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Abstract. In this paper, we propose a novel online classifier for com-
plex data streams which are generated from non-stationary stochastic
properties. Instead of using a single training model and counters to keep
important data statistics, the introduced online classifier scheme provides
a real-time self-adjusting learning model. The learning model utilizes the
multiplication-based update algorithm of the Stochastic Learning Weak
Estimator (SLWE) at each time instant as a new labeled instance arrives.
In this way, the data statistics are updated every time a new element
is inserted, without requiring that we have to rebuild its model when
changes occur in the data distributions. Finally, and most importantly,
the model operates with the understanding that the correct classes of
previously-classified patterns become available at a later juncture subse-
quent to some time instances, thus requiring us to update the training
set and the training model.
The results obtained from rigorous empirical analysis on multinomial
distributions, is remarkable. Indeed, it demonstrates the applicability
of our method on synthetic datasets, and proves the advantages of the
introduced scheme.

Keywords : Weak Estimators, Learning Automata, Non-Stationary Environ-
ments, Classification in Data Streams

1 Introduction

In the past few years, due to the advances in computer hardware technology,
large amounts of data have been generated and collected and are stored perma-
nently from different sources. Some the applications that generate data streams
are financial tickers, log records or click-streams in web tracking and personal-
ization, data feeds from sensor applications and call detail records in telecom-
munications. Analyzing these huge amounts of data has been one of the most
important challenges in the field of Machine Learning (ML) and Pattern Recog-
nition (PR). Traditionally, ML methods are assumed to deal with static data
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stored in memory, which can be read several times. On the contrary, streaming
data grows at an unlimited rate and arrives continuously in a single-pass manner
that can be read only once. Further, there are space and time restrictions in ana-
lyzing streaming data. Consequently, one needs methods that are “automatically
adapted” to update the training models based on the information gathered over
the past observations whenever a change in the data is detected.

Mining streaming data is constrained by limited resources of time and mem-
ory. Since the source of data generates a potentially unlimited amount of infor-
mation, loading all the generated items into the memory and achieving off-line
mining is no longer possible. Besides, in non-stationary environments, the source
of data may change over time, which leads to variations in the underlying data
distributions. Thus, with respect to this dynamic nature of the data, the pre-
vious data model discovered from the past data items may become irrelevant
or even have a negative impact on the modeling of the new data streams that
become available to the system.

A vast body of research has been performed on the mining of data streams to
develop techniques for computing fundamental functions with limited time and
memory, and it has usually involved the sliding-window approaches or incremen-
tal methods. In most cases, these approaches require some a priori assumption
about the data distribution or need to invoke hypothesis testing strategies to
detect the changes in the properties of data.

In this article we will study classification problems in non-stationary envi-
ronments (NSE), where sequential patterns are arriving and being processed in
the form of a data stream that was potentially generated from different sources
with different statistical distributions. The classification of the data streams is
closely related to the estimation of the parameters of the time varying distribu-
tion, and the associated algorithms must be able to detect the source changes
and to estimate the new parameters whenever a switch occurs in the incoming
data stream.

Apart from the “traditional” classification problem involving unique and dis-
tinct training and testing phases, this paper pioneers the concept when these
phases are not so clearly well-defined. Rather, we consider the fascinating phe-
nomenon in which the testing patterns can subsequently be considered as train-
ing patterns, once their true class identities are known. Thus, the model operates
with the understanding that the correct classes of previously-classified patterns
become available at subsequent time instances (after some time has lapsed), thus
requiring us to update the training set and the training model. This renders the
whole PR problem intriguing.

Finally, to render the problem more complex, we consider the case where
the classes’ stochastic properties potentially vary with time as more instances
become available. In this perspective, with regard to the training, we will argue
that using “strong” estimators that converge with probability of 1 is inefficient for
tracking the statistics of the data distributions in non-stationary environments.
However, “weak” estimator approaches are able to rapidly unlearn what they
have learned and adapt the learning model to new observations.



This feature of “weak” estimators makes these approaches the most effective
methods for estimation in non-stationary environments. In this work, we will
employ a particular family of weak estimators, referred to as Stochastic Learn-
ing Weak Estimation (SLWE) methods [5], for classification in non-stationary
environments. The SLWE has been successfully used to solve two-class classi-
fication problems by Oommen and Rueda [5] by applying it on non-stationary
one-dimensional datasets. In this article we will study the performance of the
SLWE with more complex classification schemes.

