novel services. The author also presents perfor-
mance goals and techniques, importance of the entertainment software industry,
the game and related work.

Chapter 3: Approach This chapter provides an in-depth description of the approach
taken in order to answer the problem statement.

Chapter 4: Results This chapter presents and compare the obtained results from the
experiment. Additionally, in some cases the results are compared to real life
data and new measurements are carried out.

Chapter 5: Discussion In this chapter we discuss the important findings of the result
chapter and its impact. We review the five questions raised in the introduction.
We examine the reliability and validity of the measuring, and look at the repeata-
bility of the experiment.

Chapter 6: Conclusion and Future Work In this chapter we answer the problem
statement and make suggestions for future work.

Appendix This chapter contains all information related to the project. It includes
emails, letters, scripts, game configuration files and various installs.

5

Chapter 2

Background

This chapter gives a brief presentation of some tools used in monitoring services. The
author also presents goals and techniques in the context of performance analysis, the
importance of the entertainment software industry, the game used in this study and
related work.

2.1 Conventional Monitoring Tools

2.1.1 Munin

Munin[11] is a monitoring tool based on the RDDtool. The program collects data from
one or more hosts. The program runs a master/node architecture. The master host runs
munin and connects to all nodes (host running munin-node) and then pulls out data.
Data are pulled out every five minutes through a cron job:

*/5 * * * * munin if [-x /usr/bin/munin-cron]; then /usr/bin/munin-cron; fi

and stored as RDD files. Based on the information it generates plots (graphs). These
graphs are made available through a user friendly web interface, usually
http://localhost/munin. Also, the graphs can be viewed by day, week, month andyear.
By default it provides information about disk, network, processes andsystem, but pre-
made plugins supporting other areas are easily added as well as new custom plugins.

2.1.2 Nagios

A tool for monitoring the hosts in a network and its running services. Nagios[12]
provides many features, i.a. monitoring host resources, running processes, alert notifi-
cation (through e.g. email and pager) and trend analysis. Like Munin, all information
is available through a website.

6

2.2. GAME SERVER TOOL

2.1.3 Cacti

Cacti[13] shares many similarities with Munin as it is based on the RDDtool and data
is pulled out at interval of five minutes through a cron-job. The graphs are displayed
on a website. The tool can pull data from small setups with few hosts up to thousands.
As opposed to Munin it features various ways to view (list view, preview mode and
tree view) the graphs and user management, allowing a added user to e.g. change
parameters on graphs through rights.

2.2 Game Server Tool

Half-Life Server Watch is developed by Timo Stripf[10]. The tool provides none per-
formance monitoring functionality, only a overview of server settings, ping and players
currently on the server. It is the only tool that provides remote administrationof a game
server. This is made possible through Steam’s Remote Control (RCON) and server
query protocol[14]. RCON provides a user with administrator rights on a server, the
right to exercise authority. E.g. kick players that do not follow the serverrules, change
map, change configuration etc. This feature is enabled in the program by typing the
predefined RCON password of the server.

2.3 Performance Monitoring and Analysis

The performance of a system depends on how well resources like CPU,disk, memory
are applied to the existing demand for them by jobs in the system[15]. There are three
different way to test a system. These are referred to as black, white andgray box
testing. In white box, (aka clear box, glass box and structural[16]) the internals are
important (figure 2.1). Developing this kind of testing requires knowledge about the
functioning(e.g. the structure and logic of a code[17])of the system.

Figure 2.1:Illustrates a white box approach

Examples from white box testing is unit- and security testing. While the black box
approach can be done by a regular tester, the white box requires a skilledtester with
in-depth knowledge. Grey box (aka translucent-box[16]) testing is a combination of
the black and white box technique and could be used in cases where white- or black
box alone is considered insufficient.

Black box (also referred to as opaque tests, behavioral, functional and closed-box[16])
treats the system as a black box. This means that we are only concerned about what

7

2.3. PERFORMANCE MONITORING AND ANALYSIS

comes in (input) and what goes out (output), and not what happens in between (inter-
nally) (figure 2.2).

Figure 2.2:Illustrates a black box approach

Consequently we do not know how the system derives its output[17]. Thetesting is
successful if the external input gives the expected results. Typical black box scenar-
ios is load-, stress- and recovery testing. Monitoring a game server’s performance or
network traffic usually takes a black box approach. Because it is not always so that
the person whom designs the tests has the luxury to access source code or the required
knowledge to implement white box testing. Related work[18] has shown that develop-
ing monitoring scripts to collect data as input is a way to do it.

The reason for analyzing the performance of a computer system are motivated by dif-
ferent goals. Lilja[19] mentions six typical goals:

1. Evaluate different alternatives: For instance comparing several desktop com-
puters. Each of these computers are specifically made for ”gaming” and their
manufacturer promise top notch gaming experience. However, the are shipped
with different hardware which may affect the performance. By carrying out a
analysis, the analyst can provide information (in terms of numbers) of which
computer that performs best under various conditions.

2. Evaluate a feature’s impact: E.g. find out the impact of upgrading the GPU
to a better one. To do so the analyst must carry out analysis before and after
changing the component.

3. Tuning the system: Find the parameter values which gives the best overall per-
formance.

4. Relative performance: Quantify how the performance of a system haschanged
in respect to older computer system.

5. Application performance issues: The process of making the program e.g. XYZ
is now ”done”. The program does what is is designed to do, however theperfor-
mance of the program is poor. In this case the analyst must apply relevanttools
and techniques to locate the cause so it hopefully can be corrected.

6. Expectations: Set realistic expectations for what a next generation computer
system or e.g. video game console is capable of doing.

Simulation, measurements and analytical modeling are three techniques that canbe
used to solve a performance analysis problem. A simulation is a imitation of something

8

2.4. GAMES ARE IMPORTANT

real. In the field of computers systems, simulator is a program which is designed
to simulate important components of a system. The approach is is highly flexible
as the simulator can be modified with ease to study what happens when each ofthe
components are changed. Also, cost are reduced as developing a simulation program
is likely to be cheaper than purchasing the actual machine, even though developing
simulation programs are time-consuming.

Measurements are as opposed to simulation, working on a physical machine.The
technique is not as flexible as simulation, but provides real results[19].

The last technique describes the system by using mathematics. According to Lilja[19],
it is less accurate and believable, but is useful as it provides insight. Thisinsight can
be used to carry out more detailed experiments with the two other techniques[19].
Clearly, each of these techniques has its own strengths and weaknesses.

2.4 Games Are Important

It all started with ”tennis for two” in 1958, a simple video game which simulated a
tennis match. It was developed on an oscilloscope by William
Higinbotham[20]. The computer technology which made this possible was originally
used to create missile simulations during the cold war. According to Higinbotham
the intention behind the game was to entertain visitors visiting Brookhaven National
Laboratory[21].

Four years later Steve Russell et al.[22] made ”Spacewar!” on a PDP-11 at the MIT.
However, this game was an open source game, thus not sold. Nevertheless it played
an important part for two reasons: the invention of joystick and the first game to put
destruction on the screen[23]. A similar game called ”Space Travel”, developed by
Ken Thompson in 1969 should also be mentioned in this context. The game took place
in outer space where the player controls a spaceship flying around in the solar system.
The game was originally written on MULTICS. Thompson was a part of the AT &T
Bell Labs staff which worked on new a multi-user OS called Multiplexed Information
and Computing System (MULTICS) along with General Electric and MIT. After being
pulled out of the project, the game was ported to FORTRAN on the GECOS OS.
Playing ”Space Travel” on GECOS resulted in poor game experience. Additionally,
it was expensive, 75$ per hour[24]. Therefore, Thompson and Ritchie rewrote the
program to run on a PDP-7 computer. The machine was superior in terms of display
processor compared to the former[25]. Not long after, Thompson et al.implemented
a file system on the PDP-7, then came the user-level utilities (e.g. copy, deleteand
edit files) and least but not last the shell[25]. As the new OS took shape itwas clear
that it supported only one user. This led Brian Kernighan to call the OS forUniplexed
Information and Computing System (UNICS) as a joke to MULTICS[24]. UNICS was
later changed to ”UNIX”.

Ralph Baer made the first generation video game console system[26], calledMag-
navox Odyssey in 1972. But the birth of the game industry came with Atari andtheir
game Pong in 1972[27]. At that time the very same company behind a console also

1Programmed Data Processor-1, produced by Digital Equipment Corporation in 1960.

9

2.4. GAMES ARE IMPORTANT

developed games for their console, but this changed with Nintendo’s game license
fee model. This implied that third party developers had to pay a license fee to Nin-
tendo where they in return both tested and produced their games. They alsocontrolled
(among other things) how much a developer could earn, even though the demand for
the game was high and the sales were going well[28]. The next step in the evolution
of game industry was game developers receiving royalties.

2.4.1 The Industry

The computer and video gaming industry is often referred to as the entertainment soft-
ware industry. The term ”entertainment software” includes PC, console,online and
wireless games[4] and is described in a paper by Hickling Arthurs Low[29]as:

”Entertainment software refers to interactive, software-based games that
are played on a variety of electronic platforms with display devices (typ-
ically screens), sound reproduction capabilities, input interfaces such as
keyboards, joysticks, and mice. These games combine narrative, sophisti-
cated visual representations, music and sound, artificial intelligence, and
often interaction with other players to produce unique entertainment ex-
periences.”

R. Crandall and J. Sidak[4] mention three prominent economic characteristics about
this industry:

1. Cyclic nature: The cycle lasts between five to seven years. The demandfor
software hits the highest point one to two years after the peak demand for the
related hardware. Thereafter the demand slowly decreases as one waitsfor the
next generation.

2. First-mover advantage: the company who first releases a new generation console
to the marked will likely benefit from this by establishing marked share before
rival companies can release their console. An example is the release of seventh
generation console Xbox 360. Microsoft released their console a yearbefore
Sony and Nintendo did, thus had a lead in marked share, before Wii finally
caught up[30].

3. Network effects: As number of users’ increases to the given console, thus more
software titles will be produced for that console.

In 1996 there were sold 74.1 million units of computer and video games in the Amer-
ica. Each year the unit sales increased considerably. In 2006, 204.7 million units of
computer and video games were sold. To illustrate the importance of these numbers,
the gaming industry in USA took in 7.4 billion dollars in 2006 based on the sales,
according to The Entertainment Software Association (ESA) [2]. Exceptfor the year
2005 (made 7.0 billion), historical sales charts from the NPD group show usa continu-
ously increasing graph of units sold and dollars made in the past ten years[1]. Note that

10

2.4. GAMES ARE IMPORTANT

these numbers considers domestic sale only, not taking profit from exporting games to
foreign countries in their estimate. A similar study reports that entertainment software
from U.S firms exported to other countries for 2.1 billion and domestic sales reached
8.2 billion dollars in 2004[4], which obviously does not correspond to ESA’s 7.4 bil-
lion dollars for the same year [2]. Nevertheless, the sales are expected toincrease the
upcoming years. Michael Gallagher, a Chief Executive Officer (CEO) of ESA speaks
about the importance of the game industry to the economy[31]:

”Computer and video game companies play an ever increasing role in our
nation’s growing economy. These companies and their colleagues across
the nation are making entertainment software one of the fastest growing
industries in the United States.”

According to Siwek[32], a principal at Economists Incorporated and theauthor behind
”Video Games in the 21st Century: Economic Contributions of the U.S. Entertainment
Software Industry”, the game industry’s value added to U.S. Gross Domestic Product
(GDP) rose from 2.6 billion dollars in 2002 to 3.8 in 2006. The real growth rate in
2003-04 and 2005-06 was greater than 17.0% compared to US economy which was
less than 4.0%[31]. GDP is a way of measuring the size of a country’s economy and
can exemplified by that for every game bought in the U.S. contributes to the country’s
GDP. GDP is defined by wikipedia[33] as:

”(...) the total market value of all final goods and services produced
within a country in a given period of time.”

The numbers presented above do not tell us the true economic footprint ofgame in-
dustry. The structure of entertainment software consists of several parts[4]. These are
called input, production, complements and output. Input is necessary for the produc-
tion of a game, the production gives growth to complementary products and output is
technological transfer to other industries. Each part contributes to the economy.

Input

The process of creating a game requires input such as labor, research and develop-
ment (R&D), advanced computers and capital. Typical jobs are animators, artists,
programmers, level designers and marketing personnel. Siwek[32] reveals that the US
entertainment software industry directly employs more than 24.000 people (in 2006) in
31 states and total 80.000 people when taking both directly and indirectly employment
into account. The employees’ uses powerful workstations optimized[34] for game
design and customized input devices in their making, not ”off the shelf” products tar-
geted for the general masses because e.g. creating characters and rendering graphics
consumes a lot CPU power. To make good games even better, a lot of effort is put in
the R&D field to make groundbreaking AI (Artificial Intelligence) or graphics(game
engine) which is very important these days to seize the market.

11

2.4. GAMES ARE IMPORTANT

Complements

Demand for an entertainment software product will lead to increased demand for com-
plementary products or speed up the introduction of such products if non existing .
For instance it is likely to assume that the release of HD consoles (e.g. PS3) increased
the demand after High-Definition Television and Blu-ray movies. R. Crandalland J.
Sidak divide complements into four parts; processors, devices, contentand bandwidth
because entertainment software affects each of them.

Each year games become more advanced and the requirements to run the gamelike-
wise. One can say that the game industry drives the development of fasterprocessors
(Central Processing Unit (CPU) and Graphical Processing Unit (GPU)) as they pro-
duce games that always push or goes beyond the performance of existing technology.
The demand for more complex games increases the demand for companies like Intel,
AMD and IBM to develop, produce and continuously improve their technology.

Entertainment software generates demands for other types of electronic devices. When
you buy a game you need something to make it run, this could be a PC (specialized,
off-the-shelf or homebuilt)or a console (stationary or handheld). According to VG
Chartz, Wii has sold 19.94 million units, while Xbox 360 16.64 and PS3 9.40[30]. You
also want something to display the game, like an HDTV or a LCD screen. A Nielsen
Company study presented at CEPro[35] shows that HD display is connected to 71%
of the PS3, while Xbox 360 had 66%. For enhanced in-game experience you might
want to drop the poor sound quality which a television gives and buy surround system
in addition to interactive devices such as microphone or special purpose controllers
(steering wheel and foot pedals and guns). The same study[35] also reveals that 54%
of PS3 and 48% of Xbox 360 owners are connected to 5.1 surround system or greater
(7.1).

Online games consume bandwidth, but so does the demand for downloadablecontent
(videos, game demos etc.) from the net. ISP companies providing bandwidth benefit
from entertainment software as many released games do require an internet connection.
Two of the most popular online games till now are the Massive Multiplayer Online
Role-Playing Game (MMORPG) World of Warcraft and the First-Person Shooter game
(FPS) Counter Strike. In 22 January 2008 WoW reached 10 million subscribers since
their release[36]. Taking into account that each user pays a monthly, half or one year
fee, there is a lot of money in circulation. Games contribute to increase the number
of internet users , but also the demand for higher bandwidth speed. Thisis expected
to continue because support for network connectivity is now a standardfeature on
consoles as well.

There is a mutual dependency between entertainment software and content. There
are many examples of entertainment software based on movies and the opposite, like
Chronicles of Riddick: Escape from Butcher Bay. Musicians, celebritiesand sport
stars benefit from being used in entertainment software. As for the game this may lead
to increased sales.

12

2.5. THE GAME

Output

Technology which was once developed for the software industry is now used in non-
gaming applications and other sectors. A suitable example is the CELL processor.
It was developed by Sony, Toshiba and IBM (STI), and was first used in the PS3
console. Toshiba however, used the powerful processor in a slightly different way.
At the International Consumer Electronics Show (CES) in 2008 Toshiba showed what
happens when you put a CELL processor in a TV. Among many spectacular features
was real-time HD upscaling of standard definition[37]. Other applicable sectors for
technology transfer are health care, pollution control, real estate, intelligence testing,
manufacturing quality control and military training. As an example, the American
army uses the CELL based Mercury computer BladeCenter to handle sonarand radar
computation[38].

2.5 The Game

Team Fortress 2 (TF2) is sequel to TF which was released back in August 24, 1996.
The game were made by Walker, Cook and Caughley as a class-based multiplayer
modification (also referred to as a mod) for Quake. A class-based game implies that a
player does no longer have the same capabilities as every other player in thegame. The
game features nine characters, each with their own personality, tactical ability and spe-
cial weapons. These are scout, soldier, pyro, demoman, heavy, engineer, medic, sniper
and spy. This allows players to adopt characters which suit their playing style. The
game gained fast popularity among gamers which encouraged them to work on a new
game named TF2. The game was never finished. Instead Cook and Walker were hired
by Valve Corporation, and three years later TF Classic was released. The game was
developed by using the public available HL: Standard Software Development Kit[39].
Finally, in October 10, 20072., TF2 was officially released through Valve’s content
delivery platform called Steam. The game was a part of a bundle, called ”The Orange
Box”.

2.5.1 Getting Started

To play TF2 require first of all a Steam account, which is free of charge. The only
thing that costs is purchasing the game. There are various ways to join a server, ei-
ther through external websites like game-monitor.com and gamespyarcade.com, the
downloadable tool HLSW[10] or by using Steam’s built-in server browser(figure 2.3).

The browser allows steam users to filter the master server list (contains all servers
connected to the Steam network) before connecting. The user can filter search based
on location (Asia, Europe, Africa etc.) , anti cheat, latency (RTT), map, ifthe server
has users playing or the server is not full. These options comes in handy as there
are TF2 servers by the thousand. According to game-monitor.com[40], a site that

2Beta version available September 17 for those who purchased ”The Orange Box”

13

2.5. THE GAME

Figure 2.3:The server browser in Steam.

constantly monitors game servers there were 3618 servers available in 07.02.08. This
number will vary as servers go down.

2.5.2 The Gameplay

The gameplay of TF2 follows the same steps as its predecessor which is class-based,
multiplayer warfare on a map. It consists of two teams, Reliable Excavation Demo-
lition (RED) and Builders League United (BLU), which compete against eachother
(figure 2.4). The game supports twenty four players simultaneously on a game server.

