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Abstract
This is a master thesis from a collaboration between Oslo University College and Uninett
Research. Uninett have a passive monitoring device on a 2.5 Gbps backbone link
between Trondheim and Narvik. They uses measurement with optical splitters and
specialized measuring interfaces to trace traffic with Gigabit speed. We would like to
investigate the structure and patterns in these data. It is of special interest to classify the
traffic belonging to different services and protocols.

Traffic classification enables a variety of other applications and topics, including Quality
of Service, security, monitoring, and intrusion-detection that are of use to research,
accountants, network operators and end users. The ability to accurately identify the
network traffic associated with different applications is therefore important. However,
traditional traffic to higher-level application classification techniques such as port-based
is highly inaccurate for some applications.

In this thesis, we provide an efficient approach for identifying different applications
through our classification methodology. Our results indicate that with our technique we
achieves less than 6.5% unknown type in most cases compared to the port-based which is
46.6%.

The project is divided into three phases. First we will have a look at the problems dealing
with collecting data traces in high speed network system. Second we will explore how we
can identify and classify the data into different categories. Finally we will try to analyse
our results offline.

Index terms  Passive network measurement, Cluster, Classification
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1 Introduction
The focus of this thesis is to describe a model of classification on high-speed network
which applies results from the statistical properties of plots to network monitoring
systems.

Over the last few years, traffic on the Internet has increased tremendously, both in terms
of amount of traffic, and in variety of applications. The introduction of voice, video and
other real-time applications has changed the way the Internet is used. This has triggered
the need for a change in traffic handling on the Internet. In particular, there is increasing
demand for service differentiation. The Diffserv architecture [27] of the IETF is one such
step towards fulfilling this demand. However, for any such service, the very basic
problem one encounters is that of classification of services. Well-known port numbers
can no longer be used to reliably identify network applications. There is a variety of new
Internet applications that either do not use well-known port numbers or use other
protocols, such as HTTP, as wrappers in order to go through firewalls without being
blocked. In addition, emerging services avoid the use of well known ports altogether
probably to avoid detection, e.g. some peer-to-peer, (P2P), applications. One
consequence of this is that a simple inspection of the port numbers used by flows may
lead to the inaccurate classification of network traffic.

In this project, we look at these inaccuracies in detail. Using a full payload packet trace
collected from a Uninett Gigabit backbone link we attempt to identify the types of errors
that may result from port-based classification and quantify them for the specific trace
under study. To address this question we devise a classification methodology that relies
on the full packet payload. We describe the building blocks of this methodology and
elaborate on the complications that arise in that context.

We also show that our approach only requires the examination of the very first few
packets to identify a P2P or passive FTP connections. Our technique can significantly
improve the P2P and passive FTP traffics volume estimates over what pure network port
based approaches provide.

These questions can be of interest both in the short term perspective and in a long term
perspective. In the short term perspective this kind of information is used in traffic
management and control, for example as user information systems. In long term
perspective this information is the basis of traffic planning and design. It is essential to
system design, capacity analysis as well as impact analysis.

In this thesis we will try two different approaches to the problem mentioned above. The
first one is to try to classify the number of packets that flow between the backbone link
for a large number of time intervals using port-based technique. While the second
approach is to classify traffic using our content-based methodology.

There is a relative large body of research related to our problem. This research is
reviewed in chapter 2. The following chapter, chapter 3, deals with the experimental



7

plans, how the infrastructure is setup and detailed descriptions of different equipments
that were used. Chapter 4 describes the method to identify and classify the data into
several categories against different criteria.
We also tried to analyse the result using both descriptive and inferential statistics. This is
described in chapter 5, while the errors of the results are described in sub-chapter 5.3.4.
The last chapter of the thesis summarized the conclusions drawn from the work.
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2 Review of related research
2.1 Background on Uninett
The Uninett Group supplies advanced Internet to research and education and have
responsibility for the development, operation, co-ordination and standardisation of
network solutions. Uninett is owned by the Norwegian Ministry of Education and
Research and consists of a parent company and three subsidiaries. The Group is located
in Trondheim.

2.2 Measurement approaches
Most backbone Internet circuits currently operate at speeds ranging from 1 Gb/s to 10
Gb/s [21]. In order to verify operational, performance and security characteristics of the
network and to enable problem resolution we need to measure a high-speed network
monitoring system [19]. We need to measure elementary network performance
characteristics, such as throughput, delay, packet loss rate and jitter. And we also need to
search for traffic patterns indicating possible security problems, such as intrusion or
denial of service attacks.

Measurement data can be collected in two principal ways:

• actively by injecting testing packets into the network and processes them as they
are received in another part of the network [22] or

• passively by observing existing traffic in the network [23].

The monitoring can be performed by standalone units or be router-based.

Both types of monitoring have their advantages and difficulties. Active monitoring is the
easiest way to measure one-way delay, but it is generally unsuitable for other network
characteristics, as it measures characteristics experienced by testing packets, rather than
by existing traffic. Therefore, passive monitoring, which does not influence existing
traffic, has become a popular method of precise and reliable network monitoring.

However, passive network monitoring is becoming increasingly demanding on
computing resources. The reason is that the physical network speed tends to increase
faster than the computer processor speed. We already cannot monitor current high-speed
network links just by tapping traffic with a regular network adaptor, catching all packets
with tcpdump and processing them even on the most powerful PCs [20].

An approach to this problem is SCAMPI, a two-and-a-half years European project to
develop a scalable monitoring platform for the Internet [21].  It has two main goals:

• To enable easy writing of portable monitoring applications
• To enable detailed monitoring of high-speed Internet
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The first goal is realised by providing MAPI – Monitoring API, which enables
application developers to start at higher level of abstraction of flows and monitoring
functions.

The second goal is realised by performing certain time-critical functions needed for most
monitoring tasks inside the SCAMPI adapter, a specialised programmable monitoring
adapter. The data rate going further to the host computer is thus significantly reduced.

Figure 1: SCAMPI architecture

SCAMPI architecture is illustrated in Fig. 1. Several applications run concurrently on top
of MAPI, which in turn runs on top of various network adapters. Currently, they support
the SCAMPI adapter, DAG adapter and regular Ethernet NIC cards. Applications are
portable between computers equipped with any of these adapters. When certain adapter
provides some monitoring function in its hardware or firmware, MAPI will automatically
use it. If it is not provided by the adapter, MAPI will use its own software
implementation of the particular function.

Another monitoring adapter is the DAG card from Endace. When compared to DAG, the
SCAMPI adapter will provide more functionality, it will be an open system allowing
users to download their own firmware into the adapter and it is expected to be
significantly less expensive.

2.3 IP traffic classification

One approach commonly used for identifying applications on an IP network is to
associate the observed traffic (using flow level data, or a packet sniffer) with an
application based on TCP or UDP port numbers.
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The TCP/UDP port numbers are divided into three ranges: the well known ports (0-
1023), the registered ports (1024 - 49151), and the dynamic and/or private ports (49152 -
65535). A typical TCP connection starts with a SYN/SYN–ACK/ACK handshake from a
client to a server. The client addresses its initial SYN packet to the well known server
port of a particular application. The source port number of the packet is typically chosen
dynamically by the client. UDP uses ports similarly to TCP, though without connection
semantics. All future packets in either a TCP or UDP session use the same pair of ports to
identify the client and server side of the session. Therefore, in principle the TCP or UDP
server port number can be used to identify the higher layer application, by simply
identifying which port is the server port and mapping this port to an application using the
IANA (Internet Assigned Numbers Authority) list of registered ports [4]. However, port-
based application classification has limitations.

While networks changed significantly in terms of bandwidth available and type of traffic,
network-monitoring applications basically remains the same. Besides large companies
that can afford to buy expensive network traffic monitoring applications, most people still
uses MRTG [24] polling traffic information out of network routers and switches
interfaces via SNMP MIB-II variables [25].

Unfortunately today this way of monitoring networks is no longer effective because:

• The traffic has changed significantly from what it used to be a few years ago both
in terms of protocols (HTTP is likely not to be the most used protocol anymore)
being used and user (many end-user computers move more data than servers)
behaviour.

• It is no longer possible to predict what is flowing across the network using
aggregate information such as the one provided by the network interface counters.

• Security violation attempts are quite common and cannot be detect without using
specialised tools.

• Well-known ports cannot be used anymore to identify a service (e.g. passive FTP
and P2P use dynamic ports) making it difficult to calculate simple statistics such
as how much FTP traffic is flowing across the local network.

• Many implementations of TCP use client ports in the registered port range. This
might mistakenly classify the connection as belonging to the application
associated with this port. Similarly, some applications (e.g. old bind versions),
use port numbers from the well-known ports to identify the client site of a session.

• An application may use ports other than its well-known ports to circumvent
operating system access control restrictions, e.g., non-privileged users often run
WWW servers on ports other than port 80, which is restricted to privileged users
on most operating systems.
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• There are some ambiguities in the port registrations, e.g. port 888 is used for
CDDBP (CD Database Protocol) and accessbuilder.

• The use of traffic control techniques like firewalls to block unauthorized, and/or
unknown applications from using a network has spawned many work-around
which make port based application authentication harder. For example port 80 is
being used by a variety of non-web applications to circumvent firewalls, which do
not filter port-80 traffic. In fact available implementations of IP over HTTP allow
the tunneling of all applications through TCP port 80.

• Trojans and other security (e.g. DoS) attacks generate a large volume of bogus
traffic which should not be associated with the applications of the port numbers
those attacks use.

2.4 Related work
Due to its fundamental nature and its underpinning of many other techniques, the field of
traffic classification has maintained continuous interest.
For example, still the most common technique for the identification of network
applications through traffic monitoring relies on the use of well known ports: an analysis
of the headers of packets is used to identify traffic associated with a particular port and
thus of a particular application [28, 29]. It is well known that such a process is likely to
lead to inaccurate estimates of the amount of traffic carried by different applications
given specific protocols. Our work is presented in the light of these traditional
classification techniques diminishing in effectiveness.

A recent work [30] uses application signatures to characterize the workload of P2P
downloads. But they do not provide any evaluation of accuracy, scalability or robustness
features of their signature.

Other authors that have noted the relationship between the class of traffic and its
observed statistical properties include Paxson [32] who reports on the distribution of
flow-bytes and flow-packets for a number of specific applications.

A previous related work has examined the variation of flow characteristics according to
application. Claffy [5] investigated the joint distribution of flow duration and number of
packets, and its variation with flow parameters such as inter-packet timeout. Differences
were observed between the support of the distributions of some application protocols,
although overlap was clearly present between some applications. Most notably, the
support of the distribution of DNS transactions had almost no overlap with that of other
applications considered. The use of such distributions as a discriminator between
different application types was not considered.

There exists a wealth of other research on characterizing and modeling workloads for
particular applications, e.g., [6, 7, 8, 9, 10, 11]. An early work in this space, [12],
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examines the distributions of flow bytes and packets for a number of different
applications. Interflow and intraflow statistics are another possible dimension along
which application types may be distinguished. [13] observed that simple (Poisson)
models are unable to effectively capture some network characteristics. However, they did
find a Poisson process could describe a number of events caused directly by the user;
such as telnet packets within flows and connection arrivals for ftp-data.

