
Dynamic Ordering of Firewall Rules Using a Novel
Swapping Window-based Paradigm

Ratish Mohan
∗

Computer Science department
University College of Oslo and

Akershus
Oslo, Norway

Anis Yazidi
†

Computer Science department
University College of Oslo and

Akershus
Oslo, Norway

anis.yazidi@hioa.no

Boning Feng
‡

Computer Science department
University College of Oslo and

Akershus
Oslo, Norway

boning.feng@hioa.no

B. John Oommen
§

School of Computer Science
Carleton University, Ottawa,

Canada
oommen@scs.carleton.ca

ABSTRACT

Designing and implementing efficient firewall strategies in

the age of the Internet of Things (IoT) is far from trivial. This

is because, as time proceeds, an increasing number of devices

will be connected, accessed and controlled on the Internet.

Additionally, an ever-increasingly amount of sensitive infor-

mation will be stored on various networks. A good and effi-

cient firewall strategy will attempt to secure this information,

and to also manage the large amount of inevitable network

traffic that these devices create. The goal of this paper is to

propose a framework for designing optimized firewalls for

the IoT.

This paper deals with two fundamental challenges/prob-

lems encountered in such firewalls. The first problem is as-

∗Former Graduate Student
†Associate Professor
‡Associate Professor
§Fourth author status: Chancellor’s Professor, Fellow: IEEE and

Fellow: IAPR. The author is also an Adjunct Professor with

University of Agder, Grimstad, Norway.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

sociated with the so-called “Rule Matching” (RM) time prob-

lem. In this regard, we propose a simple condition for per-

forming the swapping of the firewall’s rules, and by satis-

fying this condition, we can guarantee that apart from pre-

serving the firewall’s consistency and integrity, we can also

ensure a greedy reduction in the matching time. It turns out

that though our proposed novel solution is relatively simple,

it can be perceived to be a generalization of the algorithm

proposed by Fulp [1]. However, as opposed to Fulp’s solu-

tion, our swapping condition considers rules that are not nec-

essarily consecutive. It rather invokes a novel concept that

we refer to as the “swapping window”.

The second contribution of our paper is a novel “batch”-

based traffic estimator that provides network statistics to the

firewall placement optimizer. The traffic estimator is a sub-

tle but modified batch-based embodiment of the Stochastic

Learning Weak Estimator (SLWE) proposed by Oommen and

Rueda [2].

The paper contains the formal properties of this estimator.

Further, by performing a rigorous suite of experiments, we

demonstrate that both algorithms are capable of optimizing

the constraints imposed for obtaining an efficient firewall.

CCS Concepts

•Security and privacy → Firewalls; •Theory of computa-

tion → Online learning theory; •Networks → Network ex-

perimentation;



Keywords

Firewall Optimization, Matching time, Weak Estimators, Learn-

ing Automata, Non-Stationary Environments, Batch Update

1. INTRODUCTION

The inter-connectivity, convenience and the all-prevalent

digital services offered by the Internet, come with a steep

price. As our society becomes more dependent on the In-

ternet, the requirement to secure the information stored on

these devices and services is more stringent and demanding.

To secure the information, the users and systems’ adminis-

trators have to be even more security-conscious.

The filed of computer security is extensive. It encompasses

the security of the physical machines as well as the informa-

tion stored on them. However, in the context of the Internet,

one has to be additionally concerned with network-related as-

pects of security. Such a “specialized” form of security is

mandatory especially because an increasing number of de-

vices are connected to various networks, and primarily to the

Internet [3]. Network security deals with the security aspects

of data and communication within a/multiple network(s),

and it spans many different concepts such as authentication,

access policies, intrusion detection, intrusion prevention and

honeypots/honeynets.

A first line of defence in network security is to use a fire-

wall in order to enforce access policies. A firewall, in essence,

is a system architecture program whose objective is to filter

the incoming and outgoing packet traffic on a host or in a net-

work. The task of accepting or denying access to the network

is enforced by matching the header information of each data

packet against a predefined set of rules, referred to as the

“firewall policy”. Each rule has an action associated with it,

for example, to either deny or accept access, and this action

is what decides whether a packet is dropped or not.