The objective of the game depends of the game mode . Till now, there exist four
modes; capture the flag (CTF), control point (CP), territorial control (TC) and payload
(PL).

1. Capture the Flag: Involves capturing the enemy’s intelligence briefcasewhich
in this case is the flag, and returning it to your base. First team to accomplish
three captures wins. Maps from this category are 2fort and Well.

2. Control Point: The goal of the RED team is to defend the control points from
attacking team BLU. To capture the opposite team’s control point one has to
stand on the point for a given time. Maps which fell under this category are
Granary, Well, Dustbowl, Gravelpit and Badlands.

3. Territorial Control: The map is split into small territories with a control point on
each territory, and the first team to reach final territory wins. Today there is only
one TC map, called Hydro.

14

2.5. THE GAME

Figure 2.4:Featuring the character Demoman at RED team on the map named cp dustbowl.

4. Payload: Shares similarities with the CP mode, but instead of fighting yourself
through the map, a bomb payload is pushed through control points. There exist
only one map in this category, called Gold Rush.

2.5.3 The Architecture

There are two types of network architectures that should be mentioned in thecontext
of online games, Peer-to-Peer (P2P) and Client-Server. In a P2P architecture, the
game is designed to utilize the CPU and RAM of the connected peers in order to
manage the world state. A peer functions as both a ”server” and ”client”. Using this
type of architecture in games has not been common yet. Nevertheless, therehave
been some research in supporting simple MMGs games on a P2P architecture[41]. In
games based on the client-server architecture, there are both clients and server. Team
Fortress 2 is based on the Source Engine which utilize this architecture. According
to MSDN[42], client-server scales better than P2P and the topology is essential for
massive multiplayer online games (MMOG).

Valve describes[43] the server in a client-server architecture as:

”(...) a dedicated host that runs the game and is authoritative about
world simulation, game rules, and player input processing.”

As the figure illustrates (figure 2.5), the clients are only connected to the server and
the communication goes back and forth between client and the server. Not with other

15

2.5. THE GAME

clients as what a P2P game would do. Communication happens through UDP packets,
20 to 30 per second according to Valve[43]. To avoid bandwidth congestion by sending
packet updates whenever something changes in the world, the server takes snapshots
at a constant rate of the current world. These snapshots are then broadcasted to its
clients.

Figure 2.5:Illustrates a client-server architecture

As the server provide world simulation, the clients which are connected act as windows
for viewing it. If one of the players in the game moves, then the client which moved
has to notify the server in order to affect the world. The server in turn informs all the
other players on the server that there has been a change in world state[42]. Based on re-
ceived world state update from the server, the client generates audio and video output.
The clients are also responsible for sampling data from input devices like keyboard,
microphone and mouse and send it back to the server for additional processing[43].

The time a packet uses on traveling from the server to the client and back is known
as RTT. If the RTT is high or packet loss is occurring during a game, the clients will
experience a non smooth gameplay (referred to as lag) where hitting other players is
difficult. To cope with such problems Valve[43] uses data compression, interpolation,
lag compensation and prediction to make lag less noticeable to the player.

The game server in the figure above (figure 2.5) could either be a listen- or adedicated
server. A listen server runs on the same machine as the player. This means that when
the host player decides to disconnect from the server, the server is shut down. The
benefit of running a listen server is that it is free because you don’t need to buy hard-
ware and software for a new machine. The drawbacks are limited player capacity due
to bandwidth, CPU[44] and availability. On the other hand, all this depends on the re-
quirements of the game running. ”Game Server Providers” (GSP) takes thededicated
server approach. The server runs on a separate machine and supports more players due

16

2.6. RELATED WORK

to the CPU does not have to share its system resources as a listen server.Other benefits
are that the server can run 24/7 and allows a more fine-grained customization to suite
one’s needs.

2.6 Related Work

There has been conducted some research in the sphere of game servers. However most
of these studies are related to traffic analysis and resource
provisioning[6]. Examples are studies by Choi et al.[45] which carried out measure-
ments on a MMORPG game called ”Lineage II” to characterize the MMORPG traffic,
Breu[18] who studied network characteristics of three Counter-Strike servers running
on the same computer and Chang et al.[46] which analyzed traffic from multipleFPS
game servers.

According to Abdelkhalek et al.[7] there has not been much research onthe behavior
and scalability of commercial applications like multiplayer game servers, compared
to scalability of scientific workload. In their paper they chose a FPS game called
QuakeWorld3 for studying game server scalability and behavior. In order to do this
they had to develop a benchmarking methodology. This was challenging for them[7]
because:

”(i) There is no well-defined input to use for system benchmarking. (ii)
The input stimulus is external to the application server (triggered by client
systems). (iii) Typical setups require interaction of human users. (iv) The
levels of scalability to be studied exceed the size of most university-level
laboratories requiring hundreds or thousands of clients.”

The methodology they proposed automated the benchmarking process, compared re-
sults and allowed a large scale experiments on a small setup. The automation was
made possible using automated players, except for one human player who was always
present during the experiments in order to compare his result with the rest of the au-
tomated players. The automation of the players was made possible using a recorded
event of a demo session.

The experimental testbed consisted of 32 Pentium II, 400MHz computers withdual
processors running Windows NT on a 100Mbit private network. They performed two
experiments; the first with 1, 2, 4, 8, 12 and 16 players to identify trends for which the
server is not degraded. In the next experiment they simulated 1, 2, 4, 8,16, 32, 64, 80
and 96 players on each client in order to study server performance. Each test lasted for
2 minutes and were run many times to ensure consistency on both experiments. When
it comes to the environmental factors (map) where the game takes place, they had only
two maps; one large map with high complexity (layout and many objects) and a smaller
second map with high interaction level, but simple when it comes to details. The first
experiment was only tested with the small map compared to the second experiment.

3Multiplayer version of Quake

17

2.6. RELATED WORK

Their main findings are that processor cycles are the main bottleneck and is fully uti-
lized when the number of players are high. Network bandwidth is not an issue as there
is little information exchanged between client and server. Server utilization increases
linearly with players on the server. When it comes to memory they have found that
this is not a problem.

18

2.6. RELATED WORK

19

Chapter 3

Approach

This chapter will present the scientific method and the chosen approach. An in-depth
description of the approach and how this was solved is also given.

3.1 The Scientific Method

The method is fundamental in any scientific research. It is defined by Tranøy[47] as
(my translation):

”An approach to generate knowledge or re-examine contentions, which
are claimed to be true, valid or tenable.”

He differs between two methods: quantitative and qualitative. Quantitative methods
deal with things that are measurable. Therefore, the data takes the shapeof numbers.
This method deals with hypothesis, which are based on the problem statements.Hy-
pothesis commonly suggest a possible correlation between key variables in the prob-
lem statement. Before the hypothesis can be answered, the data are often ”treated” in
advance with some statistically analyzing methods. While quantitative methods inves-
tigate the relationship of phenomenons, qualitative methods aim to provide in-depth
insight of the phenomenon. Also, research techniques from the latter method give data
in terms of text.

There are two ways of approaching a problem, known as deductive- (from theory to
empiricism) and inductive (empiricism to theory) reasoning. In deductive, theory is
narrowed down into one or more hypothesizes. The aim of this approach isto either
improve existing theory or reject it. Inductive reasoning is known as the ”opposite” of
deductive. This approach is characterized by a vague problem statement[48] where the
main goal is to get an increased understanding of the studied phenomenon.Therefore,
the data collection method is not decided in the initial research phase, but along the
way. This can lead to more exploration in order to gain understanding. Deductive
reasoning is commonly used with quantitative research, while inductive in qualitative.
However, these two approaches can be applied with both the mentioned methods[49].

20

3.1. THE SCIENTIFIC METHOD

In this thesis i have chosen an inductive approach. This demand that the researcher is
open minded. To answer the problem statement:

How can one make a monitoring system for a game server?

the author must begin with installing a real life service. When the server has been
confirmed working properly, ”identity and behavior” has planned to be added through
configuration. Identity in the way that the server will be given a unique name (title)
and behavior by specify various game settings. After the game server hasbeen set up
correctly, the author plans to take actions to make the server popular. It is important
that there are players on the server as the future monitoring tool (irrespective of its
state) will be used to capture real life data. This data will be used for comparison later
on.

The next step will be to begin with the development of the monitoring tool. This re-
quires that the author choose a programming language. In this case Perl isplanned
to make up the basis of the tool. The author does not have a clear definite concep-
tion of how this tool is going to be, which constituent parts, variables and functions
which are important for proper monitoring. This uncertainty is expected to make the
author do continuously decisions throughout the development, which againwill lead
to frequently modifications of the tool. Also, Munin is planned to be installed on the
machine, as a comparison.

To address the usefulness of the variables, a controlled experiment with real players is
planned to be held at school. This experiment will be a unique opportunity to gather
user impressions of the running server instance, which in real life would be hard to
obtain. Therefore, it is planned to make a quantitative questionnaire which each player
has to complete. It is uncertain how to get clients, software (TF2) and players for the
experiment. Regarding the software, the author plans to take contact with Valve by
mail. As the experiment is assumed to be held at school, the author will ask Oslo
University College (OUC) for permission to use twenty-four clients. Concerning the
players, the author view students from OUC as potential participants. The selection of
participants will not involve sampling techniques like SRS (simple random sampling,
a probability sample method). Instead the author plan to use purposive sampling, a non
probability sampling technique. We seek ”gamers” as a group and assume that they
are to be found among computer students at OUC. This sampling is useful when the
targeted group must be reached quickly and generalization is not that important[50].

Both monitoring tool and the questionnaire will give data in terms of quantitative val-
ues. Therefore, the author plan to use quantitative techniques for interpreting. It is
important to keep in mind that data from a measurement is never 100% correct.There-
fore uncertainty will always be an issue. Uncertainty are caused by errors. Mark
Burgess[51] differs between personal, random and systematic error. Random error oc-
cur randomly and cannot be fully eliminated. As they are unpredictable, the observed
value in the experiment can change in both directions (± value). The likelihood of
the value going± are assumed to be equal, and do not have much influence on the
averaged value of the measured data. Systematic error cause deviation throughout all

21

3.2. SET UP A REAL LIFE SERVICE

measured data. Compared to random error, the change of value can either go + or
-[51]. This type of error is likely to affect the average value of the measured data.
Personal error or human error is caused by the person carrying outthe measurements
without knowing. For instance making wrong calculations.

3.2 Set Up A Real Life Service

It was decided to use Team Fortress 2 as a test case for the server. The game has
been released recently and was expected to be computationally demanding and also to
attract a lot of players.

In order to monitor the performance of a novel service, in this case a game server, a
TF2 dedicated server was installed (appendix A) on the provided computer. Before
the server could ”go public”, a request for opening port 27015 on IP128.39.74.31 was
sent to OUC. By carrying out the installation steps in appendix A, the serverwill have
default settings only. To customize the behavior of the game server, a configuration file
(named server.cfg) was made (appendix B.1). The configuration file forthis server is
based on Muppet’s[52] own ”server.cfg”, but modified based on experience, in-game
testing as well as feedback from players on the server. Also, in-game testing in the
initial phase revealed a serious performance issue[53]. The game froze out of the
sudden and the CPU utilization rose above 90%. Even though this happenedfor a very
short period, players left the server immediately as the game experience become poor
(unable to aim and barely move). A possible explanation to this phenomenon might be
that the CPU got busy doing something else than processing player input. However,
this problem has been solved by upgrading the kernel to 2.6.24-5-server [53] (appendix
C.1).

3.2.1 Make the Server Attractive

Everyone can set up a game server, but not every game server set up becomes popular.
This is a challenge. It is important to attract players to a server, especially ifthe server
is rented. In this thesis it was important because an attractive server will generate more
interesting performance data (compared to a server with few or none players). The data
will be collected by the the monitoring tool. The items below summarize actions taken
by the author.

Friends and Clan Mates

As mentioned before, the Steam server browser allows users to filter out servers with
none players to reduce the amount of servers appearing in the browser. To get the
server ”visible” for others, friends and fellow clan mates were the invited tojoin the
empty server to attract other players. Once the ground is set, it did not takelong before
the server was full. This was done on a regular basis until other players started joining
the server by themselves.

22

3.2. SET UP A REAL LIFE SERVICE

Statistics

In the initial phase, the server’s name was ”Team fortress 2 @ HiO [NORWAY]”.
After a period of few players joining the server the author decided to provide ”real
time statistics” to increase the number of players on the server. HLstatsX[9] isone
of the tools available for game servers today (page 3). It’s insufficient inthe context
of monitoring the performance, but often used as it provides extensive statistics gath-
ered from the game server’s logs. Gamers (people who play games) enjoystatistics
about their game play. Statistics may contribute to increase the number of players on
a server and the possibility of players returning to ”climb the ranks”. The installa-
tion of HLstatsX requires some configuring depending of the version. There are two
versions, the downloadable free of charge and the Premium which cost 15Cfor three
months. The first mentioned require installation and configuration of MySQL server,
PHP and Apache server (appendix C.2). With the Premium version everything is set
up at HLstatsX own servers and the process of making statistics work with thegame
server is simple (appendix B.4). The reason for choosing the pay version instead of
setting up HLstatsX on the same server was to focus on accurate measurements. As
the server now provided stats, the name of the server was changed to ”Team Fortress
2 @ HiO [NORWAY] - HLstatsX enabled”.

Server Title

Each day the number of TF2 servers increases and the competition to attractplayers
connecting to a server grows. It’s important to stand out because who wants to pay a
monthly fee for an empty server? A catchy server name (to attract attention) with a
pinpoint description of the server is crucial for success. Players arevery demanding, so
they know what they want and what to look for when browsing the master server list.
Based on this reflection, the name was changed once again to ”HiO| All welcome| No
lag | Dustbowl/Badlands| HLstatsX”. The title tells a user that this server is OUC’s
(HiO) property, lag will not appear on the server, dustbowl and badlands is the current
map rotation and that real-time statistics is currently running.

Map

The server uses only two maps4 all the time. The map cpdustbowl remains fixed all
time, while the other changes now and then. To inform others about this change, the
server title must be changed as well.

Events

The author took advantage of anticipated updates for the game, like new mapsor other
features. The server was updated almost immediately after the release and the change
was informed to others through the server title.

4The experiment was run with the map cpdustbowl and cpbadlands.

23

3.3. A MONITORING FRAMEWORK

3.3 A Monitoring Framework

Monitoring tools made for game server are per date limited (introduction, page 3). It
is assumed that the lack of proper tools leads people to develop their own custom tools
in shape of scripts. These scripts collect data which they consider important in order
to keep track of the performance.

The monitoring tool in this thesis consist of three components: (1.) collecting data
(values), (2.) analyzing data and (3) update visualization of data. This process is
described in section 3.3.1 and 3.3.2 respectively.

Figure 3.1 is a attempt to illustrate how the tool developed in this thesis works individ-
ually and together.

Figure 3.1:Illustrates the process of collecting and analyzing data

Each number represents an action in the monitoring tool. In (1) data are collected
(constantly every twenty seconds) from three separate places. Thesevalues are (2)
”sent back” to the script which then (3) stores them in a log file located in the home-
/stianj/data folder. To (4) visualize the data, a new script takes over. It (5) fetches the
given log file and generate a web page with figures for each of the collected variable.
As we want to keep track of the performance, (6) the figures are kept up to date by a
third script.

The three components are written in Perl (version 5.8.8). Perl is easy to adopt to
those who are not experienced in programming. Perl is the abbreviation for ”Practical
Extraction and Report Language”. It is a open source interpreted language which

24

3.3. A MONITORING FRAMEWORK

support many platforms today, but was original designed for UNIX OS. The language
itself is a mixture of shell programming, UNIX utilities (e.g. grep and sed) and C
features. Perl is a popular language among system administrators because it makes
manipulation of processes and files easy[54].

3.3.1 Online Data Collection

Identify Relevant Variables

A lot of time was dedicated to the process of identifying key variables to be measured.
It was an important part of the process of developing the data collection script. All
variables that are collected are described briefly in tables below.

Epoch is used to keep track of when the data is collected. It provides the most detailed
time stamp in UNIX as it includes seconds and more, not hh:mm only.

Name Description
1 Epoch The present month/day/year and the time (hh:mm:ss) is represented

as seconds since epoch. The epoch started at January 1 1970
00:00:00 GMT, which is in fact equal to 0 seconds.

Table 3.1:Time variable

Monitoring the performance of a game server requires variables that cantell us some-
thing about the performance of the process. A obvious place to begin is theps com-
mand. The command gives a short overall report about the process’scurrent state. We
collect four variables from ps (table 3.2).

Name Description
2 START The time when the ps command was executed.
3 PID An abbreviation for Process Identification Number. A unique num-

ber which each running program in Unix are identified by.
4 %CPU The Central Processing Unit (CPU) executes processes. %CPU

is the used CPU time divided by the current running time of the
process.

5 %MEM The ratio between the process’s Resident Set Size (RSS) and the
physical memory (total memory installed) of the server.

Table 3.2:Process Status variables

However, these variables provide only the basics. To go further into the working of
a process, we move on to proc file system. The subdirectories located under /proc/
allows us to look into parts of the kernel’s data structures[15]. Many variables are
collected from /proc/pid/stat. It is a subdirectory which gives status information about
the process. The first eight variables (various pid’s, filename of the executable, its
state, session ID and process group ID) are dropped. The rest arecollected as we do

25

3.3. A MONITORING FRAMEWORK

not know at this point which variables that are interesting. The name and description
in table 3.3 is obtained directly from the proc manual (man proc) on the server.

Name Man Description
6 Flags The kernel flags word of the process.
7 Minflt The number of minor faults the process has made

which have not required loading a memory page
from disk.