1.1 Contributions of the paper

The main contributions of the paper are the following:

• We have pioneered an online classification scheme that is composed of three
phases. In the first phase, the model learns from the available labeled sam-
ples. In the second phase, the learned model predicts the class label of the
unlabeled instances currently observed. In the third phase, after knowing the
true class label of these recently-classified instances, the classification model
is adjusted in an online manner.
• Most of the data stream mining approaches have involved building an initial
model from a sliding window of recently-observed instances and thereafter,
refining the learning model periodically or whenever its performance de-
grades based on the current window of observed data. We present a novel
framework to deal with concept and distribution drift over data streams in
non-stationary environments, which is more efficient and provides more ac-
curate results. We emphasize that this non-stationarity could even be abrupt.
• Our classifier scheme provides a real-time self-adjusting learning model, uti-
lizing the multiplication-based update algorithm of the SLWE at each time
instance, as new labeled instances arrive. Instead of using a single training
model and maintaining counters to keep important data statistics, we have
used a technique to replace these frequency counters by data estimators.
In this way, the data statistics are updated every time a new element is
observed, without needing to rebuild its model when a change in the distri-
butions is detected.
• Extensive experimental results that we have obtained, for multi-dimensional
distributions, demonstrate the efficiency of the proposed classification schemes
in achieving a good performance for data streams involving non-stationary
distributions under different scenarios of concept drift, and the new model
of computation in which the training and testing samples are not completely
dichotomized.

1.2 Organization of the paper

In Section 2, we proceed with discussing the issues and challenges encountered
when one learns from data streams and provide a brief explanation about the
theoretical properties of the SLWE. In Section 3, we present the details of the



design and implementation of the online classifier where the samples that were
testing samples at any given time instant can, at a subsequent juncture, be
considered as training data. We then explain how this solution can be used to
perform online classification, and present the new experimental framework for
concept drift in Section 4. This section also contains the experimental results we
have obtained from rigorous testing. Section 5 concludes the paper.

2 Literature Review

Estimation theory is a fundamental subject that is central to the fields of Pattern
Recognition (PR) and data mining. The majority of problems in PR require the
estimation of the unknown parameters that characterize the underlying data
distributions.

2.1 Learning Methods for Data Streams in NSE

In general, most algorithms in the data streammining literature have one or more
of the following modules: a Memory module, an Estimator module, and a Change
Detector module [1]. The Memory module is a component that stores summaries
of all the sample data and attempts to characterize the current data distribu-
tion. Data in non-stationary environments can be handled by three different
approaches, namely, by using partial memory, by window-based approaches and
by instance-based methods. The term “partial memory” refers to the case when
only a part of the information pertaining to the training samples are stored and
used regularly in the training. In window-based approaches, data is presented as
“chunks”, and finally, in instance-based methods, the data is processed upon its
arrival. In fact, the Memory module determines the forgetting strategy used by
the mining algorithm operating in the dynamic environments.

The Estimator module uses the information contained in the Memory or only
the observed information to estimate the desired statistics of the time varying
streamed data. The Change Detector module involves the techniques or mecha-
nisms utilized for detecting explicit drifts and changes, and provides an “alarm”
signal whenever a change is detected based on the estimator’s outputs.

Apart from the above schemes, many other incremental approaches have been
proposed that infer change points during estimation, and use the new data to
adapt the learning model trained from historical streaming data. The learning
model in incremental approaches is adapted to the most recently received in-
stances of the streaming data. Let X = {x1, x2, . . . , xn} be the set of training
examples available at time t = 1 . . . n. An incremental approach produces a se-
quence of hypothesis {. . . , Hi−1, Hi, . . .} from the training sequence, where each
hypothesis, Hi, is derived from the previous hypothesis, Hi−1, and the example
xi. In general, in order to detect concept changes in these types of approaches,
some characteristics of the data stream (e.g., performance measures, data distri-
bution, properties of data, or an appropriate statistical function) are monitored



over time. When the parameters switch during the monitoring process, the al-
gorithm should be able to adapt the model to these changes.