All these studies assume that one can identify the application traffic unambiguously and
then obtain statistics for that application. In contrast, we are considering the dual problem
of inferring the application from the traffic statistics. This type of approach has been
suggested in very limited contexts such as identifying chat traffic [14]. Analysis of
Internet chat systems to make an effective use of the packet-size profile of particular
applications. The authors note that packets relevant to their studies tend towards a
specific size-profile, limiting themselves to this profile allowed for a more precise
selection of traffic relevant to their study.

Signature-based detection techniques have also been explored in the context of network
security, attack and anomaly detection, e.g. [15, 16, 17, 18] where one typically seeks to
find a signature for an attack. However, we apply our classification techniques to identify
everyday traffic. There is also a large body of literature on extracting information from
packet traces (e.g. [31]) which provides and evaluates signatures at application layer.
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3. Experimental plans and infrastructure setup
This chapter provides a detailed description of experimental plans, infrastructure setup
and equipments that have been performed.

3.1 Passive monitoring process
Our traffic capture system is based on passive traffic measurement of Gigabit Ethernet
link, using optical splitters. A whole copy of the traffic is collected by a PC equipped
with a DAG 4.2GE card [2]. The passive monitoring process consists of three elements:

• A monitoring process which collects the packet traces.
• A data repository process that stores the traces once they have been collected.
• An analysis process which performs offline analysis.

Monitoring process
The monitoring process is responsible for collecting the packet traces. Each trace is a
sequence of packets records at the link, together with timestamp indicating the time at
which the packets were observed.

The monitoring process is handled by a PC, scampi1 at Uninett, and an optical network
interface card, known as the DAG card. On scampi1 there is only one DAG card, at
/dev/dag0, with two interfaces. The card is connected to the Trondheim-Narvik fiber and
we can capture both directions at the same time. Existing DAG cards are capable of
monitoring links ranging in speed from 155 Mbps to 10Gbps. The DAG card captures,
timestamps, and transfers the IP packet to the main memory of the PC and then transfers
the data to the disk space.

The optical splitter is installed on the monitored link, and one output of the splitter is
connected to the DAG card in the PC. This is a receive-only connection, i.e. the DAG
card does not have the capability of injecting data into the network. Since a receive-only
passive optical splitter is used, failure or misbehavior of the monitoring entity or the
DAG card cannot compromise network integrity. The amount of disk space bounds us to
only capture some few hours of data trace at full link utilization. We can either schedule
trace collection for a predefined interval or allow it to run until space on the hard disks is
exhausted. The packet timestamps are generated by an embedded clock on the DAG card
that is synchronized to an external GPS signal. GPS is a satellite-based system that
provides global time information with an accuracy of 20 nanoseconds. Hardware errors
as well as other system related issues bring the maximum error on timestamps to 5 µs.

Data Repository
The data repository is consisting of a disk storage space. It is located at the data center.
For short traces, a dedicated optical link is available for transferring the data from the
monitoring process back to the data center. For long traces consists of several TB, the
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best method is by transferring to another PC, Cia also at Uninett, with larger storage
space.
In our thesis we studies packet traces, and even an one hour trace on a 1Gb link we get
over 35GB of data, while one day of data will be over 1.5TB. So it is not possible to store
data for long periods of time.

Data Analysis Platform
Data analysis is performed offline on a local cluster located at Oslo University College.
Two categories of analysis are performed on the platform:

• Port-based analysis classifies flows according to their port numbers. This analysis
requires access only to the part in the packet header that contains the port
numbers.

• Content-based analysis examine whether a flow carries a well-known signature or
follows well-known protocol semantics.

More details on these analysis on chapter 4.

             Monitoring process                        Data repository              Analysis platform

Figure 2: Infrastructure setup

System parameters:

scampi1.uninett.no
CPU: 2 x Intel(R) XEON(TM) CPU 2.20GHz
Card: Dag Device Driver version 2.4.14 Endace Measurement Systems Ltd,
          Dag 0: Dag 4.22GE, Dual Gigabit Ethernet
Main memory: 2 GB
Storage space: 0.5 TB

Splitter

          medusa.iu.hio.no
   scampi1.uninett.no

    cia.uninett.no

     Monitoring link
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cia.uninett.no
CPU: Intel(R) Xeon(TM) CPU 3.20GHz
Main memory: 1 GB
Storage space: 8.5 TB
Card: Gigabit Ethernet card

medusa.iu.hio.no
master: CPU: Intel(R) Pentium(R) 4 CPU 2.80GHz

 Main memory: 2 GB
 Storage space: 0.6 TB
 Card: 2 x Gigabit Ethernet card

8 x nodes: CPU: Intel(R) Pentium(R) 4 CPU 2.80GHz
       Main memory: 2 GB

Packet size
The packet size distribution depends on the number of requests and the file sizes
requested. For instance, with web traffic the packet sizes usually vary from 40 bytes
(connection setup packets) to 1500 bytes.
The path maximum transmission unit (MTU) is the minimum of the maximum
transmission units on the path and Ethernet is usually on at least one segment of most
paths. Hence most data packets tend to be at most 1500 bytes long.

3.2 DAG card

3.2.1 Introduction
The DAG cards are designed for network surveillance applications. Available with a
wide range of LAN and WAN physical layers, DAG cards are optimized to enable
header-only or full packet capture. Unlike commodity NICs (Network Interface Cards)
that may drop packets under load, DAG cards are designed to operate smoothly on high
speed links [1].

DAG cards are used to collect packet header and payload from ATM or Ethernet
networks and are protocol independent. Full packet or cell capture at line rate allows
recording of all header information and/or payload with a high precision timestamp. The
packet header and payload information can be stored for later in-depth analysis, or used
in real-time for a variety of network monitoring applications, such as billing and intrusion
detection systems.

An important feature of DAG cards is the ability to move large quantities of data from
network to the host computer with low CPU burden. Almost the entire resources of the
host computer remain available to the analysis application. This makes applications run
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faster, enabling more processing per packet or increasing the rate at which packets are
processed.

DAG cards accurately preserve timing information from network flows by generating
precise timestamps in hardware for each packet as it arrives at the monitoring point. The
hardware clock on the DAG may be further synchronized to other DAG cards or to an
external time standard such as the Global Positioning System (GPS). This enables QoS
applications such as one-way packet or cell delay, and delay variation measurements over
WANs or the internet.

Uninett is currently using DAG 4.2GE dual interface 1000baseSX Gigabit Ethernet cards.

3.2.2 Architecture
The major components of the DAG 4.2GE are shown in Figure 3.

Figure 3: DAG 4.2GE major components and data flows

Serial Ethernet optical data is received by the two 1000baseSX optical interfaces, and
passed through demultiplexors. The network data is then fed immediately into the FPGA.
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This FPGA contains the timestamp engine, packet record processor, and PCI interface
logic. The close association of these components means that packets or cells can be time-
stamped very accurately. Time stamped packet records are then stored in an external
FIFO before transmission to the host.

The functionality of the DAG 4.2GE can be extended in many ways. A physical transmit
path is provided on the DAG 4.2GE so packet generation is possible, but this requires
special FPGA images.

A DAG 4.2GE card can be installed in any free 3.3v signaling 64-bit Bus Mastering PCI
slot. By default, the driver supports up to four DAG cards in one system, but it is not
recommended to have more than 2 cards on a single PCI bus due to bandwidth
limitations, as the cards make very heavy use of PCI bus data transfer resources.
However, this is not usually a limitation as for most applications a maximum of two cards
only can be used with reasonable application performance.

3.2.3 Software utilities
This sub-chapter provides a brief description of some of the important utilities provided
in the tools directory of the DAG software package that we used.

dagfour - this program configures the network interface and capture parameters for the
DAG 4.2 card, and displays network interface statistics.

dagsnap - this is a utility to capture network data from a DAG card and write it to a file
or to stdout for piping into other programs.

dagconvert - a program that can convert DAG’s native ERF format trace files into
libpcap format files. It is also capable of capturing from a DAG card directly and writing
libpcap format to disk or piping to another program. It can optionally apply software BPF
packet filters and can filter on input interface.

For further detailed explanation on the usage of different utilities look at the appendix.
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3.3 Beowulf cluster

3.3.1 Introduction
Cluster is a widely-used term meaning independent computers combined into a unified
system through software and networking. At the most fundamental level, when two or
more computers are used together to solve a problem, it is considered a cluster. Clusters
are typically used for high availability for greater reliability or high performance
computing, to provide greater computational power than a single computer can provide.

The cluster at Oslo University College is a Beowulf cluster and consists of a master
machine, a frontend, named medusa.iu.hio.no connected to the net, and eight nodes on a
private network connected by a 10 Gigabit Ethernet switch.

Beowulf clusters are scalable performance clusters based on commodity hardware, on a
private system network, with open source software (Linux) infrastructure. The designer
can improve performance proportionally with added machines. The commodity hardware
can be any of a number of mass-market, stand-alone compute nodes as simple as two
networked computers each running Linux and sharing a file system or as complex as
1024 nodes with a high-speed, low-latency network.

Common uses are traditional technical applications such as simulations,
biotechnology, and petro-clusters; financial market modeling, data mining and stream
processing, and Internet servers for audio and games.

3.3.2 Pros and cons with Beowulf cluster
The pros are that a “standard” Beowulf setup - is very likely to result in a cluster that can
accomplish certain kinds of work much faster than a single computer working alone. The
entire network can be put to work in parallel on parts of the problem with tremendous
increases in the amount of work accomplished per unit time. A cluster of the same size
and computing power as a mainframe is many times cheaper than the mainframe and this
is also a big reason why to use a cluster.

Another good thing about Beowulf is that it does not matter if we change the processor
type and/or speed and network technology, the programming model is still the same
making Beowulf cluster have good forward compatibility.

The cons are that the phrase “certain kinds of work” fails to encompass all sorts of
common tasks. Only certain kinds of work can be run profitably (that is faster) on a
parallel processing supercomputer.

Even worse, as a general rule a task that can be run profitably on a parallel
supercomputer will generally not run any faster on one unless it is specially designed and
written to take advantage of the parallel environment. Very little commercial software
has yet been written that is designed a priori to run in a parallel environment and that
which exists is intended for very narrow and specialized applications.
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Beowulf-style cluster computing is not really just for computer scientists or physicists. It
can provide real and immediate benefits to just about anyone with a need for computation
(in the sense of lots of compute cycles doing real calculations) as opposed to an interface.

3.3.4 Speedup factor

In the following sub-chapter the number of processors will be identified as p. We will use
the term “multiprocessors” to include all parallel computer systems that contain more
than one processor.

Perhaps one of the most important points of interest when developing solutions on a
multiprocessor is the question of how much faster the multiprocessor solves the problem
under consideration.
In doing this comparison, one would use the best solution on the single processor, that is,
the best sequential algorithm on the single-processor system to compare against the
parallel algorithm under investigation on the multiprocessor. The speedup factor, S(p),
is a measure of relative performance, which is defined as:

=S(p)  Execution time using one processor / Execution time using a multiprocessor
p

s

t
t

=

S(p) gives the increase in speed by using multiprocessor.

Several factors will appear as overhead in the parallel version and limit the speedup,
notably:

1. Periods when not all the processors can be performing useful work and are simply
idle.

2. Extra computations in the parallel version not appearing in the sequential version,
as in our experiment, to recomputed constants locally.