8 Cminflt The number of minor faults that the processs waited-
for children have made.

9 Majflt The number of major faults the process has made
which have required loading a memory page from
disk.

10 Cmajflt The number of major faults that the processs waited-
for children have made.

11 Utime The number of jiffies that this process has been
scheduled in user mode.

12 Stime The number of jiffies that this process has been
scheduled in kernel mode.

13 Cutime The number of jiffies that this processs waited-for
children have been scheduled in user mode.

14 Cstime The number of jiffies that this processs waited-for
children have been scheduled in kernel mode.

15 Priority The standard nice value, plus fifteen. The value is
never negative in the kernel.

16 Nice The nice value ranges from 19 (nicest) to -19 (not
nice to others).

17 0 This value is hard coded to 0 as a placeholder for a
removed field.

18 Itrealvalue The time in jiffies before the next SIGALRM is sent
to the process due to an interval timer.

19 Starttime The time in jiffies the process started after system
boot.

20 Vsize Virtual memory size in bytes.
21 Rss Resident Set Size: number of pages the process has

in real memory, minus 3 for administrative purposes.
This is just the pages which count towards text,
data, or stack space. This does not include pages
which have not been demand-loaded in, or which are
swapped out.

22 Rlim Current limit in bytes on the rss of the process (usu-
ally 4294967295 on i386).

23 Startcode The address above which program text can run.
24 Endcode The address below which program text can run.
25 Startstack The address of the start of the stack.

26

3.3. A MONITORING FRAMEWORK

26 Kstkesp The current value of esp (stack pointer), as found in
the kernel stack page for the process.

27 Kstkeip The current EIP (instruction pointer).
28 Signal The bitmap of pending signals.
29 Blocked The bitmap of blocked signals.
30 Sigignored The bitmap of ignored signals.
31 Sigcatch The bitmap of caught signals.
32 Wchan This is the ”channel” in which the process is waiting.

It is the address of a system call, and can be looked
up in a name list if you need a textual name.

33 Nswap Number of pages swapped (not maintained).
34 Cnswap Cumulative nswap for child processes (not main-

tained).
35 Exitsignal Signal to be sent to parent when we die.
36 Processor CPU number last executed on.
37 Rt priority Real-time scheduling priority.
38 Policy Scheduling policy.
39 Delayacctblkio ticks Aggregated block I/O delays (measured in clock

ticks (centiseconds)).
40 No description found No description found
41 No description found No description found

Table 3.3:Proc variables

Collecting data about the process is important, but so is in-game data like current
number of players on the server and map. As mentioned before, HLstatsX generate
statistics and graphs by using the log files which the game server produce during its
uptime. Integrating HLstatsX information like e.g. number of players to a script isnot
possible in this case as the log files are forwarded directly to a non accessible server.
But, this can be overcome by disabling the log forwarding. However, processing the
log file line by line in a script may not be acceptable as the log file increases rapidly
in size over time. The most suitable approach is to use Steam’s own protocol[14] for
querying Steam game servers. The server responds to four different queries[14]:

1. A2A PING: Check if the server is alive.

2. A2S INFO: Retrieve summary information about the server.

3. A2S PLAYER: Give details about each player currently on the server

4. A2S RULES: Provide information about the server rules.

Querying in-game information from a server is done by sending UDP packets. Each
query are approached in different ways. This protocol is used by game-monitor.com
among others to provide extensive information from game servers runningdifferent
games[14]. The A2SINFO query is in this case the most useful query. From here
three variables are collected (table 3.4).

27

3.3. A MONITORING FRAMEWORK

Nr Name Description
42 Map number Current map of the server. The value 0 implies that the cur-

rent running map is cpbadlands, 1 is for cpdustbowl.
43 Players Current number of players.
44 Max Players How many players that are allowed to play simultaneously.

Table 3.4:Game variables

Collection Script

The collection script was originally designed to start a game server in screen and then
begin logging data. Screen is a command that allows a user to create multiple vir-
tual terminals in a single terminal window. This is beneficial for many reasons,like
keeping processes running even though one logs out or disconnects (SSH) from the
machine. The script took two arguments. (1) name of the screen session and (2) port
number of the game server. Both arguments had to be there in order to run thescript.
Automatically logging of data each time the game server starts is not desirable in some
cases like testing changes made to the server configuration or new updates. Therefore
it was modified. Now the script is executed with the following options.:

Usage: [-P<PID>] [-I <IP>] [-L <LOGFILE>] [-S <SCREEN-SESSION>] [-p
<PORT-NUMBER>]

The IP of the server is the only option which is mandatory of those presented. Without
it the script refuses to run. If PORT-NUMBER is not specified on run thescript uses
port 27015 as default. The PID is only specified in scenarios where the game server
process is already running. To collect data in these cases, one has to specify the running
game server’s PID along with the LOGFILE option. Note that the extension ofthe file
must be specified manually in this case. The benefit of this approach is that we do not
have to kill the server every time we want to check the performance. The SCREEN
option is the name of the screen where the server will be run.

In both cases, the script slept (waited) for one second before the datagathering process
starts. Because the dedicated server process (srcdsi486) might not have started. The
script begins by collecting variables from the ps command. These are stored in an
array. The PID from the ps is then used to collect additional data by opening the
/proc/PID/stat file.

The process of collecting game variables was a bit tricky. To begin with, the script
established a socket connecting to the game server, and died if a connection cannot be
made, as shown in figure 3.2.

If successful, the script sends a UDP packet containing predefined byte values over the
socket. The server automatically respond by sending back a response packet back if
the first packet had the correct byte values. If we receive a response from the socket,
the packet has to be unpacked properly. If not we would get a string representing of
the structure like the one below.

28

3.3. A MONITORING FRAMEWORK

1

2 my $socket = IO::Socket::INET->new(
3 Proto=>"udp",
4 PeerPort=> $opt{p},
5 PeerAddr=> $opt{I}
6)
7 or die "Can’t make UDP socket: $";

Figure 3.2:Establishing a socket connection to game server

IHiO | All welcome | No lag | Dustbowl/Badlands| HLstatsXcpdustbowltfTeam
Fortressdl1.0.2.0i

Therefore, defining how it should unpack the received packet is crucial to parse out
all ”hidden” information (values) correctly. To get the true information we need to tell
the unpack() function how it should treat the packet. This is done by settingcharacters
matching the description in the ”Reply format” table[14].

1 if ($respons){
2 ($a,$type,$version,$hostname,$map,$gamedir,$gamedes c,$appid,
3 $players,$maxplayers,$bots,$dedicated,$os,$password ,$secure,
4 $gameversion) = unpack("iACZ * Z* Z* Z* sCCCaaCCZ* ",$respons);

Figure 3.3:Unpack response packet.

When the response is received and unpacked the socket is closed down. The process
of querying the server is included as a subroutine in the script. For the change to take
effect, the server was started with a new log file (proc19).

 0

 5

 10

 15

 20

 25

 30

15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00

N
um

be
r

of
 p

la
ye

rs

Time

Player activity on Tuesday (proc19)

Proc19

Figure 3.4:Shows player activity on Tuesday.

The number of players connected to the server increases considerablyafter 5:30 PM
(figure 3.4). The downward spikes are players leaving the server. The figure shows that

29

3.3. A MONITORING FRAMEWORK

the script ran fine for almost four hours before it stopped logging. Thefirst reasonable
explanation that comes to mind at that point, is ”server is shut down again5”, but this
was not the case this time. The next day the server was executed with a new log file
(proc20).

 0

 5

 10

 15

 20

 25

 30

10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

N
um

be
r

of
 p

la
ye

rs

Time

Player activity on Wednesday (proc20)

Proc20

Figure 3.5:Shows player activity on Wednesday.

Like figure 3.4, the server becomes ”active” around 5:00 PM. The number of players
varies between twenty and twenty-four, except for a drop around 6:50PM. Compared
to proc19, it ran more than seven hours before it stopped (figure 3.5).Both scripts
stopped at a point where there were a lot of activity on the game server. According to
OUC’s own HLstatsX web page there were a lot of player activity on on Tuesday and
Wednesday after the script had stopped (figure 3.6).

Figure 3.6: Player activity on the game server, week 10th. The figure shows a a similar
activity pattern for Monday, Tuesday and Wednesday.

The only logical place where the script could hang was if recv() functiondid not re-
ceive the expected packet response from the socket and thereby waiting endlessly. As
the number of players gets high, the server works hard to keep everyone up to date
about the world simulation. Sooner or later packet loss will occur. To prevent this
from stopping the script now and then, the subroutine was modified with an alarm
timeout (figure 3.7).

5The game server was shut down frequently by someone throughout the semester.

30

3.3. A MONITORING FRAMEWORK

1 $TIMEOUT = 4;
2 eval {
3 local $SIG{ALRM} = sub { die "alarm time out" };
4 alarm $TIMEOUT;
5 $socket-> recv($respons, 1400);
6 alarm 0;
7 1;
8 } or $respons = "";

Figure 3.7:If the response packet is not received after four seconds, fixed values are set.

If no response packet is fetched, then the values -1 -1 -1 are returned to the log file. An
example of a line from the log file looks like this:

1202480844 15:27 8536 97.0 3.0 4202496 15968 0 0 0 87 11 0 0 20 0 10
17995004 114098176 11679 4294967295 134512640 134561892 3214010320 3213996032
3086165008 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 1 24

Every twenty seconds a line of data from the variables is applied in the log file at
”/home/stianj/data”. The author believe that collecting data at this interval is adequate
in order to observe the essential changes on the server in the experiment.With a lower
resolution (higher time interval) we are more likely to miss out important data. Also,
collecting data too often may affect the performance of the system.

3.3.2 Offline Data Analysis

The log file from the collecting process consist of 44 variables separatedin columns.
Specifying a plot file for each of these columns is not only cumbersome, butalso time
consuming. There may be a case where there are more than just one log file that has
to be plotted, making things worse. A better and more scalable solution is to integrate
Gnuplot (version 4.2) in Perl. This is beneficial for several reasons:

• A plot file loaded in Gnuplot cannot output multiple figures at once, only mul-
tiple plots appearing in the same figure by specifying multiple columns in a file
(e.g. 1:2, 1:3, 1:4 etc). A script could do this task by running in a loop.

• To plot other data files than the one already specified, the name of the file has to
be changed manually or by using the Unix utility ”sed”. Another approach is to
take the wanted data file name as a command line option in a script.

The script is designed to take two arguments: (1) the path of the log file and (2) the
path to where the outputted figures should be stored.

Usage: [<LOGFILE>] [<OUTPUT-DIR>]

The script will not run if the required arguments are not present. In the given output
directory a subdirectory named ”png” is automatically created. This is whereall fig-
ures are stored. Instead of defining .plt files for each column we want to output, a set

31

3.3. A MONITORING FRAMEWORK

of commands representative for all columns is created. To output multiple figures we
use a for loop since the number of iterations are known on forehand. Thebody of the
loop contains the code which should be executed repeatedly. The code calls Gnuplot,
prints some commands, then closes it when the loop has been completed. The x axis
and log file is the only variables that remains ”constant” throughout the loop.To differ
between the figures all columns are given explanatory titles which are put ina hash.
The generated graphs are represented as time series6. All graphs are then presented
through a web interface (figure 3.8) to get a quick overview of the performance. The
web page which displays the graphs is generated in the same script.

Figure 3.8:Example of an auto generated web page for the proc23 log file

Update Script

To see the graphs change on the web page as the log file grows, an additional script is
made.

6A measured value collected at a regular interval is plotted against the time.

32

3.4. CONTROLLED EXPERIMENT

Usage: [<LOGFILE>] [<INTERVAL>]

The script takes two arguments: (1) the name of the log file and (2) how oftenthe
graph should be updated. What the script actually does is executing the script created
above. The code which updates the graphs runs in a infinite loop. The time interval
argument specifies how long the script should sleep before continuing theloop.

3.4 Controlled Experiment

3.4.1 Hardware Equipment and Software

OUC provided the machine (table 3.5) which the game server was installed on.

The Dell Desktop PC
CPU Intel® Pentium® 4 CPU 2.80GHz, 1MB cache
RAM 1536MB
Hard Drive 150GB SATA
Operating System Ubuntu 7.10 (Gutsy Gibbon)
Kernel version Now 2.6.24-5-server (buildd@vernadsky)

Before 2.6.22 generic

Table 3.5:Specifications of the server

They also provided clients (table 3.6) to each participant.

The Dell OptiPlex 745 clients
CPU Intel® Core™ 2 CPU 6600 @ 2.40GHz (2 CPUs)
RAM 2046MB
Operating System Windows XP Professional, Service Pack 2
Card Name NVIDIA Quadro FX 550

Table 3.6:Specifications of the clients

3.4.2 Preparations In Advance

Abdelkhalek et. al[7] simulated the behavior of ”real players” in both of their ex-
periments, except for the one human player. The players in this experimentwill not
be automated (recorded event), but real human beings playing on each client. Using
human players created three problems:

• Every player must have a client that could run TF2.

• Every player must have a Steam account with TF2.

• Get twenty-four voluntary students to participate

33

3.4. CONTROLLED EXPERIMENT

To avoid potential problems and ruining the experiment, preparations was taken se-
riously at an early stage. Fortunately, the first problem was solved quickly thanks to
Tore Øfsdahl who gave permission to install Team Fortress 2 on twenty-four clients.

Contacting Valve

Being an active user of the Steam Platform, the author knew that Valve operated with
Steam ”Guest Passes”. A guest pass comes along with the purchase of acertain game,
like the Orange Box. Having a guest pass, the users can share a game for a limited
period with a friend who does not own the game. The pass could either be sent to this
friend’s Steam username or email address. If sent to an email address,the friend is re-
quired to create a steam account in order to receive the pass. The game isavailable for
download after the user has logged on the Steam platform. Compared to a traditional
demo games, the friend can enjoy all features of the game until the period expires.
After the expiring date, the user has to purchase the game through Steam in order to
continue playing.

Guest passes for Team Fortress 2 has not been made public available for users who
have bought the game so far. Irrespective of this fact, the possibility of getting ”guest
passes” for each of the participants was looked into. The author contacted academic li-
censing at Valve by mail where the experiment and the current situation wasexplained
briefly. Their reply was exclusively positive. However, instead of using guest passes
they recommended Temporary Steam Tournament Accounts. According to Valve®
these accounts are provided for academic institutions participating in the ValveAca-
demic Licensing Program or SourceU (appendix D.1), but also used in game tourna-
ments and LAN parties. Temporary Steam Tournament Accounts are easierto handle
than guest passes as they come with predefined usernames and passwords. This was
beneficial in terms of time as Team Fortress 2 could be installed right away on the
clients (figure 3.9) after the receiving the account details on email.

Each client is identified with a number. This number corresponds to the Steam user
account installed on that particular machine. E.g. client number one was installed with
steam user TU0100200PC1 etc.

Get Participants

In order to delimit the number of recipients, an email was sent to computer students
at OUC (appendix D.2). The experiment was announced as a ”game evening with
pizza and soda”, but with a technical focus. The clients provided by the school are
basically not meant for playing computer games (due to lack of GPU power),therefore
the students were given the opportunity to bring along their own desktop/laptop. To
ensure that the experiment was carried out regardless of the student response, friends
and family was asked too. Fortunately, the author received emails from exactly twenty-
four students. However, one student did not show up that day, thus forcing the author
to fulfill the role of a participant in addition to instruct the participants during the
experiment.

34

3.4. CONTROLLED EXPERIMENT

Figure 3.9:Illustrates the classroom where the experiment takes place.

3.4.3 Performing The Experiment

The experiment was held on a weekday at OUC from 5:00 p.m. to 9:00 p.m.. Like
Abdelkhalek et. al[7], the server had two maps7. Carrying out a similar experiment to
them would required more time than available in this case. Each test they carriedout
lasted two minutes. Taking their approach would definitely ruin the game experience
as the game would almost end right after it started. Instead, the number of tests were
cut down to three scenarios lasting fifty minutes each. Each scenario was believed to
put further stress on the system (table 3.7). The player column in table indicates the
number of players that should be present on each server in the given scenario.

To organize things, the participants were split into three groups: A,B and C.Client
1-8 was reserved for group A, 9-16 for B and 17-24 for C (figure 3.9). Each students
were given a paper (appendix E.1) and a questionnaire (appendix E.2). The paper was
made to guide them through technical issues which had to be taken care of before
the experiment could begin, but also to giving the users a short introductionabout the
experiment and guiding them during the experiment (timetable). In addition to the
paper, each student were asked to fill out a set of questions after each session. The
questions focused on user satisfaction and gameplay feeling. E.g. how smooth did the
game run while playing?

To prevent non-invited players from joining the server before and during the experi-
ment, the game servers were in advance set to operate as private game servers. This
was accomplished by setting the variable to ”svpassword ”passgohere” ” in the server
configuration file. Since the three servers are executed with the same server.cfg file

7cp dustbowl and cpbadlands

35

3.4. CONTROLLED EXPERIMENT

Scenario # Players Per Server In-
stance

Description

1 24 Running one game server. Group A, B
and C joins server on port 27015.

2 12 Running two game servers simultane-
ously. PC1 till PC12 joins the server on
port 27015 and the rest joins the server
on port 27016.

3 8 Running three game servers simultane-
ously. Group A joins server on port
27015, B on 27016 and C on 27017.

Table 3.7:An brief overview of the execution process.

(appendix B.1) we only need to do this once. Alternative ways to change thevariable
is to use RCON8 or use HLSW. In all cases the connecting user gets prompted for the
predefined password.

Automation Script

The scripts that has been created so far collects, plots data and updates the graphs at
a given time interval. Executing the three scripts manually for each of the presented
scenarios is a daunting and risky task. There is no room for error in this experiment
since it cannot be reproduced later on. That being said, a fourth script was made
specifically designed to carry out each scenario. It is different fromthe others as it is a
shell script and does not take arguments from the command line. After the command
(Usage: ./execute.sh) is executed the screen is cleared before displaying the following:

—————————————————————————————–
Start, runs a team fortress 2 server w/ analyzing & logging.
Stop, terminates everything which was initialized with Start.
Also, the number indicate the number of instances which will
start and stop. E.g. start2 = two game servers are executed.
—————————————————————————————–

Usage: ’basename ./execute.sh’ start|stop|start2|stop2|start3|stop3

The script uses ”case statement”, where a value is compared to one or moredefined
values. When a match is made, the commands in that particular value are executed. In
this case there are seven values, start and stop for each scenario anda wildcard char-
acter value (*)) that matches everything in case of typos. This was executed on the
author’s laptop over SSH. It eased the administration considerably duringthe experi-
ment as the author did not have to execute the individual scripts manually.