A study of many Internet and private traces shows that

the major portion of any network’s traffic matches only a

small subset of firewall rules. This, in turn, implies that the

frequency distribution for some of the traffic properties ap-

pears to be highly skewed [4]. Furthermore, when perform-

ing packet filtering, each rule in a firewall policy will usually

be checked in a sequential order. Consequently, as the fire-

wall policy increases in size, as any rule is often combined

with a matching rule of a higher order, the overhead asso-

ciated with the task of filtering the firewall, will become in-

creasingly costly.

The reader will easily see that this rule matching phase can

easily become a bottleneck in a high speed network when it is

under attack or when it encounters a heavy network load [1,

5]. Furthermore, it is well known that the computing power

of hosts, the transmission speeds of packets and the com-

plexity of networks, continue to increase. To keep abreast

with these increasingly-demanding environments, firewalls

must be able to “proportionately” adapt to changes by pro-

cessing packets at increasingly higher speeds [6, 7]. Thus,

it is desirable that a firewall monitoring system processes a

lesser number of packet matches in order to reduce the po-

tentially exorbitant filtering overhead as well as the overall

packet matching time [4].

A natural inference of the above assertions is the follow-

ing: In order reduce the number of packet matches that have

to be processed, and to ensure that a firewall is able to process

packets at an adequate speed, it is crucial for the firewall’s ar-

chitecture to have an optimized ordering for the appropriate

rules. This can be achieved by ensuring that the rule order-

ing is such that the rules that are matched most often, ap-

pear at the top (front) of the list of rules. This will reduce

the amount of time used to process a packet by reducing

the number of required packet matches, and consequently

reducing the packet filtering overhead. Additionally, it will

also have the effect of improving the network’s throughput

because a packet will spend less time being processed.

Although the problem is easily stated, the task of finding

the optimal rule order is NP-hard because of inter-rule de-

pendencies. Our goal is thus to find a heuristic algorithm to

find a near-optimal rule order.

The complexity of the problem is accentuated by the fact

that traffic patterns in networks are not static. This implies

that since the patterns are dynamic and possibly time vary-

ing, one cannot learn the statistics of the traffic patterns using

traditional estimation methods. Rather, one has to devise es-

timation (or learning) strategies that are rather effective for

non-stationary environments. This is the task we undertake!

1.1 Problem Statement and Contributions

Put in a nutshell, this paper deals with dynamic networks,

i.e., those that are characterized by being “under constant

change and activity”. Essentially, a dynamic network is one

in which the state of packet traffic is time-varying and non-

stationary. This implies that the packet traffic fluctuates in

such a way that no single type of traffic is dominant for an

extended period of time. Our goal is to find a solution to the

problem of optimizing the performance of a firewall in such

dynamic networks. In order to achieve this, we attempt to

answer the following questions:

• How can we optimize the order of the firewall rules in order

to minimize the Rule Matching (RM) operations invoked?



• How can we learn and use the dynamic network traffic statis-

tics to further optimize the firewall?

Of course, to achieve the above, we shall examine the traf-

fic patterns statistically, combine the inferences with the work-

ings of a RM algorithm. Thus, the major contributions of this

paper are:

• We present an efficient and yet simple mechanism for

optimizing the order of the rules in the firewall by us-

ing a novel concept that is referred to as the Swapping

Window. The Swapping Window is a straightforward

strategy by which one can infer whether it is beneficial

to swap the order of two rules in a RM algorithm by

considering their matching probabilities, and simulta-

neously guaranteeing that no inconsistencies are intro-

duced in the firewall. We submit that, without loss of

generality, our solution is a mapped efficient solution

to the Single Machine Job Scheduling (SMJS) Problem

[8] – since our problem can be shown to be a specific

instantiation of the latter.

• We present a novel adaptive algorithm for estimating

the statistics of multinomial observations appearing in

a batch mode1. The algorithm is able to deal with non-

stationary environments and is an extension of the Stochas-

tic Learning Weak Estimation (SLWE) work by Oom-

men and Rueda [2], which is, in and of itself, suitably

adapted for high speed networks. The observations

that the estimation scheme receives are, in our case,

the different matched rules within a time interval when

they are examined as a “batched” data stream and not

as sequential entities.

• We combine both the above-mentioned contributions

(the rule ordering algorithm augmented with the esti-

mation scheme) into a single algorithm so as to achieve

a holistic approach for optimizing the firewall’s perfor-

mance.

1.2 Organization of the Paper

After having introduced and motivated the problem in Sec-

tion 1, we proceed to review the related state-of-the-art in

Section 2. In Section 3, we present our solution composed

of two main components: Rule Re-ordering (RR) and traffic

estimation.