3. Communication time between processes.

It is reasonable to expect that some part of a computation cannot be divided into
concurrent processes and must be performed sequentially. We assume that during some
period, perhaps an initialization period, only one processor is doing useful work, and for
the rest of the computation additional processors are operating on processes.

Assuming there will be some part that are only executed on one processor, the ideal
situation would be for all the available processors to operate simultaneously for the other
times, if the fraction of the computation that cannot be divided into concurrent parts, the
time to perform the computation with p processors is given ptfft ss /)1( −+ . Hence, the
maximum speedup factor given by:
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This equation is known as Amdahl’s law [26]. Figure 1.3 shows S(p) plotted against
number of processors and against f. We see that indeed a speed improvement is indicated.
However, the maximum speed up is limited to 1/f.
For example, with only 5% of the computation being serial, the maximum speedup is 20,
irrespective of the number of processors.

Figure 4: Speedup against number of processors, p

In our classifying problem, we divided a large trace among the processors for each one to
perform an independent classifying process. By doing this we can decrease the
classifying process time tremendously.
In a sequential implementation, the different traces are attacked one after other, while in
parallel implementation, they can be done simultaneously.

a) Classifying trace sequentially

         Time

         Data

         Start
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  b) Classifying trace in parallel

         Time

         Data

         Start

         Data
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4 Methods
4.1 Traffic categories
The fundamental classified process in our approach is a traffic-flow which is represented
as a flow of one or more packets between a given pair of hosts. The flow is defined by a
tuple consisting of the IP address of the pair of hosts, the protocol type (e.g., ICMP, TCP
or UDP) and, in the case of UDP and TCP, the port numbers used by the two hosts. In the
case of TCP, a flow has a finite duration defined by the semantics of the TCP protocol.

For our work we used TCPdump to classify the different protocols. TCPdump is a tool
that allows us to sniff network packets and make some statistical analysis out of those
dumps. One major drawback to TCPdump is the size of the flat file containing the text
output. But TCPdump allows us to precisely see all the traffic and enables us to create
statistical monitoring scripts.

TCPdump runs using BSD Packet Filter (BPF) which is the method of collecting data
from the high speed network interface. BPF receives copies from the driver of sent
packets and received packets. Before traveling through the kernel all the way up to the
user process the user can set a filter so only interesting packets go through the kernel.

The TCPdump’s outputs are organized like this:

        Timestamp source -> destination: protocol

The timestamp is in format of hours, minutes, seconds and fractional parts of seconds.
The source and destination fields are the source and destination host name or IP address.
The protocol field for protocol TCP is unique. It contains a flag and a sequence number.
When we see these distinguish characteristics, we know that the record is TCP.
Flags can be any of the list:

TCP Flag Flag Representation Flag Meaning
SYN S This is a session establishment request, which

is the first part of any TCP connection
FIN F This flag indicates the sender’s intention to

gracefully terminate the sending host’s
connection to the receiving host.

RESET R This flag indicates the sender’s intention to
immediately abort the existing connection with
the receiving host.

PUSH P This flag immediately “pushes” data from the
sending host to the receiving host’s application
software. There is no waiting for the buffer to
fill up. In this case, responsiveness, not
bandwidth efficiency, is the focus.
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We can also find ACK (Acknowledgement), URG (Urgent) and “.” (Placeholder) flags
following the ones above.

ACK ack This is used to generally to acknowledge the
receipt of data from the sender.

URGENT urg This flag indicates that there is “urgent” data
that should take precedence over other data.

Placeholder . If connection does not have a SYN, FIN,
RESET or PUSH flag set, a placeholder (a
period) will be found after the destination port.

A TCP outputs:

     19:39:55.820857 hostA.55021 > hostB.20: . ack 54663 win 64240

UDP records are likely to have the word udp in the protocol field in output. Although
true most of the time, TCPdump analyzes some UDP services, such as Domain Name
Service (DNS) and Simple Network Management Protocol (SNMP), at the application
level in addition to the protocol level as UDP. Like Ethereal, TCPdump is a protocol
aware and can interpret normally coded payloads of certain protocols.

19:39:55.820925 hostA.27021 > hostB.25249:  udp 53 (DF)

Finally, ICMP is easily to identify because the word icmp appears, without exception, in
the TCPdump output.

19:40:02.218130 hostA.136 > hostB.51: icmp: echo request

We monitored a trace for a full 24 hour, weekday period and for both link directions, and
got these results:

 Total Packets Total Percentage Total MBytes
Total 2 277 548 800 100 % 1 066 115

TCP
UDP
ICMP
OTHER

Packets
2 206 717 033

53 977 906
15 031 822
1 822 039

% Packets
96.89 %
2.37 %
0.66 %
0,08 %

MBytes
1 032 958

25 267
7 037
853

Table 1: Protocol summary of traffic analysed

Brief statistics on the traffic data collected are given in Table 1. Other protocols were
observed in the trace, namely IGRMP, IPv6-crypt, PIM, ESP and private encryption, but
the largest of them accounted for fewer than 1 million packets (less than 0.05 %) over the
24 hour period and the total of all OTHER protocols was fewer than 1.9 million packets.
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All percentage values given henceforth are from the total of UDP, ICMP and TCP
packets only.

Given the large number of identified applications, and for ease of presentation, we group
applications into types according to their potential requirements from the network
infrastructure. Table 2 indicates nine such classes of traffic.
Importantly, while each flow is mapped to only one category, the characteristics of the
traffic within each category are not necessarily unique. For example, the BULK category
which is made up of ftp traffic consists of both the ftp control channel which transfers
data in both directions, and the ftp data channel which consists of a simplex flow of data
for each object transferred. The grouping of applications into the categories we have
given is largely a user-centric grouping.

Classification Example Application
BULK
INTERAKTIVE
MAIL
SERVICES
WWW
MULTIMEDIA
P2P

CHAT
GAMES

ftp
ssh, telnet
smpt, pop2 and 3, imap
dns, ldap, ntp, auth
http, https, http_alternative
rtsp, Real_media
KaaZa, BitTorrent, GnuTella,
eDonkey, Napster, DirectConnect
Yahoo, AOL, MSN, IRC
HalfLife, WarCraft

Table 2: Network traffic allocated to each category

Our content-based classification scheme can be viewed as an iterative procedure whose
target is to gain sufficient confidence that a particular traffic stream is caused by a
specific application. Grouping packets into flows allows for more-efficient processing of
the collected information as well the acquisition of the necessary context for an
appropriate identification of the network application responsible for a flow.
The first step we need to take is that of aggregating packets into flows according to their
5-tuple. In the case of TCP, additional semantics can also allow for the identification of
the start and end time of the flow. The fact that we observe traffic in both directions
allows classification of all nearly flows on the link. A traffic monitor on a unidirectional
link can identify only those applications that use the monitored link for their datapath.
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Type INTERACTIVE BULK WWW
Session A session starts when

the TCP connection is
opened and end when
the connection is closed
or aborted.

A session starts when the
control connection is
opened and ends when
the control connection is
closed.

A session starts with the
first HTTP request
issued by a user after a
dormant period during
which no HTTP
interactions were seen.
The session ends at the
start of the next
dormant period.

Table 3: Sessions overview

One outcome of this operation is the identification of unusual or peculiar flows
specifically simplex flows. These flows consist of packets exchanged between a
particular port/protocol combination in only one direction between two hosts. A common
cause of a simplex flow is that packets have been sent to an invalid or non-responsive
destination host. The data of the simplex flows were not discarded, they were classified
commonly identified as carrying worm and virus attacks. The identification and removal
of simplex flows (each flow consisting of between three and ten packets sent over a 24-
hour period) allowed the number of unidentified flows that needed further processing to
be significantly reduced.

The second step of our method iteratively tests flow characteristics against different
criteria until sufficient certainty has been gained as to the identity of the application. Such
a process consists of seven different identification sub-methods. We describe these
mechanisms in the next section. Each identification sub-method is followed by the
evaluation of the acquired certainty in the candidate application. Currently this is a
manual process.

4.2 Identification methods
The seven distinct identification methods applied by our scheme are listed in Table 4.
Alongside each method is an example application that we would identify using this
method. Each one tests a particular property of the flow attempting to obtain evidence of
the identity of the causal application.

 Identification method Example
1 Port-based classification
2 Packet header Simplex flow
3 Single packet signature Many worms/virus
4 Single packet protocol IDENT
5 Signature on the first 1024 Byte P2P
6 First 1024 Byte protocol SMTP
7 Flow protocol FTP

Table 4: Flow identification methods.
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Method 1 classifies flows according to their port numbers. This method requires access
only to the part in the packet header that contains the port numbers. Method 2 relies on
access to the to the entire packet header for both traffic directions. It is this method that is
able to identify simplex flows and significantly limit the numbers of flows that need to go
through the remainder of the classification process. Methods 3 to 6 examine whether a
flow carries a well-known signature or follows well-known protocol semantics. Such
operations are accompanied by higher complexity and may require access to more that a
single packet’s payload. According to our experience, specific flows may be classified
positively from their first packet alone. However, others flows may need to be examined
in more detail and a positive identification may be feasible once up top 1024 Bytes of
their data has been observed. Flows that have not been classified at this stage will require
inspection of the entire flow payload. In method 7 we perform full-flow analysis for a
subset of the flows that perform a control function. The control messages were parsed
and further context was obtained that allowed us to classify more flows in the trace.

In our classification technique we will apply each identification method in turn and in
such a way that the more-complex or more-data-demanding methods are used only if no
previous signature or protocol method has generated a match. The outcome of this
process may be:

1. We have positively identified a flow to belong to a specific application
2. A flow appears to agree with more than one application profile
3. No candidate application has been identified.

In our current methodology all three cases will trigger manual intervention in order to
validate the accuracy of the classification, resolve cases where multiple criteria have
generated a match or inspect flows that have not matched any identification criteria.
We describe our validation approach in more detail in Section 4.4.

An illustration of the flow through the different identification sub-methods, as employed
by our approach, is shown in Figure 5. In the first step we attempt to reduce the number
of flows to be further processed by using context obtained through previous iterations.
Specific flows in our data can be seen as “child” connections arising from “parent”
connections that precede them. One such example is a web browser that initiates multiple
connections in order to retrieve parts of a single web page. Having parsed the “parent”
connection allows us to immediately identify the “child” connections and classify them to
the causal web application.



27

Figure 5: Flow diagram over classification approaches

A. Is flow result of another application?
B. Tag flows with known ports
C. First packet “well known” signature?
D. First 1024 Byte “well known” signature?
E. First 1024 Byte “well known” protocol?
F. Flow contains known protocol?
G. Manual intervention

Another example, is passive FTP. Parsing the ”parent” FTP session (Method 7) allows
the identification of the subsequent ”child” connection that may be established toward a
different host at a non-standard port. Testing whether a flow is the result of an already-
classified flow at the beginning of the classification process allows for the fast
characterization of a network flow without the need to go through the remainder of the
process.