8E.g. rcon svpassword passgohere.

36

3.4. CONTROLLED EXPERIMENT

37

Chapter 4

Results

This chapter presents the results from the three different scenarios. Figures and tables
are used to illustrate the findings.

4.1 Results From The Questionnaire

To recap, in scenario 1 all players played on the same game server. In thenext scenario,
two game server instances were run simultaneously on the machine and playerper
instance were twelve. In scenario 3, three instances were run simultaneously with
eight players on each instance.

As mentioned, all participants were asked to fill out a set of questions aftereach sce-
nario. The main findings from the questionnaire are presented below.

4.1.1 Scenario 1

Figure 4.1 shows that 62.5% of the players had an excellent game experience while
playing. 58.82% of the experienced players and 71.42% of the non experienced players
rated the game as ten on the scale. The average game experience is 9.08.

Also, all players would continue to play on the server (figure 4.2) even if they were not
a part the experiment.

4.1.2 Scenario 2

Figure 4.3 shows that only one player had a excellent game experience. The largest
part (37.50%) of the of the players rated their game experience to 8. All non experi-
enced players are located between 7 and 9, compared to the experiencedwhich have an
overall distribution on the scale. Compared to scenario 1, it seems that whenone extra
server was added the players experienced a drop in user satisfaction.This is confirmed
by the average game experience, which is 7.54.

38

4.1. RESULTS FROM THE QUESTIONNAIRE

Figure 4.1:How smooth did the game run while playing?

Figure 4.2:If you were playing on this server in leisure time and the playing was not a part
of a experiment, would you still continue playing or change to another server?

Figure 4.3:How smooth did the game run while playing?

39

4.1. RESULTS FROM THE QUESTIONNAIRE

This drop was not satisfactory for one player, which turned out to be a experienced
player. If he was not a part of the experiment, he would have left the server (figure 4.4)
to play on another game server.

Figure 4.4:If you were playing on this server in leisure time and the playing was not a part
of a experiment, would you still continue playing or change to another server?

4.1.3 Scenario 3

54.16% of the players lies between 9 and 10 (figure 4.5). Once again we find that
the non experienced players are more satisfied with the game experienced than the
experienced. 85.71% of the non experienced lies between 7 and 10, compared to
58.33% of the experienced players. The average game experience is 8.04. This tells us
that the players are according to their answers more pleased with the game experience
than in scenario two.

Figure 4.5:How smooth did the game run while playing?

40

4.2. RESULTS FROM EXPERIMENT

Even though the players were more satisfied in this scenario, two players would have
left the server. Both were experienced players (figure 4.6).

Figure 4.6:If you were playing on this server in leisure time and the playing was not a part
of a experiment, would you still continue playing or change to another server?

4.2 Results From Experiment

The results from the controlled experiment are based on the output from the developed
monitoring framework. Not all results will be presented due to the fact that many
variables did not collect any data at all. The most interesting finds from each scenario
will be presented in a single graph as it gives a good overview of the differences in the
data. To avoid confusion, data from the each server is labeled (table 4.1):

Scenario Server instance
Scenario 1 Server1
Scenario 2 Server2 and Server3
Scenario 3 Server4, Server5 and Server6

Table 4.1:Server instance in each scenario.

E.g. the data from the first game server instance in scenario 1 correspondto server1.

4.2.1 Players

Figure 4.7 shows a comparison of the player count on each server.

Compared to the other servers, server1 did not reach the maximum number of play-
ers until after a while. The irregularities in the beginning of scenario 1 are caused by
participants who logged into other steam account than given in advance. Steam no-
tifies the respective user about this change by (1) not allowing the user toestablish a
connection to the server or (2) being immediately disconnected from the server while

41

4.2. RESULTS FROM EXPERIMENT

 0

 5

 10

 15

 20

 25

 30

 500 1000 1500 2000 2500 3000

N
um

be
r

of
 p

la
ye

rs

Time in seconds

Player count comparison of the three scenarioes

Server1
Server2
Server3
Server4
Server5
Server6

Figure 4.7:Comparing the player count in each scenario.

playing. Before they could log in and join the server again, the author had tofind out
which user names were available.

The drop in beginning of server2 and 3 (second scenario) was caused by network
problems. This resulted in a client timeout for most of the players connected tothe
school’s wireless LAN. On server4 and 5 we see that someone made a connection to
the wrong server as the number of players reached nine.

The sudden drops after the graph stabilizes on each instance is assumed tobe caused
by idle players being automatically moved to spectator mode for a period.

4.2.2 CPU%

The Central Processing Unit (CPU) job is to execute a process’s instructions. A CPU
can operate in two ways, kernel- (stime) and user mode (utime). According toStallings
(2001)[55], software in kernel mode controls the memory, registers, processor and
its instructions. The user mode is a non-privileged mode, where the software is not
trusted.

Due to the fact that the game server is equipped with a single CPU means that it
cannot execute more than one instruction simultaneously. This does not imply that we
are bound to run only one program like Word at a time in e.g. Windows. The reason
for this is because of multitasking/multiprogramming. This feature can be exemplified
with two running programs named A and B. When A has to wait for I/O, the CPU can
switch to B which is not waiting, and vise versa. Multitasking leads to higher CPU
utilization as it is kept busy.

42

4.2. RESULTS FROM EXPERIMENT

CPU% derived from ps

The comparison in figure 4.8 reveals a similar pattern on all servers. The sixgraphs
begins with a high peak before it decreases considerable, then increases to a point
where it becomes stable. The high peak is probably a result of the CPU preparing the
game server.

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000

C
P

U
%

Time in seconds

CPU% comparison of the three scenarioes

Server1
Server2
Server3
Server4
Server5
Server6

Figure 4.8:Comparing the CPU% in each scenario.

The figure shows that the server1 process utilizes most CPU time during its lifetime.
It is also the scenario with the largest player count. The graph also reveals that server2
and 3 uses approximately half of the CPU% compared to the first scenario. The
player population on these two servers were the half of scenario one. The last sce-
nario (server4, 5 and 6) utilize least CPU% of all servers, but is also thescenario were
the number of players are reduced to eight on each server.

The collected CPU% variable values from the ps utility gives us a smooth graph (figure
4.8). The reason for this is CPU% divides the used CPU time by the current total time
of the running process. The graph is useful in the way that it gives a hint about the
CPU usage on each server.

CPU% derived from /proc

To see the fluctuations and the true CPU%9 usage, new figures (figure 4.9, 4.10 and
4.11) are made.

9This was acchieved by adding the values from the stime and utime variable together and then divide
by 20. But first we had to find the real growth by calculating the difference of two values due to the fact
that we are dealing with cumulative data.

43

4.2. RESULTS FROM EXPERIMENT

 0

 20

 40

 60

 80

 100

 120

 500 1000 1500 2000 2500

C
P

U
%

Time in seconds

CPU% (uTime sTime) in the first scenario

Server1/Total

Figure 4.9:Total CPU usage by server1.

Figure 4.9 shows the CPU utilization of server1. As we can see, it takes the game
server some time before it stabilizes. The mean value of server1 is 85.98%10. Also,
the CPU% drops now and then. The downward spikes in the graph happens every 300
second (checked the log file). They are not that visible in the beginning, but are easier
to spot after the server has reached twenty-three players. It is not unlikely that this is
caused by Munin. As mentioned, Munin runs every five minutes (which corresponds
to 300 seconds) in order to gather data through a cron job.

 0

 20

 40

 60

 80

 100

 120

 500 1000 1500 2000 2500 3000

C
P

U
%

Time in seconds

CPU% (uTime sTime) in the second scenario

Server2
Server3

Total

Figure 4.10:CPU usage by server2, server3 and total usage.

10Even though the overall performance cannot be summerized into one single number, people tend to
do so. This is supported by Lilja[19] who says that the mean values can beuseful for performing coarse
comparison.

44

4.2. RESULTS FROM EXPERIMENT

Figure 4.10 shows that both server2 and server3 harmonize with each other in terms of
utilized CPU. The mean value is 47.25% for server2, 46.42% for server3.This tells us
that the CPU load has been approximately reduced by half, so has players. However,
the total mean load is 93.66%. This means that running two servers takes up more
CPU than one, even though the number of players connected to the machine remains
the same.

The downward spikes assumed to be caused by Munin in scenario one, are also present
in this scenario. By checking the log files, the author can confirm that the spikes
appears with a fixed interval of five minutes in this case as well. According to the
questionnaire which the author filled out during the experiment, the time which the
spikes appeared matched the time when heavy lag was observed. This applies to the
first four spikes.

 0

 20

 40

 60

 80

 100

 120

 500 1000 1500 2000 2500 3000

C
P

U
%

Time in seconds

CPU% (uTime sTime) in the third scenario

Server4
Server5
Server6

Total

Figure 4.11:CPU usage by server4, server5, server6 and total usage.

Figure 4.11 shows the CPU utilization of server4, 5 and 6. The total mean CPUusage
is 96.13%, which tells us that total CPU utilization becomes less efficient each time a
server is added. The mean value for server4 is 32.19%, 32.29% for server5, 31.65%
for server6. Like scenario two, spikes appear every five minutes heretoo. However,
they do not cause any noticable lag on the server. A possible explanation tothis is the
fact that Munin does not get that much CPU time compared with scenario two.

CPU% and Players

We believe that the number of players are affecting the CPU%. To determine the
strength of a linear relationship we use correlation coefficient[19]. The formula is:

r =
Sxy

√

SxxSyy

. (4.1)

45

4.2. RESULTS FROM EXPERIMENT

where

Sxx =
n

∑
i=1

(xi − x)2 (4.2)

Syy
=

n

∑
i=1

(yi − y)2 (4.3)

Sxy =
n

∑
i=1

(xi − x)(yi − y) (4.4)

The calculated value of r gives us information about the strength and direction of the
relationship. The value r gives will always lie between [-1, +1], but we usually differ
between three main values[56]. If r = +1, then we a perfect linear correlation between
X and Y. The ”+” sign tells us that the values of both variables are increasing. When
there is no correlation between X and Y we get 0. -1 implies a perfect linear correlation
between X and Y. The ”-” means that the higher values on one of the variables causes
a decrease on the other.

The coefficient of determination (r2) is defined by Lilja[19] as:

”The fraction of the total variation explained by the regression model.”

r andr2 for each server was calculated in Excel. The results are presented in table 4.2.

Server Correlation coefficient (r) Coefficient of determination (r2) ∗ 100)
1 0.8889 79.01%
2 0.7870 61.93%
3 0.6269 39.30%
4 0.7447 55.45%
5 0.6391 40.84%
6 0.8794 77.33%

Table 4.2:Correlation coefficient and coefficient of determination for each server instance.

As we can see, server2-4 shows a strong relationship. Server1 and 6shows a very
strong positive correlation between CPU% and players. In fact,r2 for server1 tells
us that 79.01% and 77.33% for server6 of the variance in CPU% can be explained by
their linear relationship. Although there is a very strong correlation in these two cases
we cannot conclude that the number of players affects the CPU% for sure as the value
varies on each server. A possible explanation to this may be the fact that server1 and 6
has a more smooth increase in players connecting to the server.

The author believes real life data is a more suitable approach to investigate thisfurther.
Therefore, a data sample was taken from one of the log files which have been collected
throughout the project period. The sample consists of twenty and a half hour data. The
result is presented in a scatter diagram11 in figure 4.12.

46

4.2. RESULTS FROM EXPERIMENT

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

C
P

U
%

Number of players

Scatter diagram

Figure 4.12:Scatter diagram of the real life data sample.

The figure shows that the points are clustered in a positive linear direction.The figure
shows the higher the CPU% gets, the more players are on the server. The deviating
dots in the figure can be explained in times where all players are ”inactive”,ergo less
CPU demanding. From a in-game perspective this could be before a roundbegins. The
players on the BLU team are forced to wait thirty seconds so that RED team can set
up defenses.

The correlation coefficient was calculated in Excel in this case as well. Theresult was
r = 0.98083. This tells us that we have a almost perfect linear relationship between the
two variables. The coefficient of determination tells us that 96.20% ((0.98083)2 =
0.9620 ∗ 100) of the variance in CPU% can be explained by a linear relationship. The
remaining 3.8% of CPU% remains unexplained. We cannot conclude for sure that
the number of players causes high CPU%, even though we have found a very strong
correlation. Hence the expression, ”correlation does not imply causation”. There may
be e.g. a third variable that are affecting the CPU% which causes a correlation. But
this is unlikely in our case. Because when the number of players present on the server
increases, the CPU must work harder in order to process user input and maintain world
state consistency for every player.

Based on the same sample, we can use prediction interval to predict the outcome of a
new measurement[57]. The equation for a 95% prediction interval is givenby:

x(m) ± Z α

2
∗ S(m) (4.5)

where x(m) is the average CPU as a function of m. m is the number of players.The
calculations are left to Excel.

11Scatter diagram are used to illustrate the possible relationship between two variables. Each pair value
(x,y) is marked in the diagram with a point. The independent variable is placed on the x axis, while the
dependent variable is placed on the y axis. The y variable is always assumed to be one affected.

47

4.2. RESULTS FROM EXPERIMENT

Figure 4.13:Estimation of a new measurement value with a 95% prediction interval (PI).

Approaching 100% of CPU we have to be carefull with a normal distribution since
we got a skewed distribution. Upper intervals is limited to 100%. But still the lower
interval is set to:

x(m) − Z α

2
∗ S(m) (4.6)

The figure 4.13 shows a linear increase in the predicted values. If we carry out a new
measurement with N players, we can say with 95% probability that the CPU valuewill
lie between the upper and lower limit12. This allows us to a certain degree predict the
CPU load on a single core Intel processor with the same clock rate based onhow many
players the instance allows.

4.2.3 Memory%

The ratio between the processs Resident Set Size (RSS) and the physical memory is
higher on server 1 than the rest. The highest achieved memory% utilization bya server
was 10.6% (server1). Which means that the process had been allocated circa 161
Megabytes in the main memory by the OS. As we can see in figure 4.14, the servers
becomes stable after a short while and remains approximately stable throughout the
period.

12The regression line (y) was calculated in Excel for each limit. The reasonwhy r2 for mean differs
now is because the values for zero players are removed in this case. Upper limit: y = 4.304x + 16.13,
R2 = 0.973. Mean:y = 3.597x + 10.70, R2 = 0.992. Lower limit: y = 2.889x + 5.278, R2 = 0.958.

48

4.2. RESULTS FROM EXPERIMENT

 0

 2

 4

 6

 8

 10

 12

 500 1000 1500 2000 2500 3000

M
E

M
%

Time in seconds

MEM% comparison of the three scenarioes

Server1
Server2
Server3
Server4
Server5
Server6

Figure 4.14:Comparing the MEM% in each scenario.

What is interesting is the fact that server1 runs with 24 players, server 2and 3 with 12
and server 4,5 and 6 with 8. Yet, they use almost the same amount of MEM%. Itseems
like the game server is allocating the needed memory during its initialisation phase.

Memory and +map

The command that starts a game server comes with several options:

./srcdsrun -console -game tf +ip 128.39.74.31 -port 27015 +map cpdustbowl +maxplayers
24 +exec server.cfg -secure

Port, maxplayers, secure and server.cfg are optional, but the rest are required. If map
is not used, the server will do nothing (idle). Server 1-6 were executedwith the option
”+map dustbowl” and ”+maxplayers 24” (appendix F.1.1) although twenty-four slots
was not necessary in the two last scenarios. To examine whether the map option has
something to do with the memory usage on the game server, additional measurements
were carried out. The monitoring tool were run twenty times to collect data on an
empty server, where each test took thirty measurements. The results revealed almost
identical values in each test.

Measurement Value # MEM%
1 2.7% appeared as first value in

twenty-eight cases. The remain-
ing were 2.5% and 2.2%

2 - 30 8.9% appeared in all tests.

Table 4.3:Results from the twenty tests.

49

4.2. RESULTS FROM EXPERIMENT

This tells us that memory utilization is predictable when there are no players on the
server. Also, it seems like the process has a minimum memory requirement, which
barely increases as the number of players goes up (figure 4.14).

Memory and map type

To check whether one specific map uses more memory than another, furthermeasure-
ments lasting ten minutes each were carried out. One measurement for each official
map. The results are presented in figure 4.15.

 0

 2

 4

 6

 8

 10

 12

 14

 100 200 300 400 500 600

M
E

M
%

Time in seconds

Comparison of all official maps

Dustbowl (CP)
Badlands (CP)

Granary (CP)
Gravelpit (CP)

Well (CP)
Hydro (TC)
Well (CTF)
2fort (CTF)

Gold Rush (PL)

Figure 4.15:Comparing all official maps impact on MEM%.

According to figure 4.15 some map needs more memory than others. The map named
”Gold Rush” is the largest map and requires 9.8% of the installed memory. This is
equivalent to ca 149 Megabytes. It is likely that the memory allocated at initialization
depends on the map.

4.2.4 Resident Set Size

A process consist of several pieces, also known as pages or segments. When a new
process starts, the OS takes just a piece(s), typically start instructions of the given
process into the real memory (RAM), which gives room for more processes. The part
of the process which is at all time in main memory is known as Resident Set. The size
(RSS) depends on how much RAM the OS has allocated for this process.

Figure 4.16 shows that server1 occupies most RSS of all servers instances. It had
161.26 Megabytes allocated in the main memory before the server was shut down.
As we can see in our case, the greater the number of players is on a server, the more
RSS is allocated. Surprisingly, there is little difference between an instance running
twenty-four players and a one with eight players.