We now briefly review some other schemes used for learning in non-stationary
environments. The review here will not be exhaustive because the methods ex-
plained can be considered to be the basis for other modified approaches.

FLORA Widmer and Kubat [6], presented the FLORA family of algorithms
as one of the first supervised incremental learning systems for a data stream.
The initial FLORA algorithm used a fixed-size sliding window scheme. At each
time step, the elements in the training window were used to incrementally up-
date the learning model. The updating of the model involved two processes: an
incremental learning process that updated the concept description based on the
new data, and an incremental forgetting process that discarded the out-of-date
(or stale) data.

The initial FLORA system did not perform well on large and complex data
domains. Thus, FLORA2 was developed to solve the problem of working with
a fixed window size, by using a heuristic approach to adjust the window size
dynamically. Further improvements of the FLORA were presented to deal with
recurring concepts (FLORA3) and noisy data (FLORA4).

Statistical Process Control (SPC) The SPC was presented by Gama et al.
[4] for change detection in the context of data streams. The principle motivating
the detection of concept drift using the SPC is to trace the probability of the
error rate for the streamed observations. While monitoring the errors, the SPC
provides three possible states, namely, “in control”, “out of control” and “warn-
ing” to define a state when a warning has to be given, and when levels of changes
appear in the stream. When the error rate is lower than the first (lower) defined
threshold, the system is said to be in an “in control” state, and the current
model is updated considering the arriving data. When the error exceeds that
threshold, the system enters the “warning” state. In the “warning” state, the
system stores the corresponding time as the warning time, tw, and buffers the in-
coming data that appears subsequent to tw. In the “warning” mode, if the error
rate drops below the lower threshold, the “warning” mode is canceled and the
warning time is reset. However, in case of an increasing error rate that reaches
the second threshold, a concept change is declared and the learning model is
retrained from the buffered data that appeared after tw.

ADWIN Bifet and Gavalda [2,3] proposed an adaptive sliding window scheme
named ADWIN for change detection and for estimating statistics from the data
stream. It was shown that the ADWIN algorithm outperforms the SPC approach
and that it has the ability to provide rigorous guarantees on false positive and
false negative rates. The initial version of ADWIN keeps a variable-length sliding
window,W , of the most recent instances by considering the hypothesis that there
is no change in the average value inside the window. To achieve this, the distri-
butions of the sub-windows of the W window are compared using the Hoeffding



bound, and whenever there is a significant difference, the algorithm removes all
instances of the older sub-windows and only keeps the new concepts for the next
step. Thus, a change is reliably detected whenever the window shrinks, and the
average over the existing window can be considered as an estimate of the current
average in the data stream.

2.2 Stochastic Learning Weak Estimator (SLWE)

Using the principles of stochastic learning, Oommen and Reuda [5] proposed
a strategy to solve the problem of estimating the parameters of a binomial or
multinomial distribution efficiently in non-stationary environments. This method
is referred to as the SLWE, where the convergence of the estimate is “weak”,
i.e., with respect to the first and second moments. Unlike the traditional MLE
and the Bayesian estimators, which demonstrate strong convergence, the SLWE
converges fairly quickly to the true value, and it is able to just as quickly “un-
learn” the learning model trained from the historical data in order to adapt to
the new data.

The SLWE is an estimator method that estimates the parameters of a bino-
mial/multinomial distribution when the underlying distribution is non-stationary.
In non-stationary environments, the SLWE updates the estimate of the distri-
bution’s probabilities at each time-instant based on the new observations. The
updating, however, is achieved by a multiplicative rule. To formally introduce
the SLWE, let X be a random variable of a multinomial3 distribution, which
can take the values from the set {‘1’, . . . , ‘r’} with the probability of S, where
S = [s1, . . . , sr]

T and
∑r

i=1
si = 1. In the other words: X = ‘i’ with probability

si.
Consider x(n) as a concrete realization of X at time ‘n’. In order to estimate

the vector S, the SLWEmaintains a running estimate P (n) = [p1(n), p2(n), . . . , pr(n)]
T

of vector S, where pi(n) is the estimation of si at time ‘n’, for i = 1, . . . , r. The
value of pi(n) is updated with respect to the coming data at each time instance,
where Eqs. (1) and (2) show the updating rules:

pi(n+ 1)← pi + (1 − λ)
∑

j 6=i

pj when x(n) = i (1)

← λpi when x(n) 6= i. (2)

Similar to the binomial case, the authors of [5] explicitly derived the de-
pendence of E [P (n+ 1)] on E [P (n)], demonstrating the ergodic nature of the
Markov matrix. The paper4 also derived two explicit results concerning the con-
vergence of the expected vector P (.) to S, and the rate of convergence based on
the learning parameter, λ.