4.3 Classification process

If the flow is not positively identified in the first stage then it goes through several
additional classification criteria. The first mechanism examines whether a flow uses a
well-known port number. While port-based classification is prone to error, the port
number is still a useful input into the classification process because it may deliver useful
information about the identity of the flow.
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Service Port
ftp
ssh, telnet
smpt, pop2 and 3, imap
dns, ldap, ntp, auth
http, https, http_alternative
rtsp, Real_media
Kaaza, BitTorrent, Gnutella,
eDonkey, Napster, DirectConnect
Yahoo, AOL, MSN, IRC
HalfLife, WarCraft

20 = ftp-data and 21 = ftp
22, 23
25,109 and 110, 143
53, 389, 123, 113
80, 443, 8080
554, 7070
1214, 6881-6889, 6346 and 6347
4661-4672, 6699-6701, 412
5050, 5190, 1863, 2337
27005-27030, 6112-6119

Table 5: Port-number table

If no well-known port is used, the classification proceeds through the next stages.
In the next stage we test whether the flow contains a known signature in its first packet.
At this point we will be able to identify flows that may be directed to well-known port
numbers but carry non-legitimate traffic as in the case of virus or attack traffic.
Signature-scanning is a process that sees common use within Intrusion Detection Systems
such as Snort [6].

4.3.1 Snort
Snort is a signature-based Network Intrusion Detection System that uses a combination of
rules and preprocessors to analyze traffic. The rules offer a simple and flexible means of
creating signatures to examine a single packet. The preprocessor code allows more
extensive examination and manipulation of data that cannot be done via rules alone.
Preprocessors can perform a variety of tasks such as IP defragmentation, portscan
detection, web traffic normalization and TCP stream reassembly.

Snort comes with a very large set of rules. These rules are updated continuously as new
exploits are discovered. The latest rules can be downloaded from www.snort.org/rules/.
Some of the rules needs to be tuned and adapted to the local site. In order to do this and
understand the alerts given by Snort, it is necessary to know how the rules are
constructed. A Snort rule is made of a rule header and rule options.

The header specifies what to do with packets of the given protocol, IP addresses and
ports. It consists of at most seven fields:

Action Protocol IP port -> IP port
Action Protocol IP port <> IP port

where the arrows specifies one-directional or bi-directional flow.

A sample rule that was detected:

alert tcp any any -> any any ( msg: "nmap TCP ping"; flag: A; ack: 0;)

http://www.snort.org/rules/.
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The rule options follows the header and are contained within parentheses seperated by a
semicolon which acts as a logical AND.

Understanding alert output:

[**] [1:469:3] nmap TCP PING [**]
05/19-21:05:35.078755 128.39.89.9 -> 128.39.89.2
TCP TTL:54 TOS:0x0 ID:37594
***A**** Seq: 0x1668004 Ack: 0x0 Win: 0xC00

The acknowledgement option examines the values of TCP acknowledgement number.
The primary use of this currently is to detect nmap pings. When namp tries to access if a
host is alive, it sends a unique signature. It sets ACK flag on, and it sets the
acknowledgement values of 0. this would be a rare setting to find in a normal traffic
because it would be indicative of an already established connecting acknowledging that
the previous TCP sequence number received was 2^32 – 1, and now the acknowledgment
number is wrapping back to 0.

4.3.2 IDENT protocol
If no known signature has been found in the first packet we check whether the first packet
of the flow delivers semantics of a well-known protocol. An example to that is IDENT
protocol [3] which is a single packet IP protocol.
The IDENT protocol is often used by TELNET, POP mail, FTP, and HTTP servers to
identify incoming users.

This is how it works: A server listens for TCP connections on TCP port 113. Once a
connection is established, the server reads a line of data which specifies the connection of
interest. If it exists, the system dependent user identifier of the connection of interest is
sent as the reply. The server may then either shut the connection down or it may continue
to read/respond to multiple queries.

If this test fails we look for well-known signatures in the first 1024 Bytes of the flow,
which may require assembly of multiple individual packets. At this stage we will be able
to identify peer-to-peer traffic if it uses well known signatures.

4.3.3 P2P protocols and signatures
Historically in the client/server model content is stored on the server and all clients
download content from the server. One drawback of this model is that if the server is
overloaded, the server becomes the bottleneck. The P2P file sharing model addresses this
problem by allowing peers to exchange content directly. To perform these file sharing
tasks, all popular P2P protocols allow a random host to act as both a client and a server to
its peers, even though some P2P protocols do not treat all hosts equally.

Typically the following two phases are involved if a requester desires to download
content:
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Signaling: During the signaling phase a client searches for the content and determines
which peers are able and willing to provide the desired content. In many protocols this
does not involve any direct communication with the peer which will eventually provide
the content.

Download: In this phase the requester contacts one or multiple peers directly to
download the desired content.

In addition to the two phases described above many P2P protocols also exchange keep-
alive messages or synchronize the server lists between servers.

In the remainder of the thesis we focus on the download phase of the five most popular
P2P protocols (Kazaa, Gnutella, eDonkey, DirectConnect, and BitTorrent). Unless
otherwise specified, all the identified signatures are case insensitive.

Gnutella protocol
Gnutella is a completely distributed protocol. In a Gnutella network, every client is a
server and vice versa. Therefore the client and server are implemented in a single system,
called servent. A servent connects to the Gnutella network through establishing a TCP
connection to another servent on the network. Once a servent has connected successfully
to the network, it communicates with other servents using Gnutella protocol descriptors
for searching the network - this is the signaling phase of the protocol. The actual file
download is achieved using a HTTP-like protocol between the requesting servent and a
servent possessing the requested file.

To develop the Gnutella signature we inspected multiple Gnutella connections and
observed that the request message for Gnutella TCP connection creation assumes
following format:

GNUTELLA CONNECT/<protocol version string>\n\n

And the response message for Gnutella TCP connection creation assumes:

GNUTELLA OK\n\n

We also observed that there is an initial request-response handshake within each content
download. In the download request the servent uses the following HTTP request headers:

GET /get/<File Index>/<File Name>
/HTTP/1.0 \r \n
Connection: Keep-Alive\r\n
Range: byte=0-\r\n
User-Agent: <Name>\r\n
\r\n
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The reply message contains the following HTTP response headers:

HTTP 200 OK\r\n
Server: <Name>\r\n
Content-type: \r\n
Content-length: \r\n
\r\n

Based on these observations and performance consideration, we have the following
signatures for identifying Gnutella data downloads:

• The first string following the TCP/IP header is ‘GNUTELLA’, ‘GET’, or ‘HTTP’.
• If the first string is ‘GET’ or ‘HTTP’, there must be a field with one of following

strings:

User-Agent: <Name>
UserAgent: <Name>
Server: <Name>
where <name> is one of the following: LimeWire, BearShare, Gnucleus,
MorpheusOS, XoloX, MorpheusPE, gtkgnutella, Acquisition, Mutella-0.4.1,
MyNapster, Mutella-0.4.1, MyNapster, Mutella-0.4, Qtella, AquaLime, NapShare,
Comeback, Go, PHEX, SwapNut, Mutella-0.4.0, Shareaza, Mutella-0.3.9b,
Morpheus, FreeWire, Openext, Mutella-0.3.3, Phex.

Generally it is much cheaper to match a string with a fixed offset than a string with
varying locations. Hence we include ‘GET’ and ‘HTTP’ here to help early discard the
packets, which do not start with ‘GNUTELLA’, and also are non-HTTP packets. For
robustness, we included the signatures for the request and response header. This way, we
can identify Gnutella traffic even if we only see one direction of the traffic.

eDonkey protocol
An eDonkey network consists of clients and servers. Each client is connected to one main
server via TCP. During the signaling phase, it first sends the search request to its main
server. (Optionally, the client can send the search request directly to other servers via
UDP - this is referred to as extended search in eDonkey.) To download a file
subsequently from other clients, the client establishes connections to the other clients
directly via TCP, and then asks each client for different pieces of the file. After
examining eDonkey packets, we discovered that both signaling and downloading TCP
packets have the following common eDonkey header directly following the TCP header:
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where the marker value is always 0xe3 in hex, the packet length is specified in network
byte order and the value is the byte length of the content of the eDonkey message
excluding the marker 1 byte and the length field 4 bytes.
Utilizing these discoveries, we have the following signatures for identifying eDonkey
packets:

For TCP signaling or handshaking data packets, we use two steps to identify eDonkey
packets.

• The first byte after the IP+TCP header is the eDonkey marker.
• The number given by the next 4 bytes is equal to the size of the entire packet after

excluding both the IP+TCP header bytes and 5 extra bytes.

Since the accuracy for identifying the P2P connections is proportional to the length of the
signatures, we tend to include as many fields as we can so long as they do not increase
the computational complexity significantly. Here both marker and length fields have a
fixed offset, therefore the computational complexity is the same for matching one of them
or both, but the accuracy is improved by 2^32 times compared with matching the marker
field alone.

We have also identified the signatures for UDP handshaking messages. However, since
UDP is only used for extended searching, and is rare compared with TCP
communications, we do not report it in this study.

DirectConnect protocol
The DirectConnect network is composed of hubs, clients, and a single superhub with
multiple servers. All of them listen on TCP port 411 to connect and exchange commands
such as search request. Clients (peers) store files and respond to search requests for those
files. The single superhub acts as a name service for all the hubs. All hubs register with
the superhub and clients discover hubs by asking the superhub. Each of the clients has a
username (a.k.a. nick). Normally the clients listen at port 412 for client connections. If
the port 412 is already in use, clients will use ports 413, 414 and so on. DirectConnect
uses TCP for client to server and client to client communication, while UDP is used for
communication between servers. The TCP/UDP data is a series of commands or a public
chat message. In this study, we focus on the TCP commands. The TCP commands are
identified with following form:
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$command_type field1 field2 ...|

which starts with character ‘$’, and ends with character ‘|’. The list of valid command
types for TCP communications are: MyNick, Lock, Key, Direction, GetListLen, ListLen,
MaxedOut, Error, Send, Get, FileLength, Canceled, HubName, ValidateNick,
ValidateDenide, GetPass, Mypass, BadPass, Version, Hello, Logedin, MyINFO,
GetINFO, GetNickList, NickList, OpList, To, ConnectToMe, MultiConnectToMe,
RevConnectToMe, Search, MultiSearch, SR, Kick, OpForceMove, ForceMove, Quit.

To improve the evaluation performance we evaluate this signature in the following two
steps:

1. The first byte after the IP+TCP header is ‘$’, and the last byte of the packet is ‘|’
2. Following the ‘$’, the string terminated by a space is one of the valid TCP

commands listed above.

Although we are matching a list of strings which can be an expensive operation, we shall
only perform the string match on packets which pass the first test.

BitTorrent protocol
The BitTorrent network consists of clients and a centralized server. Clients connect to
each other directly to send and receive portions of a single file. The central server (called
a tracker) only coordinates the action of the clients, and manages connections. Unlike the
protocols discussed above, the BitTorrent server is not responsible for locating the
searching files for the clients, instead the BitTorrent network client locates a torrent file
through the Web, and initiates the downloading by clicking on the hyperlink. Hence there
is no signaling communication for searching in the BitTorrent network.
To identify BitTorrent traffic, we focus on the downloading data packets between clients
only since the communication between the client and server is negligible.

The communication between the clients starts with a handshake followed by a never-
ending stream of length-prefixed messages. We discovered that the BitTorrent header of
the handshake messages assumes following format:

<a character(1 byte)><a string(19 byte)>

The first byte is a fixed character with value ‘19’, and the string value is ‘BitTorrent
protocol’. Based on this common header, we use following signatures for identifying
BitTorrent traffic:

• The first byte in the TCP payload is the character 19 (0x13).
• The next 19 bytes match the string ‘BitTorrent protocol’.