50

4.2. RESULTS FROM EXPERIMENT

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 500 1000 1500 2000 2500 3000

R
S

S
 (

nu
m

be
r

 o
f

pa
ge

s)

Time in seconds

Resident Set Size comparison of the three scenarioes

Server1
Server2
Server3
Server4
Server5
Server6

Figure 4.16:Comparing the RSS in each scenario.

4.2.5 Minor Faults

Pages which have not been accessed by the process in a while are movedto the OS’s
free list[58]. To access a page in the free list, the process generates aninterrupt (page
fault), or in this case a ”minor fault”. The page is then relinked to the page tablebefore
removed from the list. In cases where there are not much available memory left, the
pages in the free list are moved to the disk, this is known as swapping.

 10

 100

 1000

 10000

 100000

 500 1000 1500 2000 2500 3000

M
in

or
 F

au
lts

Time in seconds

Minor Fault comparison of the three scenarioes

Server1
Server2
Server3
Server4
Server5
Server6

Figure 4.17:Comparing the minor fault in each scenario.

Figure 4.17 shows that the number of minor faults is high in the beginning of each
server, before dropping dramatically. This means that the server process allocates all

51

4.2. RESULTS FROM EXPERIMENT

memory in the beginning. It is irrelevant how many users that are logged in, made so
for efficiency. The memory is used actively throughout each scenario.The figure is
also an indication that the server has enough memory due to the fact that the number
of minor faults are low. Also, spikes do not appear every five minutes, which tells us
that Munin is not that aggressive in terms of memory.

4.2.6 Virtual Memory

Some processes might be greater than the available RAM on the computer. To over-
come a scenario where the physical RAM on the computer is filled up, the OS utilize
Virtual Memory. Virtual memory, is as opposed to RAM, a ”unlimited” resourcewhere
a flexible or fixed amount of space on the hard disk is treated by the OS as if itwere
real memory.

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 500 1000 1500 2000 2500 3000

V
irt

ua
l M

em
or

y
S

iz
e

(in
 b

yt
es

)

Time in seconds

Virtual Memory Size comparison of the three scenarioes

Server1
Server2
Server3
Server4
Server5
Server6

Figure 4.18:Comparing the VSZ in each scenario.

Figure 4.18 shows that server1 uses most virtual memory. Server2 - 6. The maxi-
mum virtual memory size achieved on the game server with twenty-four playerswas
226.68 Megabytes. As we can see, the virtual memory utilization is less efficient as
the number of players increases on the server.

52

4.2. RESULTS FROM EXPERIMENT

53

Chapter 5

Discussion

In this chapter the important findings of the result chapter and its impact are discussed.
The five questions raised in the introduction are reviewed. The reliability andvalidity
of the measuring are discussed, in addition to its repeatability.

5.1 Server Capacity Planning

The design of the experiment was based on a belief that the number of game servers
running would have a great impact on the overall performance. The totalmean CPU%
value in the first scenario was 85.98%. The answers from the questionnaire tells us that
the players had a excellent (9.08/10) game experience at this point. In scenario two,
the total mean value increased to 93.66% and a drop in game experience (7.54/10)
was reported. In fact, one player would have left the server if it was upto him to
decide. Not supricingly, this was an experienced player. In the last scenario, the total
mean CPU usage increased by 2.47%, but the overall game experienced was better
(8.04/10) in this scenario compared to the previous. Even though the game experience
had been improved, the number of people that would leave if they could had increased
by one. This was not unexpected as players are an extremely difficult group to satisfy.
Surprisingly, by comparing the total CPU% in each scenario we see that adding one
extra server instance only contributes to a small portion of the overall CPU load. In
that sense, it is obvious that the number of instances are not dominating the load in this
experiment. Running both two and three game servers simultaneously with the given
player distribution worked well in our case. It did not hamper the game experience to a
degree where it becomed unplayable. According to the results from the questionnaire,
the major portion of the players were pleased with the service.

So what is dominating the CPU% load? In subsection 4.2.2 we saw that the utilized
CPU% on each server decreased as the number of players were reduced by each sce-
nario. It is likely to assume that the players present on the game server hassomething
to do with this. The correlation coefficient between these two variables werecalculated
for each scenario in order to look into the possible relationship. Generally,people carry
out experiments to check whether a correlation exist or not, but in this casethis was
not captured well. The correlation coefficient varied from one serverto another. There

54

5.2. IMPACT

may be several reasons why this happend: (1) multiple server instances are run simul-
taneously and (2) the script may not have collected data frequently enough to capture
the gradually increase in CPU% utilization as players joined the server. Ergo, causing
a less noticeable distribution.

The most representative correlation coefficient value was from server1 (table 4.2)
where we appear to have a very strong positive (r = 0.8889) linear relationship. It
is the most believable value as there is only one server running in this scenario. To
check whether this relationship is true for other cases as well, we look into a sam-
ple taken from the real life data. The result reveals an almost perfect correlation (r =
0.98083) coefficient value. Ergo, in our case there exist a linear relationship between
the number of concurrent players and CPU utilization. This is supported bythe find-
ings in Abdelkhalek et al.[7] and Cheng and Ye[59] as well. Additionally, wecan
make an approximate estimate (figure 4.13) of the load based on how many players
that will play on a server.

The game server as an service is not aggressive in terms of memory usage. Server1
(figure 4.14), a instance with twenty-four players had circa 161 Megabytes allocated
in the main memory before it was shut down. Based on the fact that there is 1536
Megabytes of RAM installed, the machine should theoretically be capable of hosting
at least six server instances (leeway taken into account) at the same time according
to these numbers. Most of the memory a process use is allocated in the beginning.
This is used actively throughout the period since minor faults are kept at aminimum in
each process. By carrying out additional measurements, we find that a empty server is
predictable in terms of memory and the amount of memory allocated in the beginning
depends on the map. Some maps requires more memory than others. The map which
requires the most is ”Gold Rush” (149 Megabytes). A surprisingly resultsis that a
server running twenty four players barely exceeds the memory usage ofan empty
server. Compared to CPU% utilization, the amount of players on the server hardly
affects the memory usage. It is the type of map which dominates the memory usageof
a game server rather than players.

5.2 Impact

Conventional services like email are different from game server, because there will
always exist a demand for these kind of services. A good game server depends on
other factors than hardware (maintenance). Getting players to connect toa game server
is not an easy task. During the project the author has experienced that the popularity
(demand) of a game server is quite fluctuating. It can go from a state wherethe server
is full every day over a period to suddenly remain empty for several weeks. Even
though the listed actions in subsection 3.2.1 (Make the Server Attractive) were carried
out, this was not enough to establish a longterm popularity. Ergo, a ”community” of
players visiting the server on a regularly basis. The author believes true commitment
is a keyword in this case, which is hard to achieve when working with the thesis. In
that sense, hardware is not that important compared to marketing. It is reasonable to
believe that many fail at this point. As a consequence, numerous of servers are left
empty.

55

5.3. REVIEW OF THE QUESTIONS

The fluctuating demand of game servers as a service may complicate things forgame
server providers. What if each server instance on a machine running atwenty four
player limit suddenly becomes full? As we know, gamers as customers are extremely
difficult to satisfy since they lose interest if their expectations are not met. Therefore,
it is crucial for game server providers in order to reach business goalsto provide a
top notch services which satisfy their customers expectations. To do so theymust plan
what kind of hardware they should use in order to prevent CPU or memorybottlenecks,
thus degrading the performance and causing lag. Measurements carriedout in this
thesis have shown that most of the memory allocated to a process happens right after
the process has been executed. Also, the amount of allocated memory depends on the
map. This allows us to make an worst case scenario estimation on how much memory
a machine needs in order to run e.g. four instances on the same physical hardware,
thus avoid memory bottleneck. When it comes to CPU, we have shown that thereis
an almost perfect linear relationship between the CPU utilization and the numberof
players on the server. This allows us to predict (figure 4.13) the load based on the
number of players. This tells us that although the popularity of a game servercan be
fluctuating, the service is predictable in terms of resources.

5.3 Review of The Questions

Five questions were raised in the introduction. To answer these, the author carried out
a controlled experiment at school.

5.3.1 How many game servers can run simultaneously on one machine?

We have shown that running three game servers with the given player distribution
works fine. The number of servers are not dominating the load in this experiment.
Adding a game server only contributes to a small increase in the overall CPU load.
The question is not how many servers that one can run on one single machine, but how
many players that can be present. This decides the number of servers instances the
machine can handle.

5.3.2 What is the bottleneck that stops us from running one more server?

The experiment shows that players play an important role. By allowing too many play-
ers on each running instance, the server will experience a CPU bottleneck. Memory is
also a bottleneck, but far easier to predict and therefore avoid.

5.3.3 How predictable is a game session in form of resource use?

The results from the experiment did not provide this answer as a map change never
occurred. The reason for this was because neither of the teams reached the maximum
number of four rounds and the time limit per map in the server configuration file was

56

5.4. RELIABILITY AND VALIDITY

set to sixty minutes. However, this can be done in a subsequent experimentusing the
tools developed in this work.

5.3.4 What characterize a server which has no resources left?

The CPU in the experiment was close to being fully utilized. In scenario 2, we saw
that the total CPU utilization was close to 100%. The mean value was 93.66%, which
tells us that we were close to run out of CPU cycles. Compared to the first scenario,
the participants reported a drop in in-game experience. At this point one person would
have left the server if he could. In the third scenario, the total CPU reached 100% a
couple of times and the mean value was 96.13%. In this scenario two people would
have left if they could. It is likely that we have reached the limit for what this machine
CPU is capable of handling.

To see what it takes to fully utilize the server’s resources, the experimentwould have
to be repeated. This would have involved inviting the former participants for anew
game evening as well as making the server available for all to join (set the gameserver
as public). Additionally, look into the consequence of exceeding the total available
memory. This can be done by e.g. run a memory demanding application, executeten
server instances at the same time or switch the RAM chip with a smaller one. Then we
would see what characterizes a server which has no resources left.

One thing is for sure though, if either CPU or the memory becomes a bottleneck the
server will become unplayable and the players will experience heavy lag.Or in worst
case a ”freeze”, were we can assume that the CPU has run out of CPU cycles. When
it comes to memory we will see a lot of swapping activity. Swapping out memory to a
disk is slow, compared to reside in memory. The players will surely notice lag if they
are still there.

5.3.5 The best time of the day doing maintenance?

Most of the collected data shows that player activity begins around 5:00 PMand ends
after midnight. So, maintenance of the game server should be done before this time.

5.4 Reliability and Validity

Both terms are important when it comes to assuring the quality of our measurements.
Reliability is whether the same instrument (measuring tool) under the same conditions
gives the same result when repeated over time[56]. Thus, the consistency of the results.
These results does not need to be identical as the true value may be affected by random
error now and then, which again causes a variation in the observed value. There are
different ways to test the reliability, but test-retest and internal consistency is the most
common. The test-retest technique requires that the measurements should berepeated
at least one time. In 4.2.3 (result chapter) the author repeated the measurements of an
empty game server twenty times. The figure?? shows almost identical results. This
tells us that the measuring instrument used in this thesis is reliable.

57

5.5. REPEATABILITY

Validity is whether we measure what we want or believe to measure[56]. We measure
the performance of a game server with the developed monitoring tool. However, the
performance of the game server may be affected by the fact that the tool requires
resources in terms of CPU. This is a systematic error. Personal errors also affect the
performance. Munin was installed on the machine as an independent check. The
author did not expect that running this conventional monitoring tool would affect the
performance to that degree it did. Unfortunately, this was not discovered before the
experiment was carried out. If time was not an issue, the experiment would have been
repeated. Despite of this defect, most results obtained in this study are confirmed by
others.

5.5 Repeatability

Every component (miscellaneous installs, configuration, scripts++) whichhave made
it possible to carry out the experiment has been carefully documented in theappendix.
It is important to do so, as other at some point may want repeat the experiment. A
prerequisite for running the monitoring tool is that the game server must run on a
Linux platform13 and have Perl v5.8.8 and Gnuplot v4.2 pre-installed. Both software
and OS can be downloaded free of charge.

Repeating the experiment carried out in this thesis is feasible, but those whoplan
to do this will face the same problems as the author did. In 3.4.2 (Preparations In
Advance) three problems were mentioned: how to get twenty-four participants, clients
and accounts. That being said, neither participants, clients nor Steam accounts are not
assumed to be an issue in their case as these resources probably are ”available” through
their respective department. That being said, it may be difficult for othersto repeat the
same experiment with a game server running the same hardware used in this study,
especially the CPU which is now considered to be outdated.

The monitoring tool developed in this thesis can also be modified with ease to sup-
port other popular multiplayer online games. For instance, the game named Counter
Strike:Source, Day of Defeat: Source or Half-Life 2: Deathmatch can befully mon-
itored by changing only the map name in fetchSteamInfo subroutine (in the data col-
lection script) to match the maps of the running game server. In case of other games,
some modifications of the script are needed. Mainly fetching the right process line in
ps aux. Additionally, retrieving in-game information through A2Sinfo depends on the
given game. The developed monitoring tool can be modified to monitor other services
than games as well. Once again, it boils down to fetching the right line.

13Note: The tool has been tested on Ubuntu only, but is assumed to work with other Linux distributions
as long as ps and /proc is available.

58

5.5. REPEATABILITY

59

Chapter 6

Conclusion and Future Work

The main goal in this study was to develop a monitoring system for a game serverin
order to learn and understand the characteristics of a game server process in a produc-
tion environment. An other important goal was to identify variables which couldgive
better information or so called decision support. The system should collect data from
the variables at a regular interval, thereafter analyze it.

The developed monitoring tool in this thesis gathers data from three places: ps, /proc
and the dedicated game server. Based on these data, graphs are generated and pre-
sented through a web interface. The graphs on the web page are updated at a given
interval. To address the usefulness of the variables, a controlled experiment divided
into three scenarios were arranged. The number of instances increased by one for each
scenario while the total number of players in each scenario remained fixed.

The results shows that running three Team Fortress 2 dedicated serverinstances in our
case worked well. The number of instances did not dominate the performance, but only
contributes to a small increase in the overall CPU load. The more players on aserver,
the more CPU is utilized. By looking into this we see that the CPU increases linearly
with the number of players present on the server. When it comes to memory, an empty
server uses nearly the same amount of memory as the server with twenty-four players
in the experiment. Ergo, the number of concurrent players hardly affects this resource.
Graphs shows that the process allocates most of the memory in the beginning,and this
is used actively. For each instance we add, the more physical memory is consumed.
Also, we find that the amount of memory allocated depends on which map is set when
the server is executed. Knowing this we can make a rough estimate on how much
available memory we need in order to run a number of instances on the same physical
hardware. That being said, the objective of this thesis has been achieved, but there are
room for improvements.

The author consider the possibility of the developed monitoring tool in this thesisbeing
adopted by game server providers to be minimal. Instead, the script may be useful for
people administrating their own game server. Compared to Munin, the script takes up a
minimum of system resources and provides performance graphs per instance, instead
of an overall performance overview. The tool is a good alternative in cases where
one want to monitor a game server without affecting the overall performance of the

60

6.1. FUTURE WORK

machine.

6.1 Future Work

6.1.1 Munin

If time was not a limiting factor the experiment carried out in this study would be
repeated again to check whether Munin is the application which causes in-game lag at
regular intervals or not. This can be done in various way:

• Make a note of the time whenever a participant put up his hand, which implies
that lag has been experienced.

• Improve the questionnaire, as all participants did not write down the time when
they experienced lag, just that they had experienced some lag.

• Start Munin simultaneously with the script so that we know the exact time Munin
starts.

6.1.2 Other Games and Hardware

Another future project would be to monitor the performance of other games than Team
Fortress 2 to check whether the findings in this study are representative.Additionally,
test with different hardware. It would be interesting to see how a game server performs
using different technologies, like multi-core CPUs.

6.1.3 Improve Monitoring System

Although the monitoring system works in its current shape, the author have identified
two areas for further improvements:

User friendliness : The tool consist of three individual scripts where each of the them
must interact together in order to make up a fully functional monitoring tool.
Additionally, each of the scripts takes several arguments. This relation between
the components may confuse an outsider. To ease the execution of the scripts
before the experiment, a additional script was made. Merging these scriptswith
enhanced user friendliness and additional functions can be a project for future
work.

Functionality : At the time being, the tool plots gathered data without processing
it first, ergo it plots raw data. This concerns variables gives cumulative data.
For instance variables like stime, utime and minor fault. Consequently, this
makes it hard in some cases to interpret the true meaning of what the graphs
shows through the monitoring web page. As a result, the cumulative data has to
be processed manually which is not a sufficient solution in real life production

61

6.1. FUTURE WORK

environment. Therefore, the tool should automate this process of transforming
cumulative data before being plotted.

62

6.1. FUTURE WORK

63

Bibliography

[1] Entertainment S. Association. Essential facts: About the computer andvideo
game industry (2006).http://www.theesa.com/archives/files/
EssentialFacts2006.pdf , 2006.

[2] Entertainment S. Association. Essential facts: About the computer andvideo
game industry (2007).http://www.theesa.com/archives/files/
ESA-EF\%202007.pdf , 2007.

[3] Logitech. Logitech is gaming. http://www.logitech.com/index.
cfm/gaming/\&cl=us,en , 2008.

[4] Robert W. Crandall and J. Gregory Sidak. Video games: Serious business
for americas economy.http://www.theesa.com/archives/files/
2006\%20WHITE\%20PAPER\%20FINAL.pdf , 2006.

[5] eSport Arena. Faq.http://www.esportarena.net/faq , 2008.

[6] Chris Chambers, Wu chang Feng, Sambit Sahu, and Debanjan Saha.
Measurement-based characterization of a collection of on-line games. InIMC
’05: Proceedings of the 5th ACM SIGCOMM conference on Internet measure-
ment, pages 1–14, New York, NY, USA, 2005. ACM.