Theorem 1. Consider P (n), the estimate of the multinomial distribution S at
time ‘n’, which is obtained by Eqs. (1) and (2). Then, E [P (∞)] = S. ⊓⊔
3 The case of estimating binomial distributions is a particular case of multinomial
distributions where r = 2.

4 The proofs of the theorems are omitted in the interest of brevity.



Theorem 2. Consider P (n), the estimate of the multinomial distribution S at
time ‘n’, which is obtained by Eqs. (1) and (2). The expected value of P at
time ‘n+1’ is related to the expectation of P (n) as E [P (n+ 1)] = MTE [P (n)],
where M is a Markov matrix. Further, every off-diagonal term of the stochastic
matrix, M, has the same multiplicative factor, (1− λ), and the final solution of
this vector difference equation is independent of λ. ⊓⊔

Theorem 3. Consider P (n), the estimate of the multinomial distribution S at
time ‘n’, which is obtained by Eqs. (1) and (2). Then, all the non-unity eigen-
values of M are exactly λ, and therefore the convergence rate of P is fully de-
termined by λ. ⊓⊔

Theoretically, since the derived results are asymptotic, they are valid only
as n → ∞. However, in practice, by choosing λ from the interval [0.9, 0.99],
the convergence happens after a relatively small value of ‘n’. Indeed, if λ is as
“small” as 0.9, the variation from the asymptotic value will be in the order of
10−50 after 50 iterations. In other words, the SLWE will provide good results even
if the distribution parameters change after 50 steps. The experimental results in
[5] demonstrated a good performance achieved by using the SLWE in dynamic
environments.

3 Online Classification Using SLWE

In traditional ML learning and particularly supervised learning, the training
phase is performed in an offline manner, i.e., the training set is used to learn the
stochastic properties of each class. Subsequently, the learned model is deployed
and used to classify unlabeled data instances that appeared in the form of data
streams.

In many real life applications, it is not possible to analyze the stochastic
model of the classes in an offline manner because of their dynamic natures.
In fact, offline classifiers assume that the entire set of training samples can be
accessed. However, in many real life applications, the entire training set is not
available either because it arrives gradually or because it is not feasible to store
it so as to infer the model of each class. Consequently, one is forced to constantly
make the classifier update the learning model using the newly-arriving training
samples.

We present a novel online classifier scheme, that is able to update the learned
model using a single instance at a time. Our goal is to predict the source of the
arriving instances as accurately as possible, with the added complexity that the
testing patterns can subsequently be considered as training patterns. To achieve
this, we first define the general structure of the Online classifier, and then provide
some experimental results on synthetic multinomial datasets in the next section.

Online classifiers deal with data streams, in which the labeled and unla-
beled samples are mixed. Therefore, the training, testing and deploying phases
of the online classifiers are interleaved as they are applied to these types of data



streams. This fascinating avenue is our domain, and we have investigated the
performance of SLWE-based classifiers to this new scheme.

Devising a classifier that deals with the data streams generated from non-
stationary sources poses new challenges, since the probability distribution of each
class might change even as new instances arrive. An important characteristic of
our model for online learning is that the actual source of the data is discovered
shortly after the prediction is made, which can then be used to update the
learned model. In other words, our online algorithm includes three steps, which
are described in Algorithm 1. First, the algorithm receives a data element. Using
it and the currently-learned model, the classifier predicts the source of that
element. Finally, the algorithm receives the true class of the data, which is then
used to update and refine the classification model.