The signatures identified here are 20 bytes long with fixed locations - therefore they are
very accurate and cost-effective.
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Kazaa protocol
The Kazaa network is a distributed self-organized network. In a Kazaa network, clients
with powerful connections and with fast computers are automatically selected as
supernodes. Supernodes are local search hubs. Normal clients connect to their
neighboring supernodes to upload information about files that they share, and to perform
searches. In turn supernodes query each other to fulfill the search.

The request message in a Kazaa download contains the following HTTP request headers:

GET /.files HTTP/1.1\r\n
Host: IP address/port\r\n
UserAgent: KazaaClient\r\n
X-Kazaa-Username: \r\n
X-Kazaa-Network: KaZaA\r\n
X-Kazaa-IP: \r\n
X-Kazaa-SupernodeIP: \r\n

The Kazaa response contains the following HTTP response headers:

HTTP/1.1 200 OK\r\n
Content-Length: \r\n
Server: KazaaClient\r\n
X-Kazaa-Username: \r\n
X-Kazaa-Network: \r\n
X-Kazaa-IP: \r\n
X-Kazaa-SupernodeIP: \r\n
Content-Type: \r\n

For higher Kazaa version (v1.5 or higher), a peer may send an encrypted short message
before it sends back above response. Note that both messages include a field called
X-Kazaa-SupernodeIP. This field specifies the IP address of the supernode to which the
peer is connected including the TCP/UDP supernode service port. This information could
be used to identify signaling using flow records of all communication.

Using the special HTTP headers found in the Kazaa data download we have the
following two steps to identify Kazaa downloads:

1. The string following the TCP/IP head is one of following: ‘GET’, and ‘HTTP’.
2. There must be a field with string: X-Kazaa.

Similar to our Gnutella signatures we include ‘GET’ and ‘HTTP’ to early discard non-
HTTP packets, so that we can avoid searching through the whole packet to match
‘X-Kazaa’ if the packet has a low probability to contain HTTP request or response
headers.
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4.3.4 Other applications
Traffic due to SMTP will have been detected from the port-based classification but only
the examination of the protocol semantics within the first 1024 Byte of the flow will
allow for the confident characterization of the flow. Network protocol analysis tools,
ethereal [7], employ a number of such protocol decoders and may be used to make or
validate protocol identification.

Specific flows will still remain unclassified even at this stage and will require inspection
of their entire payload. This operation may be manual or automated for particular
protocols. From our experience, focusing on the protocol semantics of P2P and FTP led
to the identification of a very significant fraction of the overall traffic limiting the
unknown traffic to less than 7%. At this point the classification procedure can end.
However, if 100% accuracy is to be approached we envision that the last stage of the
classification process may involve the manual inspection of all unidentified flows. This
stage is rather important since it is likely to reveal new applications. While labour-
intensive, the individual examination of the remaining, unidentified, flows caused the
creation of a number of new signatures and protocol-templates that were then able to be
used for identifying protocols such as PCAnywhere, the sdserver and CVS. This process
also served to identify more task-specific systems. An example of this was a host offering
protocol-specific database services.

On occasion flows may remain unclassified despite this process; this takes the form of
small samples (e.g., 1-2 packets) of data that do not provide enough information to allow
any classification process to proceed. These packets used unrecognized ports and rarely
carried any payload. While such background noise was not zero in the context of
classification for accounting, Quality-of-Service, or resource planning, these amounts
could be considered insignificant. The actual amount of data in terms of either packets or
bytes that remained unclassified represented less than 0.001% of the total.

4.4 Validation Process
Accurate classification is complicated by the unusual use to which some protocols are
put. As noted earlier, the use of one protocol to carry another, such as the use of HTTP to
carry peer-to-peer application traffic, will confuse a simple signature-based classification
system. Additionally, the use of FTP to carry an HTTP transaction log will similarly
confuse signature matching.

Due to these unusual cases the certainty of any classification appears to be a difficult
task. Throughout the work presented in this thesis validation was performed manually in
order to approach 93% accuracy in our results. Our validation approach features several
distinct methods.
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Each flow is tested against multiple classification criteria. If this procedure leads to
several criteria being satisfied simultaneously, manual intervention can allow for the
identification of the true causal application. An example is the peer-to-peer situation.
Identifying a flow as HTTP does not suggest anything more than that the flow contains
HTTP signatures. After applying all classification methods we may conclude that the
flow is HTTP alone, or additional signature-matching (e.g. identifying a peer-to-peer
application) may indicate that the flow is the result of a peer-to-peer transfer.

If the flow classification results from a well-known protocol, then the validation approach
tests the conformance of the flow to the actual protocol. An example of this procedure is
the identification of FTP PASSIVE flows. PASSIVE flows can be valid only if the FTP
control-stream overlaps the duration of the PASSVE flow - such cursory, protocol-based,
examination allows an invalid classification to be identified. Alongside this process,
flows can be further validated against the perceived function of a host, e.g., an identified
router would be valid to relay BGP whereas for a machine identified as (probably) a
desktop Windows box behind a NAT, concluding it was transferring BGP is unlikely and
this potentially invalid classification requires manual-intervention.

5 Results
5.1 Data
In Table 6 we compare the results of simple port-based classification with content-based
classification. The technique of port-analysis, against which we compare our approach, is
common industry practice (e.g., Cisco NetFlow or [34]). UNKNOWN refers to
applications which for analysis are not readily identifiable. Notice that under the content-
based classification approach we had much lower UNKNOWN traffic. We also detected
a new traffic-class – MALICIOUS type. The traffic were not able to classify corresponds
to a small number of flows. A limited number of flows provides a minimal sample of the
application behavior and thus cannot allow for the confident identification of the causal
application.
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Figure 6: Percentile bar-chart for all services, 7 days,
content-based and port-based methods.

After calculating the averages for all services we got these results:
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Figure 7: Pie-chart for all services, the averages,
 content-based and port-based methods.

Classification type Port-based  Content-based
BULK 1.04 % 8.59 %
INTERACTIVE 1.51 % 1.47 %
MAIL 3.25 % 3.25 %
SERVICES 0.22 % 0.87 %
WWW 20.29 % 29.47 %
P2P 15.35 % 35.25 %
MALICIOUS 0.00 % 1.17 %
GAMES 5.21 % 6.67 %
MULTIMEDIA 4.22 % 4.49 %
CHAT 2.44 % 2.59 %
UNKNOWN 46.47 % 6.18 %

Table 6: Results for port-based and content-based

Table 6 shows that under the simple port-based classification scheme based upon the
IANA port assignments 46% of the carried bytes cannot be attributed to a particular
application. Further observation reveals that the BULK traffic is underestimated by
approximately 7.5% while we see a difference of 9% in the WWW traffic. However, the
port-based approach does not only underestimate traffic but for some classes, e.g.,
INTERACTIVE applications, it may over-estimate it. This means that traffic flows can
also be misidentified under the port-based technique. Lastly, applications such as peer-to-
peer and mal-ware appear to contribute zero traffic in the port-based case. This is due to
the port through which such protocols travel not providing a standard identification. Such
port-based estimation errors are believed to be significant.
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5.2 Examining under and over-estimation
Of the results in Table 6 we will concentrate on only a few example situations.
The first and most dominant difference is for BULK traffic created as a result of FTP.
The reason is that port-based classification will not be able to correctly identify a large
class of FTP traffic transported using the PASSIVE mechanism. Content-based
classification is able to identify the causal relationship between the FTP control flow and
any resulting data-transport. This means that traffic that was formerly either of unknown
origin or incorrectly classified may be ascribed to FTP which is a traffic source that will
be consistently underestimated by port-based classification.

A comparison of values for MAIL, a category consisting of the SMTP, IMAP and POP
protocols, reveals that it is estimated with surprising accuracy in both cases. Both the
number of packets and bytes transferred is unchanged between the two classification
techniques. We also did not find any other non-MAIL traffic present on MAIL ports. We
would assert that the reason MAIL is found exclusively on the commonly defined ports,
while no other MAIL transactions are found on other ports, is that MAIL must be
exchanged with other sites and other hosts. MAIL relies on common, Internet-wide
standards for port and protocol assignment. No single site could arbitrarily change the
ports on which MAIL is exchanged without effectively cutting itself off from exchanges
with other Internet sites. Therefore, MAIL is a traffic source that, for quantifying traffic
exchanged with other sites at least, may be accurately estimated by port-based
classification.

Despite the fact that such an effect was not pronounced in the analyzed data set, port-
based classification can also lead to over-estimation of the amount of traffic carried by a
particular application. One reason is that mal-ware or attack traffic may use the well-
known ports of a particular service, thus inating the amount of traffic attributed to that
application. In addition, if a particular application uses another application as a relay,
then the traffic attributed to the latter will be inated by the amount of traffic of the former.
An example of such a case is peer-to-peer traffic using HTTP to avoid blocking by
firewalls, an effect that was not present in our data. In fact, we notice that under the
content-based approach we can attribute more traffic to WWW since our data included
web servers operating on non-standard ports that could not be detected under the port-
based approach.

Clearly this work leads to an obvious question of how we know that our content-based
method is correct. We would emphasize that it was only through the labour-intensive
examining of all data-flows. We do not consider that such a laborious process would need
to be repeated for the analysis of similar traffic profiles. However, the identification of
new types of applications will require a more limited examination of a future,
unclassifiable anomaly.
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5.3 Describing the results
There three main goals for this sub-chapter:

a) identifying the nature of the phenomenon represented by the sequence of
observations,

b) finding the distribution of the intensity of the traffic for different services and
c) forecasting (predicting future values of the time series variable).

All of these goals require that the pattern of observed time series data is identified and
more or less formally described. Once the pattern is established, we can interpret the
trends of the data. Regardless of the depth of our understanding and the validity of our
interpretation (theory) of the phenomenon, we can extrapolate the pattern to predict
future events.

5.3.1 Estimating the traffic intensity
The traffic intensity for different services is needed for instance to describe the
expectation or the entire distribution of the packets flow on the backbone link.
The data is a sequence of observations which are ordered in time. The observations are
made on some phenomenon throughout time, and therefore it is most sensible to display
the data in the order in which they arose, particularly since successive observations will
probably be dependent.

We have taken into account the fact that the traffic intensity pattern during weekends and
holidays differs quite much from the ordinary weekday pattern, (as seen in figure 9 where
the dates 12/4 and 13/4 correspond to weekends) in that we estimate one weekday pattern
for each of the classifications. The estimation is performed as follows for each one of the
classification. First we partition each day into intervals of 60 seconds length and calculate
the number of packets for that specific classification in each interval. After that we sort
weekday into one group and weekends and holidays into another group. For both these
groups we calculate the mean number of packets during each interval. This gives us a
somewhat smoother description of the traffic intensity pattern (shows in figure 8). The
series values are using content-based method and are plotted on the vertical axis and time
on the horizontal axis. Time is called the independent variable (in this case however,
something over which we have little control).
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Figure 8: Traffic intensity pattern of WWW traffic, weekdays, using content-based
method.
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Monday 7/4 2005                                                        Tuesday 8/4 2005
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               Sunday 13/4 2005
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In order to give an even smoother description we uses moving average, where we calculate the
local average from our datasets. Moving average is an indicator that shows the average value
of the intensity of the traffic over a period of time. To find the 50 moving average we would
add up the closing points from the past 50 points and divide them by 50. And because traffics
are constantly changing it means the moving average will move as well.