[7] Ahmed Abdelkhalek, Angelos Bilas, and Andreas Moshovos. Behavior and per-
formance of interactive multi-player game servers.Cluster Computing, 6(4):355–
366, October 2003.

[8] Microsoft. Overview of performance monitoring. http://www.
microsoft.com/technet/prodtechnol/Windows2000Pro/
reskit/part6/proch27.mspx?mfr=true , 2008.

[9] Tobias Oetzel. Realtime player statistics for half life 1 and half life 2.http:
//www.hlstatsx.com/ , 2008.

[10] Timo Stripf. Game server browser and administration tool.www.hlsw.org ,
2008.

[11] Linpro. Munin. http://munin.projects.linpro.no/ , 2008.

[12] Ethan Galstad. Nagios.http://www.nagios.org/ , 2008.

[13] Cacti. Cacti.http://www.cacti.net/ , 2008.

64

BIBLIOGRAPHY

[14] Valve. Server queries. http://developer.valvesoftware.com/
wiki/Server_Queries , 2008.

[15] Aeleen Frisch.Essential System Administration. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, third edition, 2002.

[16] FAQs. What is black box/white box testing?http://www.faqs.org/
faqs/software-eng/testing-faq/section-13.html , 2007.

[17] Testing Brain. Software testing.http://www.testingbrain.com/ ,
2008.

[18] Lorenz Breu. Online-games: Traffic analysis of popular game servers (counter
strike:source). Master’s thesis, Eidgenssische Technische Hochschule Zrich,
September 2007.

[19] David J. Lilja. Measuring computer performance: a practitioner’s guide. Cam-
bridge University Press, New York, NY, USA, 2000.

[20] Brookhaven National Laboratory. The first video game.http://www.bnl.
gov/bnlweb/history/higinbotham.asp , 2008.

[21] Oilzine.com. Origins of the two pillars of the home gaming mar-
ket. http://www.oilzine.com/features/features_details.
asp?ID=49 , 2008.

[22] PDP-1 Restoration Project. Spacewar!http://www.computerhistory.
org/pdp-1/index.php?f=theme&s=4&ss=3 , 2008.

[23] Discovery Channel. I, videogame.http://www.discoverychannel.
co.uk/ivideogame/ , 2007.

[24] William Stewart. Unix history.http://www.livinginternet.com/i/
iw_unix_dev.htm , 2008.

[25] D. M. Ritchie. The evolution of the UNIX time-sharing system.BSTJ, 63,
8:1577–1594, 1984.

[26] Michael Miller. A history of home video game consoles.http://www.
informit.com/articles/article.aspx?p=378141 , 2005.

[27] Wikipedia. Pong.http://en.wikipedia.org/wiki/Pong , 2008.

[28] Wikipedia. Nintendo entertainment system.http://en.wikipedia.org/
wiki/Nintendo_Entertainment_System , 2008.

[29] Hickling Arthurs Low (HAL) Corporation. Entertainment software: The industry
in canada.http://www.theesa.ca/esa-whitepaper.pdf , 2007.

[30] Vg Chartz. The most comprehensive videogame charts in the world.http:
//www.vgchartz.com/ , 2008.

65

BIBLIOGRAPHY

[31] Dan Hewitt. U.s. video game industrys growth outpaces national econ-
omy. http://www.theesa.com/archives/2007/11/us_video_
game_i.php , 2007.

[32] Stephen E. Siwek. Video games in the 21st century: Economic contribu-
tions of the us entertainment software industry.http://www.theesa.com/
files/VideoGames-Final.pdf , 2007.

[33] Wikipedia. Gross domestic product.http://en.wikipedia.org/wiki/
Gross_domestic_product , 2008.

[34] BOXX. We know vfx and it shows.http://www.boxxtech.com/ , 2008.

[35] Graham McKenna. Gamers ripe for high-end a/v systems, research shows.
http://www.cepro.com/article/gamers_ripe_for_high_
end_audio_and_video_systems_research_shows/D3/ , 2007.

[36] Blizzard Entertainment. World of warcraft reaches new milestone: 10
million subscribers. http://www.blizzard.com/press/080122.
shtml , 2008.

[37] Martyn Williams. Toshiba shows prototype tv running on ps3 chip.http:
//www.pcworld.com/article/id,141282/article.html , 2008.

[38] Embedded Star. Mercury computer debuts cell be processor for industrial, med-
ical, military. http://www.embeddedstar.com/press/content/
2005/10/embedded18990.html , 2005.

[39] Wikipedia. Team fortress 2.http://en.wikipedia.org/wiki/Team_
Fortress_2 , 2008.

[40] Game Monitor. Team fortress 2 :: Game server / player search.http://www.
game-monitor.com/search.php?game=tf2 , 2008.

[41] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer sup-
port for massively multiplayer games. citeseer.ist.psu.edu/
knutsson04peertopeer.html , 2004.

[42] Microsoft. Client/server topology. http://msdn2.microsoft.com/
en-us/library/bb153244(VS.85).aspx?pull=/msdnmag/
issues/0500/security/default.aspx , 2008.

[43] Valve. Source multiplayer networking. http://developer.
valvesoftware.com/wiki/Source_Multiplayer_Networkin g,
2007.

[44] Wikipedia. Game server.http://en.wikipedia.org/wiki/Game_
server , 2008.

[45] Jaecheol Kim, Jaeyoung Choi, Dukhyun Chang, Taekyoung Kwon, Yanghee
Choi, and Eungsu Yuk. Traffic characteristics of a massively multi-playeron-
line role playing game. InNetGames ’05: Proceedings of 4th ACM SIGCOMM

66

BIBLIOGRAPHY

workshop on Network and system support for games, pages 1–8, New York, NY,
USA, 2005. ACM.

[46] J. Wu-chang Feng; Chang, F.; Wu-chi Feng; Walpole. A traffic characterization
of popular on-line games.Networking, IEEE/ACM Transactions on, 13(3):488–
500, June 2005.

[47] Olav Dalland.Metode og oppgaveskriving for studenter. Oslo : Universitetsfor-
lag, second edition, 1997.

[48] Knut Halvorsen. Å forske p̊a samfunnet. En innføring i samfunnsvitenskapelig
metode.Bedriftsøkonomens forlag, Oslo, 1993.

[49] Hans Petter Ulleberg. Forskningsmetode og vitenskapsteori (1).http://www.
sv.ntnu.no/ped/hans.petter.ulleberg/vitenskaph99.ht m,
2002.

[50] William M. K. Trochim. Nonprobability sampling. http://www.
socialresearchmethods.net/kb/sampnon.php , 2006.

[51] Mark Burgess. Analytical Network and System Administration. Managing
Human-Computer Systems. J. Wiley & Sons, Chichester, 2004.

[52] Muppet. Guide server.cfg.http://forums.srcds.com/viewtopic/
5264 , 2007.

[53] Steam forum. Insane cpu usage.http://forums.steampowered.com/
forums/showthread.php?t=644751 , 2008.

[54] Ellie Quigley. PERL by example. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, fourth edition, 2008.

[55] William Stallings.Operating systems : internals and design principles. Prentice-
Hall, Inc., fourth edition, 2001.

[56] Kristen Ringdal.Enhet og mangfold : samfunnsvitenskapelig forskning og kvan-
titativ metode. Fagbokforlaget, Bergen, 2001.

[57] David S. Moore and George P. McCabe.Introduction to the practice of statistics.
W.H. Freeman and Company, third edition, 1998.

[58] Rick van der Mieden. Summary: what is the minor faults meaning in
mpstat. http://www.sunmanagers.org/pipermail/summaries/
2005-August/006675.html , 2005.

[59] Long Cheng and Meng Ye. System-performance modeling for massively multi-
player online role-playing games.IBM SYSTEMS, 45(1):355–366, January 2006.

[60] Japje. Install: Linux (rev. 2). http://www.srcds.com/db/engine.
php?subaction=showfull&id=1098643920&archive= , 2004.

[61] Row. Tf 2 server install. http://forums.srcds.com/viewtopic/
5151 , 2007.

67

Appendix A

Setting Up a TF2 Server (linux)

Installing the Team Fortress 2 dedicated server combines the Linux tutorial provided
by forum member Japje[60] and and row[61] at Source Dedicated Server (SRCDS)
forum. It consist of five steps:

Before we start we have to make sure that we are not root. It’s better to doit right away
than afterwards as you might forget in the process that you are installing an application
as root, thus you start over again (personal experience).

Step 1: Get HLDSUpdatetool
Created a dir called srcds1 in my user homedir. Then downloaded the HLDSUp-
datetool from Valve with wget in the dir. Then set correct permissions before hldsup-
date.bin can be executed. Press ”yes” to agree with ”Terms and conditions”. This gives
us a new file called ”steam” which also need permission set.

mkdir srcds1
cd srcds1
wget http://www.steampowered.com/download/hldsupdatetool.bin
chmod +x hldsupdatetool.bin
./hldsupdatetool.bin ,typed ”yes”
chmod +x steam

Step 2: Download files
To install the Team Fortress 2 dedicated server run the commands below. This might
take a while depending on your connection. ”tf” indicates that we’re installing Team
Fortress.

./steam -command update -game ”tf” -dir .

./steam -command update -game ”tf” -dir .

Step 3: Configure server
The next step is to create files in order to customize the gameplay. These are mapcy-
cle.txt, motd.txt and server.cfg.

I

cd orangebox/
cd tf/
nano motd.txt
nano mapcycle.txt
cd cfg/
nano server.cfg

Step 4: Run server
The download from step 3 produced a new file called steamrun, which allows us
to start the server. The code below starts a TF2 server at 128.39.74.31:27015 with
cp dustbowl as the first map. It also set max players allowed on the server to 24
players. Our customized server configuration file is also executed at run.

cd ..
cd ..
./srcdsrun -console -game tf +ip 128.39.74.31 -port 27015 +map cpdustbowl +maxplayers
24 +exec server.cfg -secure

This command will start a dedicated Team Fortress 2 server on 128.39.74.31:27015.
The initial map is cpdustbowl with 24 players restriction. The command will also
execute server.cfg at run in addition to mapchange. Last but not least, inorder to make
the server ”cheat proof”, Valve Anti Cheat (VAC) is activated (the ”-secure” option).

Step 5: Maintain server up to date
Keeping the server up to date is important for two reasons: (1) retrieve thelatest
patches and (2) enable clients to connect to the server.

./steam -command update -game ”tf” -dir .

II

Appendix B

Game Configuration Files

Each time a dedicated game server runs it reads from several files. These are server.cfg,
motd.txt, mapcycle.txt and autoexec.cfg. The ”server.cfg” file contain information
about the server configuration. It also refer to two other files named banneduser.cfg
and bannedip.cfg. These are used to ban players who violate the server rules. ”motd.txt”
displays a welcome message when a user connect to the server and ’mapcycle.txt’ de-
fines the map cycle rotation. The ”autoexec.cfg” file specifies that the server should
log game related information and send this to a HLstatsX server.

B.1 Server Configuration (server.cfg)

1

2 // this is your server name as shown in the server list
3 hostname ’’HiO | All welcome | No lag | Dustbowl/Badlands | HL statsX’’
4

5 sv_password ’’’’
6 // your server password. a pair of double quotes means it is no t set and
7 // anyone can join
8

9 // start rcon settings
10

11 rcon_password ’’ ****** ’’
12 // your rcon password to log into the dev rcon console or HLSW r con
13 // console
14 sv_rcon_banpenalty 5
15 // Number of minutes to ban users who fail rcon authenticatio n
16 sv_rcon_maxfailures 10
17 // Max number of times a user can fail rcon authentication before
18 // being banned
19

20 // end rcon settings
21

22 // start cvars for balancing un-even teams
23

24 mp_autoteambalance 1
25 // 0 is off and 1 is on. if 1 then should be used in conjunction with
26 // the following 3 commands
27 mp_autoteambalance_delay 60
28 // Time (in seconds) after the teams become unbalanced to att empt to
29 // switch players
30 mp_autoteambalance_warning_delay 30
31 // Time (in seconds) after the teams become unbalanced to pri nt a

III

B.1. SERVER CONFIGURATION (SERVER.CFG)

32 // balance warning
33 mp_teams_unbalance_limit 1
34 // Teams are unbalanced when one team has this many more playe rs than
35 // the other (0 disables)
36

37 // end cvars for balancing uneven teams
38

39 // start cvars for round and game times
40

41 mp_enableroundwaittime 1
42 // Enable or disable timers to wait between rounds. 0 is off 1 is on
43 mp_bonusroundtime 20
44 // Time after round win until round restarts (in seconds)
45 mp_restartround 20
46 // Time the current round will restart (in seconds)
47 mp_stalemate_timelimit 120
48 // Time limit (in seconds) of the stalemate round
49 mp_stalemate_enable 1
50 // Sudden death enables on draw. 0 enables stalemate
51 mp_timelimit 60
52 // game time per map in minutes
53

54 // end cvars for round and game times
55

56 // start cvars for win conditions
57

58 mp_maxrounds 4
59 // Max number of rounds to play before server changes maps
60 mp_winlimit 0
61 // Max number of rounds one team can win before a server change s maps
62

63 // end cvars for win conditions
64

65 // start client specific cvars
66

67 mp_forcecamera 1
68 // force dead clients to first person mode disabling free loo k. 0 is off
69 // 1 is on
70 mp_allowspectators 1
71 // enable or disable spectators on the server. 0 is off 1 is on
72 mp_friendlyfire 0
73 // 0 is off and clients can do harm to team mates. 1 is on and players can
74 // kill or injure team mates
75 mp_footsteps 1
76 // footsteps on or off. 0 is off and 1 is on
77 sv_cheats 0
78 // allow cheats to be used by the client. 0 is off 1 is on
79 sv_timeout 300
80 // the amount of time in seconds that a client is booted for no input
81 sv_maxspeed 320
82 // the maximun speed a client can move at
83 sv_consistency 1
84 // Force clients to pass a consistency check for critical files before
85 // joining server. 0 is off 1 is on
86 decalfrequency 10
87 // the pause in seconds between a decal being sprayed
88

89 // end client specific cvars
90

91 // start cvars for communication
92

93 sv_voiceenable 0
94 // allow players to use a microphone. 0 is off 1 is on
95 sv_alltalk 0
96 // toggles whether both teams can hear each others voice comm s or not.
97 // 0 is off 1 is on. recommend it being off

IV

B.1. SERVER CONFIGURATION (SERVER.CFG)

98 mp_chattime 10
99 // players can chat for this amount of time (in seconds) after a game

100 // is over
101

102 // end cvars for communication
103

104 // start download cvars
105

106 sv_allowupload 1
107 // allow custom decals to be uploaded. 0 is off 1 is on
108 sv_allowdownload 1
109 // allow files to be downloaded from the server. 0 is off 1 is on
110 net_maxfilesize 15
111 // Max download file size. Default is 15
112 sv_downloadurl ""
113 //redirect download location
114

115 // end download cvars
116

117 // start bandwidth rates/settings
118

119 sv_minrate 20000
120 sv_maxrate 30000
121 decalfrequency 10
122 sv_maxupdaterate 100
123 sv_minupdaterate 66
124 sv_mincmdrate 66
125 sv_maxcmdrate 100
126

127 // end bandwidth rates/settings
128

129 // start server logging
130

131 //log off
132 // enable or disable server logging. on is on off is off
133 sv_logbans 0
134 // Log server bans in the server logs
135 sv_logecho 0
136 // Echo log information to the console. 0 is off 1 is on
137 sv_logfile 0
138 // Log server information in the log file. 0 is off 1 is on
139 sv_log_onefile 0
140 // log everything in one file
141

142 // end server logging
143

144 // start cvars for general operation
145

146 sv_lan 0
147 // is this an internet or LAN server. 0 is internet 1 is LAN
148 sv_region 3
149 // server location. -1 is the world, 0 is USA east coast, 1 is US A west
150 // coast, 2 south america, 3 europe, 4 asia, 5 australia,6 mid dle east,
151 // 7 africa
152 sv_contact StianO.Jelmert@stud.iu.hio.no
153 // Contact email for server admin
154 sv_pausable 0
155 // enables or disables whether the server can be paused. 0 is o ff 1 is
156 // on
157 sv_pure 1
158 // forces all clients on the server to use content that matche s what
159 // is on the server. 0 is off 1 is on
160 sv_pure_kick_clients 1
161 // kicks clients that do not have content that matches what is on the
162 // server
163

V

B.2. MESSAGE OF THE DAY (MOTD.TXT)

164 // end cvars for general operation
165

166 // start execute ban files
167

168 exec banned_user.cfg
169 exec banned_ip.cfg
170

171 // end execute ban files

B.2 Message of The Day (motd.txt)

Before:

Welcome to Team Fortress 2 @ HiO

Play nice and behave properly;)

Our map rotation is:
- Dustbowl
- Badlands

Now:

http://teamfortress.iu.hio.no/motd.html

Figure B.1:What a user will see after connecting to OUC’s Team Fortress 2 server

The screenshot (figure B.1) present information divided into four sections:

VI

B.2. MESSAGE OF THE DAY (MOTD.TXT)

Overview: The number of unique players the server have had, kill and headshots since
04.02.08. In addition to the current map, map time and the number of players
on the server when connecting to the server.

Top 10: The ten best players on the server.

Information: Brief information about OUC.

Server rules: Five server rules that should be followed by those who want to play on
the server.