In Section 4, we present some theoretical results that demon-

strate the validity of the algorithms proposed in Section 3 for

1The batched-mode version of Oommen-Rueda’s SLWE is a
contribution in its own right to the field of estimation in non-
stationary environments.

both rule ordering and estimation. Section 5 contains simu-

lation results demonstrating the power of the scheme in dy-

namic environments. The experiments done for dynamic en-

vironments were based on a realistic test-bed.

Section 6 concludes the paper.

2. STATE-OF-THE-ART

This section outlines the current state-of-the-art when it

concerns firewall optimization.

2.1 Firewall Matching Optimization: Legacy
Approaches

In this section, we describe the relevant rule order opti-

mization algorithms that are based on matching optimiza-

tion, and outline the general problem of firewall Rule Re-

ordering (RR).

The task of optimizing a firewall is comparable to that of

solving the Traveling Salesman Problem (TSP) [9] with prece-

dence constraints [8]. The standard TSP is defined as the task

of finding the shortest route while traversing each city ex-

actly once, given N cities and their intermediate distances.

However, as observed by the author of [10], when constraints

are included in the problem, it becomes more complex. The

authors of [8] examined a variant of the TSP with precedence

constraints. This variant, known as the Time-Dependent Trav-

eling Salesman Problem (TDTSP), considers the case when

transition costs between two cities depends on the time of

the visit2. This implies that certain cities can only be vis-

ited at a given time, and thus, trying to find an optimal path

with such a constraint means that some cities must be vis-

ited before others due to the dependency relationships be-

tween the cites. This is precisely, a mapping of the problem

of finding the optimal rule ordering in a firewall policy with

dependency relationships, because finding the optimal rule

ordering in a firewall entails creating a rule ordering such

that some rules must be “visited” or compared against be-

fore other rules, until a match is found.

2.1.1 A Bubble Sort-like Algorithm

Since the problem is NP-hard, the author of [1], designed

a simple heuristic algorithm, given in Algorithm 1, for opti-

mizing firewalls rule ordering.

2The authors of [8] confirm that the TDTSP can be mapped
onto single machine job scheduling problem [8] which is
known to be NP-hard [11]. Thus the optimization problem
for firewall rules is also NP-hard. The only option to find
the optimal solution requires an exhaustive search of the so-
lution space — which is not a scalable solution. Rather, one
must be content to find a sub-optimal solution using a heuris-
tic algorithm.



Algorithm 1: A simple Bubble Sort-like rule ordering al-
gorithm.

Data: A list of firewall rules
Result: A new and improved ordering of firewall rules

1 done = False
2 while !done do
3 done = True
4 for (i = 1; i < n; i++) do
5 if (pi < pi+1 AND ri ∩ ri+1 = ∅) then
6 interchange rules and probabilities
7 done = False

By studying the algorithm, one observes that it is simi-

lar to the Bubble Sort algorithm. It compares neighbours

and, if possible, swaps them. Further [1], in order to pre-

serve the rule precedence relationships, the algorithm uses

rule probabilities and rule intersection as the swapping cri-

teria. For example, consider the scenario when there are two

rules, i.e., Rule1 and Rule2 where Rule1 has a lower proba-

bility than Rule 2, and where the rules don’t intersect. This

means that the rules are not dependant on each other and are

thus “swappable”. The algorithm will process the rules, in a

pair-wise manner, until there are no more “swappable” rules.

The problem with this algorithm, however, is that one rule

can prevent another from being re-ordered [1], rendering the

algorithm to be unable to re-order groups of rules. The fol-

lowing is an example of this problem; suppose there are three

rules, namely Rule1, Rule2, and Rule3. Rule 1 and Rule 3

have a dependency relationship, and the rules have the asso-

ciated probabilities given in Table 1:

Rule Prob.

Rule1 0.1
Rule2 0.5
Rule3 0.4

Table 1: An example with a small number of rules with
their probabilities.

Ideally, the rule with the highest matching probability would

appear at the beginning of the list of rules in order to reduce

the number of packet matches. Thus, in order to preserve the

dependency relationships, the optimal rule order is: Rule1,

Rule3, Rule2. However, the algorithm by [1] is not able to

achieve this rule ordering, as explained below.