Given a sequence N
iia 1}{ = , an n-moving average is a new sequence 1

1}{ +−
=

nN
iis  defined from

the ia by taking the average of subsequences of n terms, so the sequences nS  giving
n-moving average are

and so on.

Smoothing techniques are used to reduce irregularities (random fluctuations) in time
series data. They provide a clearer view of the true underlying behaviour of the series.
In some time series, seasonal variation is so strong it obscures any trends or cycles which
are very important for the understanding of the process being observed. Smoothing can
remove seasonality and makes long term fluctuations in the series stand out more clearly.
Since the type of seasonality will vary from series to series, so must the type of
smoothing. When a variable is graphed against time, there are likely to be considerable
seasonal or cyclical components in the variation. These may make it difficult to see the
underlying trend. These components can be eliminated by taking a suitable moving
average. By reducing random fluctuations, moving average smoothing makes long term
trends clearer.

Figure 9: WWW traffic measurements
using content-based method during 1
week.



44

The moving averages that we uses are 20, 30, 50, 100, and 200. Each moving average
provides a different interpretation on what the intensity of traffic will be. There really is
not just one "right" time frame. Moving averages with different time spans each tell a
different story. The shorter the time-span, the more sensitive the moving average will be
to traffic changes. The longer the time-span, the less sensitive or the more smoothed the
moving average will be. Moving averages are used to emphasize the direction of a trend
and smooth out traffic and volume fluctuations or "noise" that can confuse interpretation.

n = 10:  provides a very volatile, choppy line, but it has already smoothing out the
“noise”.

n = 20:  still it is very volatile, choppy line. It is not the most accurate, but is probably the
most useful for short term traffics.

n = 30: similar to 20 but provides a bit more certainty for the trend.

n = 50: moving averages provide a much less volatile, smooth line. This can be used to
detect somewhat longer term trends.

n = 70: similar to the 70, it is less volatile, and one of the most widely used for long term
trends.

n = 100: even less volatile, more of a rolling chart or smooth line. It does not react to
quick movements in the intensity of traffic therefore it is rarely used by us.

Again, there isn't just one "right" time frame. Moving averages with different time spans
each tell a different story. The shorter the time span, the more sensitive the moving
average will be to traffic changes. The longer the time span, the less sensitive or the more
smoothed the moving average will be.

The plot below shows the n = 10, 20, 30, 50, 70 and 100 moving averages for a set of
1440 data points using content-based method.
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Figure 10: WWW traffic intensity, with different moving average, using content-based
method, weekdays.
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Using the procedure described above we arrive at estimators of the intensity pattern that
are quite smooth but still give a realistic picture of the traffic behaviour as a function of
time (see figure 11).

Figure 11: The WWW traffic intensity, using m=30, weekdays. Black line indicates
using content-based method while red line is port-based.

       Time (min)

Amount of packets
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The traffic intensity for different classification types
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Figure 12: The traffic intensity for Bulk, WWW, P2P and Unknown type, using m=30, weekdays.
Black line indicates using content-based method while red line is port-based.
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Figure 13: The traffic intensity for Mail,
Games and Multimedia type, using m=30,

weekdays. Black line indicates using
content-based method while red line

 is port-based.
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Figure 14: The traffic intensity for Interactive, Services, Malicious and Chat type, using m=30,
weekdays. Black line indicates using content-based method while red line is port-based.

5.3.2 Descriptive statistics
While TCP remains the dominant traffic protocol through all hours of the day, a mixture
of both well-known (http, ftp, nntp and smtp) and less known applications contribute
significant portions to the traffic services.

We want to increase our understanding of our analysis by picking out its main features.
Descriptive techniques may be extended to forecast (predict) future values.

Trend is a long term movement in the data series. It is the underlying direction (an
upward or downward tendency) and rate of change in data series, when allowance has
been made for the other components. A simple way of detecting trend in seasonal data is
to take averages over a certain period. If these averages change with time we can say that
there is evidence of a trend in the series. There are also more formal tests to enable
detection of trend in data series.

Therefore we need to use mathematical summaries to carry out detailed statistical
analysis. The aim of these summarizing processes is to allow us to find numbers that sum
up the main characteristics of the large collections of data.
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Frequency distribution
Statistical data obtained by experiments consist of raw, unorganized sets of numerical
values. Before these data can be used as a basis for inferences about the phenomenon
under investigation or as a basis for decision, they must be summarized and the pertinent
information must be extracted.

We can convey an idea of pattern of the distribution as a whole by “picture it”. The dot-
diagram reveals that the packet-rates tend to bunch around some parts of the range than
other. We can use the frequency distribution as picture in the dot-diagram to check
whether any packet-rate was more frequently recorded than other.
Let us first have looking at the WWW traffic. For instance, packet-rate between 150 000
and 250 000 has been recorded to have bigger rate than other using content-based
method. While with port-based we recorded the packet-rate between 0 and 200 000 as the
biggest rate. The value in distribution that has been observed with greatest frequency is
called the mode of the distribution.

Mode

Mode is the value which occurs most frequency. For grouped data, the mode can be
found by first identify the largest frequency of that class, called modal class, and then
apply the following formula on the modal class:

)(mode 121 ll
ff

fl
ba

a −
+

+=

 where: l1 is the lower class boundary of the modal class
fa is the difference of the frequencies of the modal class with the

previous class and is always positive
fb is the difference of the frequencies of the modal class with the

following class and is always positive
l2 is the upper class boundary of the modal class.
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Content-based
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Figure 15: Dot diagram of WWW traffic intensity, weekdays, using content-based
method.

Each dot represents amount of capture packets for a 60 seconds time-interval.

Port-based
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Figure 16: Dot diagram of WWW traffic intensity, weekdays, using port-based method.

What else can we do to bring out the pattern within the distribution?
A useful method for summarizing a set of data is the construction of a frequency table, or
a frequency distribution.  We cannot create a frequency distribution for continuous data
in the same way as we do for discrete data, because no data point will occur more than
once. Instead, we divide the overall range of values into a number of classes and count
the number of observations that fall into each of these classes or intervals. What we do is

    Packet-rate

( WWW )

( WWW )

    Packet-rate
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calculating number of observation at least 0 but less than 99 000, at least 100 000 but less
than 199 000 and so on. We then get a table using content-based method:

Group
number

Packet-rate
(captures per min.)

Number of
frequency

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

0  49 000
50 000  99 000

100 000  149 000
150 000  199 000
200 000  249 000
250 000  299 000

300 000  349 000
350 000  399 000
400 000  449 000
450 000  499 000
500 000  549 000
550 000  599 000
600 000  649 000
650 000  699 000
700 000  749 000
750 000  799 000
800 000  849 000
850 000  899 000
900 000  949 000
950 000  999 000

1 000 000  1 049 000
1 050 000  1099 000

6
11

256
176
143

75
30
27
50
45
47
41
70
85
64
53
82
74
41
20
29
15

1440 = Total
 Table 7: Frequency table of WWW traffic intensity, weekdays, using content-

based method.

An arrangement like this is called a grouped frequency distribution. It brings out the
overall pattern even more clearly – in this case, a bunching of observed values between
100 000 and 249 000 as we expected from the dot-diagram. But it loses information about
the individual values observed. For instance from the first row, the 6 fastest packet-rate
recorded could be whatever number between 0 and 49 000. Detail has been sacrificed to
clarify the overall pattern.

We can bring out the pattern in grouped frequency distribution even more clearly with a
histogram.  In the histogram below, the group 12 has twice as many observations as
group 17 – and so its block is twice as big. The modal group is the one with the largest
frequency. In this case it is group 3.
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Figure 17: Frequency histogram of WWW traffic, weekdays, using content-based
method.

(Notice that we have numbered the horizontal scale with the number of groups
corresponding to the packet-rate.)

Another method to represent frequency distribution graphically is by a frequency
polygon. As in the histogram, the base line is divided into sections corresponding to
the class-interval, but instead of the rectangles, the points of successive class marks
are being connected.  The frequency polygon is particularly useful when two or more
distributions are to be presented for comparison on the same graph.

( WWW )

Group no

Frequency
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Frequency polygon for the WWW traffic data
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Figure 18: Frequency polygon of WWW traffic, weekdays. Black line indicates using
content-based method while red line is port-based.
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Figure 19: Frequency polygon for Bulk, WWW, P2P and Unknown type, using intervals
of 50 000. Black line indicates using content-based method while red line is port-based.
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Figure 20: Frequency polygon for Multimedia,
Games and Mail type, using intervals
of 15 000. Black line indicates using

 content-based method while red line is
port-based.
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Figure 21: Frequency polygon for Interactive, Services, Malicious and Chat type, using intervals
of 4 000. Black line indicates using content-based method while red line is port-based.

Also notices that there are no malicious traffic recorded using
port-based method and therefore no red line.

The total traffic
Finally we will have a look at the total traffic using content-based method:

No Classification type Amount of packets
1
2
3
4
5
6
7
8
9
10
11

SERVICES
INTERACTIVE
MAIL
FTP
WWW
P2P
GAMES
UNKNOWN
MULTIMEDIA
CHAT
MALICIOUS

25 404 731
35 215 476
85 254 588

177 122 533
661 334 866
770 155 533
162 449 941
142 384 598
120 031 153
64 153 841
34 041 540

                     2 277 548 800 = Total
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Table 8: Frequency table of all services traffic intensity, weekdays, using content-based
method.
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Figure 22: Frequency table of WWW traffic, weekdays, using content-based method.

By convention, we read off the types frequencies by looking at the height of the blocks.
Another alternative is to let the area of each block stand for the frequency as a proportion
of the total sample size (an idea which corresponds roughly to probability).

Relative Frequency

 Relative frequency of a class is defined as:

FrequencyTotal
Class theofFrequency

 If the frequencies are changed to relative frequencies, then a relative frequency
histogram, a relative frequency polygon and a relative frequency curve can
similarly be constructed.

 Relative frequency curve can be considered as probability curve if the total area
under the curve be set to 1. Hence the area under the relative frequency curve
between a and b is the probability between interval a and b.

Amount of
packets

No of types
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Figure 23: Frequency table of WWW traffic, weekdays, using content-based method.

The total area of a graph of this type is 1. This curve can be described by a function of x,
which is known as the probability density function (PDF). The total area under the graph
of a PDF is 1.

When we take a measurement in a scientific experiment we sample a continuous variable.
If this statement appears surprising, reflect that our measurements will vary around the
true value of the quantity we are measuring, and will take on different values with
different probabilities: precisely the description of a variable.
The PDF’s of experimental measurements are almost all “bell-shaped” like that of the
Figure 23. The reasons for this are very deep, but we can assume it in the vast majority of
cases. Probability distributions with these “bell-shaped” PDF’s are called normal
distributions.

So what have we noticed so far about summarizing the results obtained from the
experiment? We have seen that a set of raw data, the untreated figures, can be rather
obscure. The next step we did was to rearranging them in order of intervals. Grouping
may also help emphasize any pattern within the distribution. And diagrams give a better
idea of the shape of the distribution than figures alone.