B.2.1 motd.hml

1

2 <html>
3 <head>
4 <title>MOTD</title>
5

6 <style type="text/css">
7 body
8 {
9 background-color: #f4f4f4;

10 }
11 .tekst {
12 font-weight: bold;
13 font-size: 10px;
14 font-family: Verdana, Arial, Helvetica, sans-serif;
15 }
16 .tekst2 {
17 font-size: 10px;
18 font-family: Verdana, Arial, Helvetica, sans-serif;
19 }
20 .strek
21 {
22 border-bottom: #000000 1px solid;
23 }
24 a
25 {
26 color: #000000;
27 font-size: 10px;
28 font-family: Verdana, Arial, Helvetica, sans-serif;
29 text-decoration: none;
30 }
31

32 a:link, a:visited
33 {
34 color: #000000;
35 font-size: 10px;
36 font-family: Verdana, Arial, Helvetica, sans-serif;
37 text-decoration: none;
38 }
39

40 a:hover
41 {
42 color: #000000;
43 font-size: 10px;
44 font-family: Verdana, Arial, Helvetica, sans-serif;
45 text-decoration: underline;
46 }
47

48 </ style>

VII

B.2. MESSAGE OF THE DAY (MOTD.TXT)

49

50 </ head>
51

52 <body>
53

54 <table width="800" border="0" align="center" cellpadding="0" cellspacing="0">
55 <tr>
56 <td align="center"> < span class="tekst">Welcome to</ span></ td>
57 </ tr>
58 <tr>
59 <td align="center">
60 <iframe frameborder="0" src="http://hio.hlstatsx.com/status.php?width=400
61 &server_id=1&game=tf&show_players=0&show_logo=no&ma p_image=0&show_top=10
62 &bg_color=f4f4f4&border_color=f4f4f4&body_color=f4f 4f4&show_summary=1&
63 show_map_wins=0" scrolling="no" width="400px" height="300px"> </ iframe>
64
For complete stats go to
65 http://hio.hlstatsx.com</ a>
66

67

68

69 </ td>
70 </ tr>
71 <tr>
72 <td>
73 <table width="400" border="0" align="center" cellpadding="0" cellspacing="0">
74 <tr>
75 <td valign="top">
76

77 <DIV valign="top" class=strek>
78 <div align="center" class="tekst">Information</ div>
79 </ DIV>
80 <div align="center">< span class="tekst2">< br>
81 The server is provided by:< br>
82

83 < img src="hio.gif" alt="HiO" width="392"
84 height="109" border="0"></ a>

85 </ span>

86 as a part of a master thesis project at the
87 Networ k and
88 System Administration Programme</ a>.</ span>

89

90 </ div></ td>
91 <tr>
92 <td colspan="2" valign="top">
93

94 <DIV valign="top" class=strek>
95 <div align="center">
96 <DIV valign="top" class=strek>
97 <div align="center"> < span class="tekst"> Rules: </ span></ div>
98 </ DIV>
99 </ div>

100 </ DIV>
101

102 1. The administrators are always right.< br>
103 2. Treat other players as you wish to be treaten. < br>
104 2. Player harrassment or offensive behavior will not be toll erated.< br>
105 3. No spam in chat or through voice commands (e.g. need dispen ser here). < br>
106 4. Use English or Norwegian language (Swedish and Danish are accepted as well)
107 only < br>
108 5. Play fair and have fun! </ span></ td>
109 </ tr>
110 </ table></ td>
111 </ tr>
112 </ table>
113 </ body>
114 </ html>

VIII

B.3. MAP CYCLE (MAPCYCLE.TXT)

B.3 Map Cycle (mapcycle.txt)

cp dustbowl
cp badlands

B.4 Autoexec (autoexec.cfg)

log 1
logaddressdelall
logaddressadd logs10.hlstatsx.com:30653

IX

B.4. AUTOEXEC (AUTOEXEC.CFG)

X

Appendix C

Miscellaneous Installs

C.1 Install New Kernel

apt-get update
apt-cache search — grep 2.6
apt-cache search image
apt-cache search linux-image
jed /etc/apt/sources.list
apt-get update
apt-cache search linux-image
apt-get install linux-image-2.6.24-5-server
jed /boot/grub/menu.lst
reboot

C.2 Set Up Web Server

sudo apt-get install apache2
sudo /etc/init.d/apache2 restart
http://teamfortress.iu.hio.no/ It worked!

C.3 Enable public html

cd /etc/apache2/mods-enabled
sudo ln -s ../mods-available/userdir.load
sudo ln -s ../mods-available/userdir.conf
/etc/init.d/apache2 restart

http://teamfortress.iu.hio.no/ stianj/

XI

C.3. ENABLE PUBLICHTML

XII

Appendix D

Emails

D.1 Academic licensing at Valve

From: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
To: academiclicensing@valvesoftware.com
Subject: Master thesis

Hi!

I’m a student currently taking a international Masters degree in Network and system
administration at Oslo University College, Norway. My thesis is about performance
monitoring of a game server, in this case a Team Fortress 2. I?ve now come tothe point
where i should plan a experiment. I’m thinking of running multiple measurements, first
with 2 players, then 4 etc.

My only concern is getting enough participants from my school to participate inthe
experiment. The experiment will be announced to all students. My school will provide
the pc’s, but the problem is that i do not have enough steam accounts (with TF2) to
all. As an active Steam user for many years, i know that Valve operates with ”Guest
Passess”. Is there a possibility to get guest passes for one day?

Regards,

Stian Opsahl Jelmert

From: Arsenio Navarro <arsenio@valvesoftware.com>
To: Stian Opsahl Jelmert<StianO.Jelmert@stud.iu.hio.no>
Subject: RE: Master thesis

Hello Stian,

Thank you for your email.

I would be happy to help you with your request.

How many guest passeses would you need? How long would you need the guest
passes?

XIII

D.1. ACADEMIC LICENSING AT VALVE

Best Regards,

Arsenio Valve Cybercafe Program

From: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
To: Arsenio Navarro <arsenio@valvesoftware.com>
Subject: RE: Master thesis

Hi!

Hi and thanks again for your reply!

My supervisor and I have now discussed the approach of the experiment in more de-
tails. We came up with 24 guest passes lasting a period of 6 weeks. It’s hardto assess
how much time the testing will take due to installation times on all machines and
checks that everything works perfectly before carrying out the experiment. Further,
in case there should be a problem i would like to have leeway for two evenings with
student participation.

CC’ing to my two supervisors.

Best Regards,

Stian Opsahl Jelmert

From: Arsenio Navarro <arsenio@valvesoftware.com>
To: Stian Opsahl Jelmert<StianO.Jelmert@stud.iu.hio.no>
Subject: RE: Master thesis

Hello Stian,

I can set this up for your. However, instead of using guest passes I would recommend
you use Temporary Steam Tournament Accounts. These are the type of accounts that
we provide for academic institutions participating in the Valve Academic Licensing
Program or SourceU. These accounts operate as normal Steam Accounts. I can provide
account usernames as passwords. What are the date you will need access to these
accounts?

Best Regards,

Arsenio

From: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
To: Arsenio Navarro <arsenio@valvesoftware.com>
Subject: RE: Master thesis

Hi Arsenio!

Thanks for all your help, I greatly appreciate it. The date I?ll need theseaccounts are
on April 8th.

EDIT: Can I get the accounts as soon as possible? I am sorry for any inconvenience
caused.

XIV

D.2. INVITATION TO GAME EVENING

Best Regards,

Stian Opsahl Jelmert

From: Arsenio Navarro <arsenio@valvesoftware.com>
To: Stian Opsahl Jelmert<StianO.Jelmert@stud.iu.hio.no>
Subject: RE: Master thesis

Hello Stian,

I will set this up for you effective April 2, 2008.

What is the last day you will need access to the account?

Best Regards,

Arsenio

From: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
To: Arsenio Navarro <arsenio@valvesoftware.com>
Subject: RE: Master thesis

Hi and thanks for quick reply:)

May 12th would be nice.

Best Regards,

Stian Opsahl Jelmert

From: Arsenio Navarro <arsenio@valvesoftware.com>
To: Stian Opsahl Jelmert<StianO.Jelmert@stud.iu.hio.no>
Subject: RE: Master thesis

Hello Stian,

I have enabled the sequentially named accounts TU0100200PC1 through TU0100200PC24
(TU0100200PC1, TU0100200PC2, TU0100200PC3 etc.) for your use. The password
for each account is ”47647581” without the quotation marks. These accounts are as-
sociated with your email address. These accounts will be disabled on May 13, 2008.

We would be intersted in seeing your thesis.

Good luck with your project.

Best Regards,

Arsenio

D.2 Invitation To Game Evening

From: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
To: stud-iu-4aa-liste@hio.no, stud-iu-5aa-liste@hio.no, stud-iu-1aa-liste@hio.no,

XV

D.3. RESPONSE TO THE REQUESTS

stud-iu-1ab-liste@hio.no, stud-iu-1ac-liste@hio.no, stud-iu-2aa-liste@hio.no, stud-
iu-2ab-liste@hio.no, stud-iu-2ac-liste@hio.no, stud-iu-3aa-liste@hio.no, stud-iu-
3ab-liste@hio.no, stud-iu-3ac-liste@hio.no, stud-iu-1ia-liste@hio.no, stud-iu-2ia-
liste@hio.no, stud-iu-3ia-liste@hio.no, stud-iu-1da-liste@hio.no, stud-iu-1db-liste@hio.no,
stud-iu-2da-liste@hio.no, stud-iu-2db-liste@hio.no, stud-iu-3da-liste@hio.no, stud-
iu-3db-liste@hio.no
Cc: Hårek Haugerud <Harek.Haugerud@iu.hio.no>,
Kyrre Begnum <Kyrre.Begnum@iu.hio.no>
Subject: Team Fortress 2 Game Evening/Spillekveld!

Hei!

Jeg er en student som for tiden jobber med min masteroppgave i nettverks- og sys-
temadministrasjon. Fra klokken 17:00 til 21:00 førstkommende mandag (14 april)vil
det bli arrangert en spillekveld på skolen som en del av oppgaven min. Dette vil finne
sted i 4 etasje, rom PH422 i P35 bygningen. Når dette er sagt trenger jeg 24 frivillige
studenter. Skolen stiller med PC til hver enkelt deltaker, men det er også mulig ta med
egen laptop/desktop så fremt Team Fortress 2 er installert på forh̊and (!). Som takk for
at dere hjelper meg vil det bli servert pizza og brus den aktuelle dagen.

Ta kontakt om dette hœres interessant ut:)

PS: Maskinene har ikke musmatte, så jeg anbefaler alle om̊a ta med en.

Mvh,

Stian

Greetings fellow students!

I’m a student currently working on my Master Thesis in the Network and System
Administration. On Monday (April 14), from 5:00 p.m. to 9:00 p.m. there will be held
a game evening at school (room PH422, 4th floor in the P35 building) as a part of my
experiment. Therefore, i need 24 voluntary students that’s up for some gaming. The
school will provide PC’s, but you may as well bring your own laptop/desktop computer
as long it has Team Fortress 2’s pre-installed. As a reward for helping meout on my
thesis there will be served pizza and soda.

Please contact me if this sounds interesting:)

PS: I recommend everyone to bring a mousepad, as they are not available on the data-
lab.

Best Regards,

Stian

D.3 Response To The Requests

Hei!

XVI

D.3. RESPONSE TO THE REQUESTS

Takk for at du meldte deg på. Setter stor pris p̊a det. Jeg har n̊a registrert deg som
deltaker p̊a mandag. Hvis du mot formodning ikke kan møte opp påmandag er det vik-
tig at jeg f̊ar beskjed da jeg er avhengig av deltakere for få gjennomført eksperimentet
mitt.

PS: Det er mulighet for̊a ta med egen pc/laptop dersom du vil det (øker spillop-
plevelsen). Bare si fra dersom du bestemmer deg for det, da jeg må gi deg brukernavn
og passord p̊a forh̊and (hvis du ikke har egen konto). Du kan da spille Team Fortress
2 gratis frem til 13 mai.

Mvh,

Stian

XVII

D.3. RESPONSE TO THE REQUESTS

XVIII

Appendix E

Letters

E.1 Experiment at School

|_ _|.-----.---.-.--------.

| | | -__| _ | |
|___| |_____|___._|__|__|__|

_______ __ ______
___	.-----.----.		_.----.-----.-----.-----.	__								
___		_	_		_	_	-__	__ --	__ --		__	
___		_____	__		____	__		_____	_____	_____		______

Velkommen til spillekveld her p̊a HiO!

Idag er du en del av et eksperiment hvor hovedmålet erå stressteste en Team Fortress
2 spillserver. Eksperimentet tar for seg 3 scenarioer:

• Kjøre 1 spillserver p̊a en maskinen.

• Kjøre 2 spillservere samtidig på en maskin.

• Kjøre 3 spillservere samtidig på en maskin.

For å starte Steam, gjør følgende:

1. Trykk ”Start” .

2. ”Alle programmer” .

XIX

E.1. EXPERIMENT AT SCHOOL

3. ”Steam” , og s̊a ”Steam” .

4. Logg inn med passordet”47647581”, deretter trykk”login” .

Før vi g̊ar inn i Team Fortress m̊a du aktivere”console”. Dette gjøres ved̊a følge
stegene nedenfor:

1. Velg fanen”My Games” .

2. Høyreklikk p̊a ”Team Fortress 2”.

3. Velg ”Properties” .

4. Klikk på ”Set launch options”.

5. Skriv ”-console” i vinduet somåpner seg.

6. Klikk ”OK” , deretter”Close” .

For å starte spillet, dobbelklikk p̊a ”Team Fortress 2” under ”My Games”. Ettersom
vi ikke akkurat har med spillmaskiner herå gjøre , anbefaler jeg deg̊a velge lavere
oppløsning i selve spillet for̊a bedre spillopplevelsen. Dette gjøres vedå følge stegene
nedenfor:

1. Klikk på ”options” i menyen som befinner seg på venstresiden.

2. Velg fanen”video” .

3. Sett”resolution” til ”800 x 600”, trykk s̊a ”apply” .

4. Trykk p̊a knappen”advanced”.

5. Sett”antialiasing mode” til ”none” , trykk s̊a ”ok” .

Hvis du vil justere følsomheten på musen velg fanen”mouse”. Anbefaler ogs̊a å
hake av”mouse filter” . Trykk s̊a ”apply” og deretter”ok” for å komme tilbake til
consolen.

XX

E.2. QUESTIONNAIRE

Før vi setter igang med̊a spille, skal dere deles inn i 3 grupper: A, B og C.

Gruppe A best̊ar av PC 1 - 8 (venstre rekke).
Gruppe B best̊ar av PC 9 - 16 (midtre rekke).
Gruppe C består av PC 17 - 24 (høyre rekke).

Scenario 1 starter 17:30 og slutter 18:20:

Her skal alle gruppene koble seg til serveren vedå skrive følgende i consolen:
connect 128.39.74.31:27015;password hiorocker

Scenario 2 starter 18:25 og slutter 19:15:

Her skal gruppe A og halve B (PC 9-12) koble seg til vedå skrive følgende:
connect 128.39.74.31:27015;password hiorocker

Her skal gruppe C og halve B (PC 13-16) koble seg til vedå skrive følgende:
connect 128.39.74.31:27016;password hiorocker

Scenario 3 starter 19:20 og slutter 20:10:

Gruppe A kobler seg til serveren vedå skrive følgende:
connect 128.39.74.31:27015;password hiorocker

Gruppe B kobler seg til serveren vedå skrive følgende:
connect 128.39.74.31:27016;password hiorocker

Gruppe C kobler seg til serveren vedå skrive følgende:
connect 128.39.74.31:27017;password hiorocker

E.2 Questionnaire

Spørreskjema

1. Hvor erfaren er du med multiplayer FPS spill (TF2, CSS, HLDM)?

Erfaren
Ikke erfaren

2. Hvor ofte spiller du FPS spill?

Hver dag eller nesten hver dag
Flere dager i uken
En dag i uken

XXI

E.2. QUESTIONNAIRE

1 til 3 dager per m̊aned
Aldri eller nesten aldri

Scenario 1:

1. Hvordan opplevde du flyten i spillet når du spilte? 10 er best og 0 er dårligst!

2. Hvis du spilte p̊a denne serveren på fritiden og spillingen ikke var en del av eksper-
imentet, ville du da fortsatt̊a spille eller ville du ha byttet til en annen server?

Ja, ville fortsatt̊a spille
Nei, ville byttet

3. Har du endret instillinger (grafikk, tastatur ++) i forhold til det som bleforesl̊att i
arket?

Ja
Nei

Kommentar: Gjerne skriv ned tidspunkt når du opplever lag eller spesielle situasjoner
(kortvarige lag).

Scenario 2:

1. Hvordan opplevde du flyten i spillet når du spilte? 10 er best og 0 er dårligst!

2. Hvis du spilte p̊a denne serveren på fritiden og spillingen ikke var en del av eksper-
imentet, ville du da fortsatt̊a spille eller ville du ha byttet til en annen server?

Ja, ville fortsatt̊a spille
Nei, ville byttet

3. Har du endret instillinger (grafikk, tastatur ++) i forhold til det som bleforesl̊att i
arket?

Ja
Nei

XXII

E.2. QUESTIONNAIRE

Kommentar: Gjerne skriv ned tidspunkt når du opplever lag eller spesielle situasjoner
(kortvarige lag).

Scenario 3:

1. Hvordan opplevde du flyten i spillet når du spilte? 10 er best og 0 er dårligst!

2. Hvis du spilte p̊a denne serveren på fritiden og spillingen ikke var en del av eksper-
imentet, ville du da fortsatt̊a spille eller ville du ha byttet til en annen server?

Ja, ville fortsatt̊a spille
Nei, ville byttet

3. Har du endret instillinger (grafikk, tastatur ++) i forhold til det som bleforesl̊att i
arket?

Ja
Nei

Kommentar: Gjerne skriv ned tidspunkt når du opplever lag eller spesielle situasjoner
(kortvarige lag).