In order to perform the online classification of the instances, we need to ob-
tain the a posteriori probability of each class. Analogous to the previous classifi-
cation models, we assign a label to the new unlabeled data element by comparing
the obtained a posteriori probabilities and the estimated probability from the
unlabeled test stream. Finally, after receiving the true label of the instance, the
a posteriori probabilities are updated using the algorithm explained in Eqs. (1)
and (2).

In this classification model the training phase and the testing phase were
performed simultaneously, and so the problem can be described as follows. We are
given the stream of unlabeled samples generated from different sources arriving
in the form of a (Periodically Switching Environment) PSE, in which, after
every T time instances, the data distribution and the source of the data might
change. In this case, in addition to the switching of the source of the data
elements, the probability distribution of each source also possibly changes at
random time instances. The aim of the classification is to predict the source of
the elements arriving at each time step by using the information in the detected
data distribution, and also the information of current model of each class. In
the online classification model, shortly after the prediction is made, the actual
class label of the instance is discovered, which can be utilized to update the
classification model to be used by the SLWE updating algorithm.

The process is formalized in Algorithm 1.

4 Experimental Results

In this section, we present the results of this classifier on synthetic data. To assess
the efficiency of the SLWE-based online classifier, we applied it for multinomial
randomly generated data streams. Our results demonstrate the applicability of
our method on synthetic datasets, and proves the advantages of the introduced
scheme. We also classified and compared the data streams’ elements by following
the traditional MLE with a sliding window, whose size is also selected randomly.



Algorithm 1 Online Classification Algorithm

1: X ← data stream for classification
2: Ŝ ← initialize posterior probabilities for each class
3: while there exists an instance x ∈ X do

Step 1. Receiving data:
4: The model receives the unlabeled sample
5: for all dimensions d of x do

6: pi(n)← Estimate the probability pi using the SLWE
7: end for

Step 2. Prediction:
8: P (n)← {p1(n), p2(n), . . . , pd(n)}
9: ω̂ ← arg

i
minKL(Ŝi||P (n))

Step 3. Updating the model:
10: After some delay, td, the true category of the instance x is received
11: ω ← true class of x
12: Update posterior probabilities Ŝ using ω and the SLWE
13: end while

4.1 Multinomial Data Stream

In this section, we report the results for simulations performed for multinomial
data streams with two different non-stationary categories. Here, the classification
problem was defined as follows. We are given a stream of unlabeled multinomially
distributed random d-dimensional vectors, which take on the values from the set
{1, . . . , r}, and which are generated from two different periodically switching
sources (classes), say, S1 and S2. Each class was characterized with probability
values, Si1, Si2, which demonstrate the probability of the value ‘i’, where i ∈
{1, . . . , r}.

The multinomial data stream classification started with the estimation of
the a priori probability of each possible value of ‘i’, in all the ‘d’ dimensions,
for each class ‘j’ from the available labeled instances, which we refer to as Ŝij .
To assign a label to the newly arriving unlabeled element, the SLWE estimated
the probabilities of each possible value ‘i’, in all the ‘d’ dimensions, from the
unlabeled instances, which we refer to as Pi(n). Thereafter, these probabilities
were used to predict the class label that a new instance belonged to class ‘j’,
with the probability vector of the Ŝj = {Ŝ1j, Ŝ2j , . . . , Ŝr}, that had the minimum
distance to the estimated probability of P = {P1(n), P2(n), . . . , Pr(n)}, was
chosen as the label of the observed element. The distances between the learned
SLWE probabilities, Pi(n), and the SLWE estimation during training, Ŝij were
again computed using the KL divergence measure, using Eq. (3).

KL(U ||V ) =
∑

i

ui log2
ui

vi
. (3)

Thereafter, after some delay, td, at time n+td the algorithm received the true
class of the nth instance and used it to refine and update the true class probabil-
ities. The true value of the category for the nth instance was read and added to



the previously trained model by updating the probability of the corresponding
class based on the updating algorithm in Eqs. (1) and (2).