Also, we can begin to look for figures (like average, or the range) that quantify important
features of the distribution. In fact, to describe a distribution statistically, or to use it in
making inferences or predictions, we must have such figures. One of the most important
is central tendency (or average). By central tendency we mean the tendency of the
observations to centre around a particular value (or pile up in a particular category) rather
than spread themselves evenly across the range or among the available categories. There

Frequency

No of types

( All types )
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are 3 types of central tendency: the mode, mean and median. Which one is used will
depend on the type of variable. We have already noticed how the mode works.

5.3.2 Central tendency

When we work with numerical data, it seems apparent that in most set of data there is a
tendency for the observed values to group themselves about some interior values - some
central values seem to be the characteristics of the data. This phenomenon is referred to
as central tendency.  For a given set of data, the measure of location we use depends on
what we mean by middle; different definitions give rise to different measures.  We shall
consider some more commonly used measures, namely arithmetic mean, median and
mode.  Ours formulas in finding these values depends on grouped data.

Arithmetic Mean
The arithmetic mean, µ, or simply called mean, is obtained by adding together all of the
measurements and dividing by the total number of measurements taken.  Mathematically
it is given as

∑
∑ ⋅

=
i

ii

f
xf

µ

Where for grouped data: fi - is the frequency in the ith class,
xi - is the class mark in the ith class;

Arithmetic mean can be used to calculate any numerical data and it is always unique.
It is obvious that extreme values affect the mean.

Median
Median is defined as the middle item of all given observations arranged in order.
For grouped data, the median can be found by first identify the class containing the
median, then apply the following formula:

median l

n C

f
l l

m
= +

−
−1 2 1

2 ( )

 where: l1 is the lower class boundary of the median class;
n is the total frequency;
C is the cumulative frequency just before the median class;
fm is the frequency of the median;
l2 is the upper class boundary containing the median.



60

It is obvious that the median is affected by the total number of data but is independent of
extreme values. However if the data is ungrouped and numerous, finding the median is
tedious. Note that median may be applied in qualitative data if they can be ranked.

Quartiles
Quartiles are the most commonly used values of position which divides distribution into
four equal parts such that 25% of the data are ≤ Q1; 50% of the data are ≤ Q2; 75% of the
data are ≤ Q3.  The first quarter is conventionally denoted as Q1, while the second and
third quarters grouped together is Q2 and the last quarter is Q3.  Note that Q2 includes
the median, contains half of the frequency and excludes extreme values.  It is also
denoted the value  (Q3 - Q1) / 2 as the Quartile Deviation, QD, or the semi-interquartile
range.

The five-number summary and boxplots
The five-number summary of a set of observations consists of the smallest observation,
the first quartile, the median, the third quartile, and the largest oberservation, written in
order from smallest to largest. In symbols, the five-number summary is
 Minimum Q1 Median Q3 Maximum
These five numbers offer a reasonable complete description of center and spread.

The five-number summaries:

Bulk WWW P2P Unknown

Method
Port-

based
Content-
based

Port-
based

Content-
based

Port-
based

Content-
based

Port-
based

Content-
based

Median 14441 161307 294764 530878 312667 680724 734642 149307
Q1 3260 125551 156254 182665 99662 199865 441699 110407
Min 411 3544 17478 19602 21988 20741 23477 3095
Max 58602 537665 934896 1199534 914554 1102374 1501447 510477
Q3 26537 265611 546244 736651 407464 806557 1025547 212226
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Figure 24: Boxplots of Bulk, WWW, P2P and Unknown traffic, weekdays, both port-
based and content-based method.

The candlestick lines show minimum and maximum amount of traffic seen in 24 hours,
the bottom and top of the box show the 25th and 75th percentiles, and the line inside the
box shows the median value.
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Interactive Services Malicious Chat

Method
Port-

based
Content-
based

Port-
based

Content-
based

Port-
based

Content-
based

Port-
based

Content-
based

Median 24341 23043 11277 12521 22351 43978 45043
Q1 19000 19055 4894 5147 10144 38780 40122
Min 3500 3500 478 524 1344 1978 2144
Max 51000 51000 31411 31778 60477 70544 70244
Q3 36000 35149 14789 15144 34334 54599 55203
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Figure 25: Boxplots of Interactive, Services, Malicious and Chat traffic, weekdays,
both port-based and content-based method.
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Mail Games Multimedia

Method
Port-

based
Content-
based

Port-
based

Content-
based

Port-
based

Content-
based

Median 37021 37607 67044 811307 56713 60982
Q1 42495 43456 61542 65551 37547 34168
Min 4929 4854 18514 28415 3471 1514
Max 146846 147485 245149 255665 139657 154698
Q3 91465 91524 121568 135611 74358 84195
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Mail Games Multimedia

0

50000

100000

150000

200000

250000

300000

Figure 26: Boxplots of Mail, Games and Multimedia traffic, weekdays, both port-based
and content-based method.

5.3.4 Errors

When we record measurements in an experiment we introduce errors. Errors arise from
our inaccurate reading of scales, from inaccurate measuring instruments and from
imperfect equipment. No experiment is error-free. We can distinguish between two sorts
of error:

• Random errors: these have no pattern so we can only strive to minimise them, by
careful practice, and to quantify how they affect our confidence in our results.

• Systematic errors: these do have a pattern, for example the times taken from a
timer that is simply going too fast.
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We are more concerned here with random errors, and how we can quantify their effect on
experimental results.

One way to handle errors in experiments is to calculate the “worst case”. If the error in a
measurement is ± 5 packets - say we measured 1500 packets but accept that the
measurement is somewhere between 1495 packets and 1505 packets - then we can say
that the error in subtracting (or adding) two such measurements is at worst ± 10 packets.

But it is usually extremely difficult in practice to estimate the size of “worst case” errors.
And worst case analysis does not give a very realistic estimate of how large the error is
likely to be, especially if we are combining the results of several measurements. If, for
example, we are adding up 100 measurements, each of which has error ± 5 packets, we
know that the worst case is for the result to have an error of ± 500 packets. But that
would arise only if every one of the 100 measurements was 5 packets too big (or too
small). This is extremely unlikely unless the errors are systematic ones.

We are going to derive an analysis of errors that, while it has little to say about “worst
cases”, tells us much more about the likely size of errors we might have to deal with.

Two things have a bearing on experimental measurements: the true value of the quantity,
and the measuring accuracy. The former determines the position of the bell curve’s
maximum point, and is known as the mean of the distribution, µ. The latter determines
the “spread” of the bell curve, and is conventionally measured as a quantity called
standard deviation, σ . Standard deviation is a more difficult idea than mean, but it is
roughly equivalent to “average error size”. A normal distribution is completely
determined by its mean and standard deviation.

Variance and Standard Deviation
 The variance and standard deviation are two very popular measures of variation.

Their formulations are categorized into whether to evaluate from a population or
from a sample.

 The population variance, σ2, is the mean of the square of all deviations from the
mean.  Mathematically it is given as:

( )
∑

∑ µ
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2
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f
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 where: fi  is the frequency of the  ith  item;
xi  is the value of the  ith  item or class mark;
µ  is the population arithmetic mean.

 The population standard deviation σ is defined as σ = 2σ .
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 The sample variance, denoted as s2 gives:
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 where: fi  is the frequency of the  ith  item;
xi  is the value of the  ith  item or class mark;
x   is the sample arithmetic mean.

 The sample standard deviation, s, is defined as s = 2s .

In this experiment we consider the question: given a set of experimental measurements,
how may we estimate the true value of the quantity (the mean of the probability
distribution) and the average error size (the standard deviation)?
As you may have already worked out for yourself, a good estimate of the true value —
the mean of the probability distribution — is provided by taking a simple average (also
called the mean) of the sample itself. Given a set of numbers x1, x2, . . . xN, their mean,
x , is given by the equation

We can sum up by saying that the sample mean is an estimate of the distribution mean:
in other words, x is an estimate of µ.
Standard deviations present a slightly harder problem. One might think that a good
estimate for σ would be provided by calculating the square root of the average of the
squares of the differences from x: in other words, by calculating

In fact, though, this figure turns out to be systematically biased: it provides an
underestimate of the true standard deviation. A fairly subtle argument shows that we can
remove this systematic bias from our estimate simply by dividing by N −1 instead of N
(though for this to work, we need to be sure that the errors are non-systematic).

This gives us the sample standard deviation, s:

In summary, the sample standard deviation is an estimate for the distribution standard
deviation: s is an estimate for σ.



66

Table over mean and standard deviation of Bulk, WWW, P2P and Unknown, weekdays.

Bulk WWW P2P Unknown

Method
Port-

based
Content-
based

Port-
based

Content-
based

Port-
based

Content-
based

Port-
based

Content-
based

Mean 13799 158307 297563 482307 302384 658900 727183 146390
StDev 11582 91813 310684 306883 238126 436205 256029 119524
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Figure 28: Time series of WWW traffic measurement, error bars are used to represent
the width of the scatter. The result is a plot of the observations σ± .
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6 Summary and future work
Motivated by the need for more accurate identification techniques for network
applications, we presented a framework for traffic characterization in the presence of
packet payload. We laid out the principles for the correct classification of network traffic.
Such principles are captured by several individual building blocks that, if applied
iteratively, can provide sufficient confidence in the identity of the causal application. Our
technique is not automated due to the fact that a particular Internet flow could satisfy
more than one classification criterion or it could belong to an emerging application
having behaviour that is not yet common knowledge.

We collected a full payload packet traces from a Uninett Gigabit backbone link and
compared the results of our content-based scheme against the port-based classification
technique. We showed that classifying traffic based on the usage of well-known ports
leads to a high amount of the overall traffic being unknown and a small amount of traffic
being misclassified. We quantified these inaccuracies for the analysed packet trace.

We then presented an analysis of the accuracy-gain as a function of the complexity
introduced by the different classification sub-methods. Our results show that simple
port-based classification can correctly identify approximately 55% of the overall traffic.
Application of increasingly complex mechanisms can approach 94% accuracy with great
benefits gained even through the analysis of up to 1024 Bytes of a traffic flow.

Our work should be viewed as being at an early stage and the avenues for future research
are multiple. One of the fundamental questions that need investigation is how such a
system could be implemented for real-time operation. We would argue that an adapted
version of the architecture described in [33], which currently performs on-line flow
analysis as part of its protocol-parsing and feature-compression, would be a suitable
system. Such an architecture overcomes the (potential) over-load of a single monitor by
employing a method work-load sharing among multiple nodes. This technique
incorporates dynamic load-distribution and assumes that a single flow will not
overwhelm a single monitoring node. In our experience such a limitation is sufficiently
exible as to not be concerning.

We clearly need to apply our technique to other Internet locations. We need to identify
how applicable our techniques are for other mixes of user traffic and when our
monitoring is subject to other limitations. Examples of such limitations include having
access to only unidirectional traffic or to a sample of the data.
Both these situations are common for ISP core networks and for multi-homed sites. We
already identify that the first phase of identification and culling of simplex flows would
not be possible if the only data available corresponded to a single link direction.