XXIII

E.2. QUESTIONNAIRE

XXIV

Appendix F

Scripts

F.1 Shell Script

F.1.1 execute.sh

1

2 #!/bin/sh
3

4 ###
5 ########### Simple script to start and stop game servers in ###########
6 ##################### three different scenarios. ######################
7 ###
8

9 # Paths go here.
10 dir="/home/stianj/srcds_1/orangebox"
11 dir2="/home/stianj/"
12

13 # Names of the logfiles.
14 scenario1log1="x1"
15 scenario2log1="x2"
16 scenario2log2="x3"
17 scenario3log1="x4"
18 scenario3log2="x5"
19 scenario3log3="x6"
20

21 # Specifying server variables.
22 com1="+ip 128.39.74.31 -port 27015 +map cp_dustbowl +maxp layers 24 \
23 +exec server.cfg -secure"
24 com2="+ip 128.39.74.31 -port 27016 +map cp_dustbowl +maxp layers 24 \
25 +exec server.cfg -secure"
26 com3="+ip 128.39.74.31 -port 27017 +map cp_dustbowl +maxp layers 24 \
27 +exec server.cfg -secure"
28

29 ###
30 ## Clear screen before starting.
31

32 clear
33 echo "-- -----------"
34 echo "Start, runs a team fortress 2 server w/ analyzing & logging" .
35 echo "Stop, terminates everything which was initialized with St art".
36 echo "Also, the number indicate the number of instances which wil l \
37 start and stop. E.g. start2 = two game servers are executed."
38 echo "-- -----------"
39 echo ""
40 echo "Usage: ’basename $0’ {start|stop|start2|stop2|start3| stop3}"

XXV

F.1. SHELL SCRIPT

41

42 read NUM
43

44 case $NUM in
45 "start")
46 sleep 1
47 echo "Starting Team Fortress 2 game server.."
48 cd $dir
49 screen -A -m -d -S server1 ./srcds_run -console -game tf $com 1
50

51 sleep 1
52 echo "Initializing Logging.."
53 cd $dir2
54 # runs datacollection script with <IP> <PORT> <LOGFILE>
55 screen -A -m -d -S log1 ./datacollection.pl -I 128.39.74.31 -p 27015 \
56 -L $scenario1log1.log
57

58 sleep 5
59 echo "Initializing Analyzing.."
60 # runs analyze script with <logfile> <interval>
61 screen -A -m -d -S analyze1 ./update.pl $scenario1log1 300
62 ;;
63

64 "stop")
65 echo "Terminating screens.."
66 screen -S server1 -X quit
67 screen -S log1 -X quit
68 screen -S analyze1 -X quit
69 echo "All scripts are now stopped"
70 ;;
71

72 "start2")
73 sleep 1
74 echo "Starting two Team Fortress 2 game servers.."
75 cd $dir
76 screen -A -m -d -S server1 ./srcds_run -console -game tf $com 1
77 screen -A -m -d -S server2 ./srcds_run -console -game tf $com 2
78

79 sleep 1
80 echo "Initializing Logging.."
81 # runs datacollection script with <IP> <PORT> <LOGFILE>
82 cd $dir2
83 screen -A -m -d -S log1 ./datacollection.pl -I 128.39.74.31 -p 27015 \
84 -L $scenario2log1.log
85 screen -A -m -d -S log2 ./datacollection.pl -I 128.39.74.31 -p 27016 \
86 -L $scenario2log2.log
87

88 sleep 5
89 echo "Initializing Analyzing.."
90 # runs analyze script with <logfile> <interval>
91 screen -A -m -d -S analyze1 ./update.pl $scenario2log1 300
92 screen -A -m -d -S analyze2 ./update.pl $scenario2log2 300
93 ;;
94

95 "stop2")
96 echo "Terminating screens.."
97 screen -S server1 -X quit
98 screen -S server2 -X quit
99 screen -S log1 -X quit

100 screen -S log2 -X quit
101 screen -S analyze1 -X quit
102 screen -S analyze2 -X quit
103 ;;
104

105 "start3")
106 sleep 1

XXVI

F.1. SHELL SCRIPT

107 echo "Starting three Team Fortress 2 game servers.."
108 cd $dir
109 screen -A -m -d -S server1 ./srcds_run -console -game tf $com 1
110 screen -A -m -d -S server2 ./srcds_run -console -game tf $com 2
111 screen -A -m -d -S server3 ./srcds_run -console -game tf $com 3
112

113 sleep 1
114 echo "Initializing Logging.."
115 # runs datacollection script with <IP> <PORT> <LOGFILE>
116 cd $dir2
117 screen -A -m -d -S log1 ./datacollection.pl -I 128.39.74.31 -p 27015 \
118 -L $scenario3log1.log
119 screen -A -m -d -S log2 ./datacollection.pl -I 128.39.74.31 -p 27016 \
120 -L $scenario3log2.log
121 screen -A -m -d -S log3 ./datacollection.pl -I 128.39.74.31 -p 27017 \
122 -L $scenario3log3.log
123

124 sleep 5
125 echo "Initializing Analyzing.."
126 # runs analyze script with <logfile> <interval>
127 screen -A -m -d -S analyze1 ./update.pl $scenario3log1 300
128 screen -A -m -d -S analyze2 ./update.pl $scenario3log2 300
129 screen -A -m -d -S analyze3 ./update.pl $scenario3log3 300
130 ;;
131

132 "stop3")
133 echo "Terminating screens.."
134 screen -S server1 -X quit
135 screen -S server2 -X quit
136 screen -S server3 -X quit
137 screen -S log1 -X quit
138 screen -S log2 -X quit
139 screen -S log3 -X quit
140 screen -S analyze1 -X quit
141 screen -S analyze2 -X quit
142 screen -S analyze3 -X quit
143 ;;
144

145 *)
146 echo "Invalid command is entered!"
147 echo "Usage: ’basename $0’ {start|stop|start2|stop2|start3| stop3}"
148 ;;
149 esac
150 #
151 ###

XXVII

F.2. PERL SCRIPT

F.2 Perl Script

F.2.1 datacollection.pl

1

2 #!/usr/bin/perl
3

4 ###
5 ############ Simple script to log data from a game server #############
6 ###
7

8 use IO::Socket;
9 use Getopt::Std;

10

11 # Define options.
12 my $opt_string = ’P:L:I:S:p:’;
13 getopts("$opt_string", \ my %opt) or die "Usage: [-P <PID>] -I <IP>
14 [-L <LOGFILE>] [-S <SCREEN-SESSION>] [-p <PORT-NUMBER>] \ n";
15

16 # Get the name of the screen session.
17 my $screen = $ARGV[0];
18

19 # port number is set to static unless supplied by the user:
20 my $port_number = $opt{p};
21 $port_number = 27015 unless $port_number;
22

23 #
24 if (not $opt{I}){
25 die "You must supply an IP address\n";
26 }
27

28 # Get hour and date in epoch format.
29 $timeanddate = time;
30

31 # Define paths.
32 my $TF2path = "/home/stianj/srcds_1/orangebox/";
33 my $data_path = "/home/stianj/data";
34

35 if (not $opt{P} and $opt{S}){
36

37 # we need to know where the binary is stored and where to put the
38 # log-files the name of the data log-file is "$session.log" if
39 # that file exists, we refuse to run:
40

41 if (not $opt{L} and stat("$data_path/$screen.log")){
42 die "Datafile $data_path/$screen.log already exists\n";
43 }
44

45 # Jumping to the correct directory.
46

47 chdir("$TF2path");
48 print "Starting server $screen on port $port_number\n";
49

50 # Start TF2 dedicated server.
51 system("/usr/bin/screen -A -m -d -S $screen ./srcds_run -console
52 -game tf +ip $opt{I} -port $port_number +map cp_dustbowl
53 +maxplayers 24 +exec server.cfg -secure");
54

55 # We wait one second because the process might not have started yet.
56 sleep 1;
57 }
58

59 # Get port number.
60 my $variabel;
61 if ($opt{P}){

XXVIII

F.2. PERL SCRIPT

62 $variabel = ‘ps aux | sed -n -e "/[a-z] * $opt{P} /p"‘;
63 } else {
64 # looks like we can supply the port number and fetch the correct
65 # line...
66 $variabel = ‘ps aux | sed -n -e "/\\.\\/srcds_i486 . *
67 -port $port_number/p"‘;
68 }
69

70 chomp($variabel);
71

72 # we run the script as long as the server runs.
73 while ($variabel) {
74 my $currenttime = time;
75 print "sarting new iteration\n";
76

77 # Split and stores the elements from the variable
78 # in a array.
79 @array = split(/\ s+/,$variabel);
80

81 # PID is used to collect additional data.
82 my $proc_stat = ‘cat /proc/$array[1]/ stat‘;
83 chomp($proc_stat);
84 $proc_stat =˜ s/\d+ \S+ \S \d+ \d+ \d+ \d+ \d+ (. *)$/$1/g;
85

86 # Save path from command line to a variable.
87 $file = $ARGV[0];
88

89 # Open log file in append mode.
90 print "Opening Log file\n";
91 my $logfile = "$data_path/$screen.log";
92 if ($opt{L}){
93 $logfile = "$data_path/$opt{L}";
94 }
95 open(LOG,">>$logfile") or die
96 "The reason $logfile could not be opened is: $!";
97

98 # Write to log file.
99 my $logline = "$currenttime $array[8] $array[1] $array[2] $a rray[3]

100 $proc_stat " . fetchSteamInfo() . "\n";
101 print LOG $logline;
102 print "writing line: $logline";
103

104 # Close log file.
105 close(LOG);
106

107 # Print date each time.
108 print "Starting sleep at: ";
109 system("date");
110

111 sleep 20;
112 $count++;
113 print "updating \$variabel\n";
114 $variabel = ‘ps aux | sed -n -e "/\\.\\/srcds_i486 . * -port
115 $port_number/p"‘;
116

117 chomp($variabel);
118

119 }
120

121 print "Server is down, we are done\n";
122

123

124 sub fetchSteamInfo {
125

126 # Establish socket to connect to the game server.
127 my $socket = IO::Socket::INET->new(

XXIX

F.2. PERL SCRIPT

128 Proto=>"udp",
129 PeerPort=> $opt{p},
130 PeerAddr=> $opt{I}
131)
132 or die "Can’t make UDP socket: $@";
133

134 # Send A2S_info query packet to server:
135 $socket-> send("\xFF\xFF\xFF\xFFTSource Engine Query\x00");
136

137 # Retrieve a2s_info packet reply from server and print respons
138 # Steam uses a packet size of 1400 bytes + IP/UDP headers.
139 my $respons;
140

141 # Sometimes we will not receive a response packet from the
142 # server. Instead of waiting endlessly the script waits 4.
143 # seconds before setting -1 -1 -1 as a value.
144 $TIMEOUT = 4;
145 eval {
146 local $SIG{ALRM} = sub { die "alarm time out" };
147 alarm $TIMEOUT;
148 $socket-> recv($respons, 1400);
149 alarm 0;
150 1;
151 } or $respons = "";
152

153 if ($respons){
154

155 # If the packet is received before 4 seconds has elapsed,
156 # then we unpack it.
157 ($a,$type,$version,$hostname,$map,$gamedir,$gamedes c,$appid,
158 $players,$maxplayers,$bots,$dedicated,$os,$password ,$secure,
159 $gameversion) = unpack("iACZ * Z* Z* Z* sCCCaaCCZ* ",$respons);
160

161 # Close socket connection.
162 $socket-> close();
163

164 if ($map eq "cp_badlands"){
165 $map_num = 0;
166 } elsif ($map eq "cp_dustbowl"){
167 $map_num = 1;
168 }
169

170 return "$map_num $players $maxplayers";
171 } else {
172 return "-1 -1 -1"
173 }
174

175 }
176 #
177 ###

XXX

F.2. PERL SCRIPT

F.2.2 analyze.pl

1

2 #!/usr/bin/perl
3

4 ###
5 ########### Simple script to plot data stored in a log file ###########
6 ###
7

8 # Path to Gnuplot.
9 my $gnuplot = "/usr/bin/gnuplot";

10

11 # Take two path arguments from command line.
12 # EG. data/proc19.log public_html/proc19.
13 my $logfile = $ARGV[0];
14 my $outputdir = $ARGV[1];
15

16 # We have 44 variables.
17 ###################
18 my $COLUMNS = 44;
19 ###################
20

21 # Create hash with title entries.
22 my %TITLE_ARRAY;
23 $TITLE_ARRAY[2] = "Start time";
24 $TITLE_ARRAY[3] = "PID";
25 $TITLE_ARRAY[4] = "CPU (percent)";
26 $TITLE_ARRAY[5] = "Memory (percent)";
27 $TITLE_ARRAY[6] = "Process Flags";
28 $TITLE_ARRAY[7] = "Minor Faults (Process)";
29 $TITLE_ARRAY[8] = "Minor Faults (Process and Children)";
30 $TITLE_ARRAY[9] = "Major Faults (Process)";
31 $TITLE_ARRAY[10] = "Major Faults (Process and Children)";
32 $TITLE_ARRAY[11] = "uTime";
33 $TITLE_ARRAY[12] = "sTime";
34 $TITLE_ARRAY[13] = "cuTime";
35 $TITLE_ARRAY[14] = "csTime";
36 $TITLE_ARRAY[15] = "Priority (nice value plus 15)";
37 $TITLE_ARRAY[16] = "Nice Value";
38 $TITLE_ARRAY[17] = "?";
39 $TITLE_ARRAY[18] = "Time in Jiffies Before Next SIGALRM";
40 $TITLE_ARRAY[19] = "Process Start Time in Jiffies after boo t";
41 $TITLE_ARRAY[20] = "Virtual Memory Size (VSIZE)";
42 $TITLE_ARRAY[21] = "Resident Set Size (RSS)";
43 $TITLE_ARRAY[22] = "Current Limit in Bytes on the Process’s RSS";
44 $TITLE_ARRAY[23] = "Startcode";
45 $TITLE_ARRAY[24] = "Endcode";
46 $TITLE_ARRAY[25] = "Startstack";
47 $TITLE_ARRAY[26] = "Current Value of esp";
48 $TITLE_ARRAY[27] = "Current EIP";
49 $TITLE_ARRAY[28] = "Bitmap of Pending Signals";
50 $TITLE_ARRAY[29] = "Bitmap of Blocked Signals";
51 $TITLE_ARRAY[30] = "Bitmap of Ignored Signals";
52 $TITLE_ARRAY[31] = "Bitmap of Catched Signals";
53 $TITLE_ARRAY[32] = "Waiting Channel";
54 $TITLE_ARRAY[33] = "Number of Pages Swapped";
55 $TITLE_ARRAY[34] = "Cumulative nswap for child process";
56 $TITLE_ARRAY[35] = "Exit Signal To Be Sent";
57 $TITLE_ARRAY[36] = "CPU number Last Executed On";
58 $TITLE_ARRAY[37] = "?";
59 $TITLE_ARRAY[38] = "?";
60 $TITLE_ARRAY[39] = "?";
61 $TITLE_ARRAY[40] = "?";
62 $TITLE_ARRAY[41] = "?";
63 $TITLE_ARRAY[42] = "TF2 Map";
64 $TITLE_ARRAY[43] = "Players";

XXXI

F.2. PERL SCRIPT

65 $TITLE_ARRAY[44] = "Max Players";
66

67 die "usage: $0 <LOGFILE> <OUTPUT-DIR>\n" unless $ARGV[0] and $ARGV[1];
68

69 # Make a png subdirectory folder.
70 mkdir($ARGV[1]);
71 mkdir("$ARGV[1]/png");
72

73 # Define size of the png.
74 my $x = 640;
75 my $y = 400;
76

77 for ($i = 2; $i <= $COLUMNS; $i++) {
78

79 # Call Gnuplot program from Perl.
80 # Output lines to Gnuplot until "commands" shows up.
81 open (GNUPLOT, "| $gnuplot") or die "no gnuplot";
82 print GNUPLOT << "commands";
83

84 set term png size $x,$y
85 # set title "$TITLE_ARRAY[$i]"
86 set output "$ARGV[1]/png/$i.png"
87 set grid
88 set style line 1 lt 2 lc rgb "cyan" lw 1
89 set ylabel "$TITLE_ARRAY[$i]"
90 set xdata time
91 set timefmt "%s"
92 # set format x "%a"
93 set format x "%H:%M"
94 set xlabel "Time"
95 plot "$logfile" using 1:’$i’ title "Colum 1:$i" with lines l s 1
96

97 commands
98

99 # Close Gnuplot program.
100 close(GNUPLOT);
101 }
102

103 # Create index.html file with graphs from logfile.
104 open(FILE,">$ARGV[1]/index.html")
105 or die "The reason test.html could not be opened is: $!";
106

107 print FILE "<HTML>\n";
108 print FILE "<HEAD>\n";
109 print FILE "<TITLE>GRAPHS</TITLE>\n";
110 print FILE "</HEAD>\n";
111 print FILE "<BODY>\n";
112 print FILE "<h2>Performance results from file $logfile</h2>\n" ;
113 print FILE "<table>\n";
114

115 # Four pictures per row.
116 my $pictures_per_row = 0;
117 my $max_pictures = 4;
118

119 print FILE "<tr>\n";
120 for ($i = 2; $i <= $COLUMNS; $i++) {
121 print FILE "<td><div align=\"center\">$TITLE_ARRAY[$i]

122 <img border=0 src=\"png/$i.png\ "
123 width=\"250\" align=\"middle\"></div></td>\n";
124 $pictures_per_row++;
125 if ($pictures_per_row == $max_pictures){
126 print FILE "</tr>\n";
127 print FILE "<tr>\n";
128 $pictures_per_row = 0;
129 }
130

XXXII

F.2. PERL SCRIPT

131 }
132 print FILE "</tr>\n";
133 print FILE "</table>\n";
134

135 print FILE "</BODY>\n";
136 print FILE "</HTML>\n";
137

138 close(FILE);
139 #
140 ###

F.2.3 update.pl

1

2 #!/usr/bin/perl
3

4 ###
5 ################# Simple script to update the graphs ##################
6 ###
7

8 # Specify which log file to generate graphs from and how often
9 # the graphs should be updated.

10 my $logfile = $ARGV[0];
11 my $interval = $ARGV[1];
12

13 die "usage: $0 <LOGFILE> <INTERVAL>\n" unless $ARGV[0] and $ARGV[1];
14

15 while (1) {
16

17 system("./analyze.pl data/$logfile.log
18 /home/stianj/public_html/$logfile");
19

20 sleep $interval;
21 }
22 #
23 ###

XXXIII