The classification procedure explained above was performed on multinomial
data streams generated from two different classes where the probability of the
distributions of each class switched four times. For the results which we report,
each element of the data stream could take any of the four different values,
namely 1, 2, 3 or 4. The specific values of Si1 and Si2, were changed and set
to random values four times at random time instances, which were assumed to
be unknown to the classifiers. The results are shown in Table 1, and again, the
uniform superiority of the SLWE over the MLEW is noticeable. For example,
when T=100, the MLEW-based classifier yielded an accuracy of only 0.7443,
but the corresponding accuracy of the SLWE-based classifier was 0.8012. We
also notice that the results of the classification in periodic environments with a
varying T chosen randomly from [50, 150] were also similar to the fixed T = 100
case, as the classifier achieved the accuracy of 0.8092 and 0.8012 in the first and
second environments, respectively. The results also show that the SLWE-based
algorithm handles the concept drift and provides satisfactory performance.

T MLEW SLWE

50 0.6786 0.7582

100 0.7443 0.8012

150 0.7476 0.8153

200 0.7595 0.8197

250 0.7514 0.8282

300 0.7509 0.8367

350 0.7587 0.8322

400 0.7598 0.8354

450 0.7635 0.8344

500 0.7574 0.8387

Random T ∈ (50, 150) 0.7523 0.8092

Table 1. The ensemble results for 100 simulations obtained from testing multinomial
classifiers which used the SLWE (with λ = 0.9) and the MLEW for classifying one-
dimensional data streams generated by two non-stationary different sources.

The experiment explained above was repeated on different 2-class multino-
mial datasets with different dimensionalities. These sets were generated ran-
domly based on random vectors with different random distribution probabilities
involving 2, 3 and 4 dimensions and each element could take on four different
values. The results obtained are shown in Tables 3-2, from which we see that
classification using the SLWE was uniformly superior to classification using the
MLEW. For example, for the 2-dimensional data, when T = 250, the MLE-based
classifier resulted in the accuracy of 0.7544 and the SLWE achieved significantly
better results with the accuracy of 0.9706. Here the accuracy of the classifier,



T MLEW SLWE

50 0.6906 0.8847

100 0.7535 0.9402

150 0.7557 0.9592

200 0.7532 0.9669

250 0.7550 0.9730

300 0.7531 0.9760

350 0.7522 0.9785

400 0.7460 0.9818

450 0.7572 0.9817

500 0.7562 0.9839

Random T ∈ (50, 150) 0.7526 0.9512

Table 2. The ensemble results for 100 simulations obtained from testing multinomial
classifiers which used the SLWE (with λ = 0.9) and the MLEW for classifying 4-
dimensional data streams generated by two non-stationary different sources.

increased with the dimensionality of the datasets as the classifiers could process
the data more efficiently. For example, in the case of T = 150 the SLWE-based
online classifier resulted in the average accuracy of 0.9181 over several different
two-dimensional datasets, while with more useful information in 4-dimensional
datasets, it yielded better results with the accuracy of 0.9569.

T MLEW SLWE

50 0.6913 0.8560

100 0.7402 0.9082

150 0.7463 0.9333

200 0.7480 0.9393

250 0.7478 0.9430

300 0.7397 0.9474

350 0.7486 0.9463

400 0.7525 0.9535

450 0.7554 0.9505

500 0.7518 0.9559

Random T ∈ (50, 150) 0.7436 0.9241

Table 3. The ensemble results for 100 simulations obtained from testing multinomial
classifiers which used the SLWE (with λ = 0.9) and the MLEW for classifying 2-
dimensional data streams generated by two non-stationary different sources.



5 Conclusion

In this paper we have considered the problem of classification when these phases
of training and testing are not so clearly well-defined, i.e., where the testing
patterns can subsequently be considered as training patterns. This paradigm of
classification is further complicated because we have assumed that the class-
conditional distributions of the classes are time-varying or non-stationary. Here,
we consider the scenario when the patterns arrive sequentially in the form of a
data stream with potentially time-varying probabilities that change over time
for each class. The proposed online classification algorithm was used to perform
the training and the testing simultaneously in three phases. In the first phase,
the algorithm received a new unlabeled instance. After this, the scheme assigned
a label to it based on the distributions’ estimated probabilities using the SLWE.
Finally, after a few time instances, the algorithm received the actual class of
the instance and used it to update the training model by invoking the SLWE
updating algorithm. In this way the training and testing phases are almost in-
tertwined. Thereafter, the classification model was adjusted to the new available
instances in an online manner.
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