We emphasise that application identification from traffic data is not an easy task. Simple
signature matching may not prove adequate in cases where multiple classification criteria
seem to be satisfied simultaneously. Validation of the candidate application for a traffic
flow in an automated fashion is an open issue.
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Further research needs to be carried out in this direction. Moreover, we envision that as
new applications appear in the Internet there will always be cases when manual
intervention will be required in order to gain understanding of its nature.
Lastly, in future work we intend to address the issue of how much information needs to
be accessible by a traffic classifier for the identification of different network applications.
Our study has shown that in certain cases one may need access to the entire flow payload
in order to arrive to the correct causal application. Nonetheless, if system limitations
dictate an upper bound on the captured information, then the knowledge of the
application(s) that will evade identification is essential.
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Appendices
A.1 Running the DAG data capture software
The various tools used for data capture are in the tools sub-directory.

To make a trace we use the dagsnap tool:

dagsnap -d <device> -o <filename> -s <runtime in seconds>

On scampi1 there is only one card, /dev/dag0, with two interfaces so we capture both
directions at the same time.
To capture a 5 minute trace we would write:

scampi1:~$ /root/dag/tools/dagsnap -d /dev/dag0 -o trace.dag -s 300

The traces are in erf format, the native format for dag. The program to convert from erf to
pcap:

dagconvert -T:pcap -i <erf file> -o <pcap file>

To check which interfaces are enable with the command dagfour:

scampi1:~$ /root/dag/tools/dagfour
linkA   noreset nonic nofcl noeql enablea
linkB   noreset nonic nofcl noeql enableb
packet  varlen slen=100
packetA drop=3454682
packetB drop=3366184
pci     66MHz 64-bit rxonly

Here we can see that both interfaces A and B are indicated as “enable”, i.e. packets are
captured from both interfaces. To switch on or off on an interface we used the command

dagfour disablea or dagfour disableb

Her ser du at både interface A og B er markert som "enable", noe som vil si at pakker blir
fanget fra begge to. For å skru av eller på et interface kan du f.eks. skrive "dagfour
disablea" eller "dagfour enablea".
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phonghp@scampi1:~$ more cronmaleDAG
#! /usr/bin/perl

#ARGV[0]=sted

$var="@";
$var2=phonghp.$var.cia;

#`mkdir /traces/phonghp/$ARGV[0]`;
#`ssh $var2.uninett.no mkdir $ARGV[0]`;
`rm /home/phonghp/cronfile`;
`touch /home/phonghp/cronfile`;

open(ADD, ">>cronfile");
for ($i=0; $i<24; $i++)
{
    print "1. løkka\n";
    for ($j=10; $j<60; $j+=30)
    {
       print "2. løkke\n";
        $filname = traces.$i.$j;
        $tid=$i-1;
        $gammelfil = traces.$tid.$j;
        print ADD "$j $i * * * /root/dag-2.4.14/tools/dagsnap -d
/dev/dag0 -o /t
races/phonghp/$ARGV[0]/$filname.dag -s 240\n";
        $nytid = $j+5;
        print ADD "$nytid $i * * * /root/dag-2.4.14/utils/dagconvert -
T:pcap -i
/traces/phonghp/$ARGV[0]/$filname.dag -
o/traces/phonghp/$ARGV[0]/$filname.pcap\n
";
        $nytid2 = $j+10;
        print ADD "$nytid2 $i * * * /bin/rm
/traces/phonghp/$ARGV[0]/$filname.da
g\n";
        print ADD "$nytid2 $i * * * /usr/bin/scp
/traces/phonghp/$ARGV[0]/$filna
me.pcap $var2.uninett.no:$ARGV[0]\n";
        print ADD "$nytid2 $i * * * /bin/rm
/traces/phonghp/$ARGV[0]/$gammelfil.
pcap\n";
        print ADD "\n";

    }
}
close(ADD);
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A.2 Scripts

#! /bin/bash
# run.bash

/usr/sbin/tcpdump -n -nn -r $1 | /home/phong/perl/script4

#/usr/sbin/tcpdump -n -nn host 193.69.165.21 -C 66289411 -r
/home/phong/splitac | /home/phong/perl/script3

[phong@medusa]$ more script2
#! /usr/bin/perl

#lists all ports

#list of ports
#http://www.chebucto.ns.ca/~rakerman/port-table.html

$firstT=1;
$pktCounter=0;

while ($line = <STDIN>)
{
    @array = split(' ',$line);
    if ($firstT == 1)
    {
        $startTime = $array[0];
        $firstT = 0;
    }
    else
    {
        $endTime = $array[0];
    }

    $port = "$4" if ($array[1] =~ /(.*)\.(.*)\.(.*)\.(.*)/);

    $port_in = "$4" if ($array[3] =~ /(.*)\.(.*)\.(.*)\.(.*):(.*)/);

    $antall{$port}++;
    $antall_in{$port_in}++;

    $pktCounter++;

}
#close(FIL);

print "***************************************************\n";
print "***************************************************\n";

#$antall{$port} = sort $antall{$port};
print "Number of packets $pktCounter\n";
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sub hashValueAscendingNum
{
   $antall{$a} <=> $antall{$b};
}

print "Outcoming traffic\n";

foreach $port_in (sort hashValueAscendingNum (keys(%antall_in)))
{
   print "$port_in: $antall{$port_in}\n";
}

print "\n";
print "\n";
print "Incoming traffic\n";

foreach $port (sort hashValueAscendingNum (keys(%antall)))
{
   print "$port: $antall{$port}\n"; # \t\t $port_in:
$antall_in{$port_in}\n";
}

print "\n";
print "\n";

print "Start time: $startTime\n";
print "End time: $endTime\n";

print "***************************************************\n";
print "***************************************************\n";
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[phong@medusa perl]$ more script4
#! /usr/bin/perl

#leser fra output'en fra tcpdump
#skriver output til skjerm + filer

#outcoming traffic

$bulk=0; #ftp_data=20 and ftp=21
$interactive=0; #ssh=22, telnet=23
$mail=0; #smpt=25, pop2and3=109 and 110, imap=143
$services=0; #dns=53, ldap=389, ntp=123, auth=113
$www=0; #http=80, https=443, http_alt=8080
$multimedia=0; #rtsp=554, real=7070
$p2p=0; #kaaza=1214, directConnect=412, eDon=4661-4672,

  #napster=6699-6701, bittorent=6881-6889,
  #gnutella=6346-6347,

$chat=0; #yahoo=5050, aol=5190, msn=1863, irc=2337
$games=0; #halflife=27005-27030, warcraft=6112-6119

$snmp=0; #161 NY

#incoming traffic

#protocols
$icmp=0;
$udp=0;
$tcp=0;

$teller=0;

$dato=`date '+%d%m'`;
$path="/home/phong/output/$dato";

$firstT=1;

while ($line = <STDIN>)
{
    $teller++;
    @array = split(' ',$line);
    if ($firstT == 1)
    {
        $startTime = $array[0];
        $firstT = 0;
    }
    else
    {

$endTime = $array[0];
    }

    $port = "$4" if ($array[1] =~ /(.*)\.(.*)\.(.*)\.(.*)/);

    $port_in = "$4" if ($array[3] =~ /(.*)\.(.*)\.(.*)\.(.*):(.*)/);
    $proto = $array[4];
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#services
    if(($port == 20) or ($port == 21))
    {
       $bulk++;
    }
    elsif(($port == 22) or ($port == 23))
    {
        $interactive++;
    }
    elsif(($port == 25) or ($port == 109) or ($port == 110) or
         ($port == 143))
    {
        $mail++;
    }
    elsif(($port == 53) or ($port == 389) or ($port == 123) or
         ($port == 113))
    {
        $services++;
    }
    elsif(($port == 80) or ($port == 443) or ($port == 8080))
    {
        $www++;
    }
    elsif(($port == 554) or ($port == 7070))
    {
        $multimedia++;
    }
    elsif((($port == 412) or ($port == 1214) or

   (($port > 4660) and ($port < 4673)) or
   (($port > 6698) and ($port < 6702)) or
   (($port > 6880) and ($port < 6890)) or
   (($port > 6345) and ($port < 6348)))

    {
        $p2p++;
    }
    elsif(($port == 5050) or ($port == 5190) or ($port == 1863) or
         ($port == 6901) or ($port == 2337))
    {
        $chat++;
    }
    elsif((($port > 27004) and ($port < 27031)) or
         ((port > 6112) and ($port < 6119)))
    {
        $games++;
    }

#protocols
    if($proto =~ /icmp/)
    {
        $icmp++;
    }
    elsif($proto =~ /udp/)
    {
        $udp++;
    }
    elsif($proto =~ /S|F|R|P|./)
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    {
        $tcp++;
    }

}
close(FIL);

print "***************************************************\n";
print "***************************************************\n";

#making hour to 60 minutes
@array5 = split(':',$sTime);
if($array5[0] != 0) #to avoid dividing on zero
{
    $startTime = ($array5[0]*60)+($array5[1]);
    print "IKKE NULL: $startTime\n";
}
else
{
    $startTime = $array5[1];
    print "NULL: $startTime\n";
}

print " Numbers of packets $teller\n";
print "Andre løkke: $startTime\n";

print "Outcoming traffic\n";
print "BULK: $bulk \t Percent: $bulk/$teller*100\n";
print "INTERACTIVE: $interactive \t Percent: /
$interactive/$teller*100\n";
print "MAIL: $mail \t Percent: $mail/$teller*100\n";
print "SERVICES: $services \t Percent: $services/$teller*100\n";
print "WWW: $www \t Percent: $www/$teller*100\n";
print "P2P: $p2p \t Percent: $p2p/$teller*100\n";
print "GAMES: $games \t Percent: $games/$teller*100\n";
print "MULTIMEDIA: $multimedia \t Percent: /
$multimedia/$teller*100\n";
print "\n";

print "Protocols\n";
print "ICMP: $icmp\n";
print "UDP: $udp\n";
print "TCP: $tcp\n";
print "\n";

print "Start time: $startTime\n";
print "End time: $endTime\n";
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A.3 Cluster

[phong@medusa]$ more alle.bash
#! /bin/bash

dato=`date '+%d%m'`
path=/home/phong/output/$dato

if [ ! -d $path ]
then
    echo her $path
    mkdir $path
fi

for host in `cat nodes`
do
        #echo "Prosesser på ${host}:"
        # {hots} for at : ikke blir del av variabel

        for fil in $1/*
        do
          nyfil=`basename $fil .pcap`
          #echo $nyfil

          if [ "$host" == "$nyfil" ]
          then
              echo her
              ssh $host /home/phong/perl/run $fil >> $path/$host &

          #else
          #    echo "her\n";
          fi

        done

       # ssh $host ps aux | grep $USER
       # if ["$host" == ""]
done

[phong@medusa phong]$ more nodes
compute-0-0
compute-0-1
compute-0-2
compute-0-3
compute-0-4
compute-0-5
compute-0-6
compute-0-7
compute-0-8
compute-0-9
compute-0-10
compute-0-11
compute-0-12
compute-0-13
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A.4 Snort

We want to run a binary log file through Snort in sniffer mode to dump the packets to the
screen:

snort -r /data/traces.pcap –c /local/snort-2.0.2/etc/snort.conf –l ./log

We are on high speed network and we want to log the packets into a more compact form
for later analysis, therefore we consider logging in binary mode. Binary mode logs the
packets in tcpdump format to a single binary file in the logging directory:

Once the packets have been logged to the binary file, we can read the packets back out of
the file with sniffer that supports the tcpdump binary format (tcpdump or Ethereal).