The algorithm will first swap Rule1 with Rule2. It will

then check if Rule1 can be swapped with Rule3, but because

they intersect, they will not be swaped. In the second itera-

tion of the While loop the problem encountered becomes evi-

dent. Indeed, because Rule2 is better than Rule1 they will not

be swapped, and further, because Rule1 and Rule3 intersect

they will not be swapped either. Thus, when the algorithm

terminates, the final order will be, clearly, suboptimal3.

However, despite its problems, this algorithm will still cre-

ate a rule ordering that is better than the original, if possible.

2.1.2 A DAG-based Algorithm

The authors of [12] presented a heuristic algorithm for op-

timized policy RR that is able to re-order a policy contain-

ing precedence relationships (or a sub-graph in the DAG) in

such a way that the policy integrity is maintained. A short

synopsis of the most important aspects of this algorithm is

given below.

The algorithm functions by operating on certain data struc-

tures. It needs a set, G(ri), of rules containing the sub-graph

rules of ri, i.e. the dependency relationships for ri. It also

uses a FIFO Queue, S, to represent the optimal policy rule

sorting, where S is initially empty. Additionally, it requires

a list, Q, containing the rules to be sorted, and this list is ini-

tially equal to the original firewall policy, R.

For each pass, the algorithm selects the rule with the high-

est average subgraph probability from the graph of rules avail-

able during that particular pass. The selected rule is then in-

serted into the list of sorted rules, S, if it has no rules de-

pendent on it. Otherwise, the algorithm iteratively sorts the

subgraph of its dependents until it finds a rule that has no

dependent rules and inserts that rule into the list of sorted

rules. The algorithm then updates the respective data struc-

tures and repeats the process until all the rules have been

placed in S.

3. PROPOSED SOLUTION

3.1 Overview of the Solution

The goal of this paper, as expressed in the problem state-

ment, is not merely to create a rule ordering algorithm. Rather,

our aim is to explore the problem of optimizing a firewall’s

performance in a dynamic network. This means that for the

firewall to have an optimised performance at all times, there

needs to be an explicit understanding of when the rules have

to be re-ordered as the network traffic dynamically begins to

favour other rules in the policy.

This implies the need for two algorithms: The first algo-

rithm must be useful to achieve the necessary RR, and the

second one must be capable of updating the rule probabil-

ities as the network traffic fluctuates. From an overall per-

spective, we also need a single scheme that connects both

3This is a very simplistic example. Indeed, the possibility of
terminating on suboptimal solutions is accentuated when the
number of rules is larger.



these algorithms into a single, optimized adaptive firewall.

We first consider the requirements for both these algorithms.

• The RR algorithm should to be able to sort a firewall’s

rule order based on each rule’s matching probability,

dependency relationships, and firewall position. This

will ensure that the average packet matching time is re-

duced. In order to satisfy these criteria, the algorithm

will need to have access to the current firewall security

policy, a knowledge of the dependency relationships,

and the matching probabilities of every rule. The de-

tails of this algorithm are presented in Section 3.2.

• The traffic aware algorithm should be able to update

a rule’s matching probability dynamically as the net-

work’s traffic state changes. This means that this algo-

rithm will need to have access to the currently-applied

firewall security policy and the current number of packet

matches for each rule. In order to enable dynamic esti-

mation of the rule matching probabilities, we present a

novel weak estimator, which is a central component of

our approach, in Section 4.1.

• Finally, the above two algorithms must be combined in

such a way that they can communicate with each other.

The traffic aware algorithm needs to be able to update

the probability associated with a rule, and this update

must be reflected in the rules used by the RR algorithm.

If this is not achieved, the RR will never be able to

find the optimal rule ordering of the firewall when the

traffic state of the network changes. Thus, we will,

briefly, describe two mechanisms for triggering the RR,

namely, periodically and “performance triggered”. These

are described briefly in Section 4.2, and in more detail

in the section that reports the experimental results that

we have obtained, Section 5.

The primary reason why the problem is complex is be-

cause the RR and traffic-aware criteria themselves may be

conflicting. Indeed, rule ri may have to precede rj with re-

gard to the network’s security policy requirements, and yet

the probability of rj being applied may be greater than that

of ri being applied. However, we will consider the RR issue

first.

3.2 The Rule Re-Ordering Algorithm

The algorithm that we propose for RR, uses as its founda-

tion the simple RR algorithm described earlier and presented

in [1], namely Algorithm 1. Our new strategy is shown in

Algorithm 2. However, before we formally present the algo-

rithm, we shall explain its rationale.

3.2.1 Rationale for the Algorithm

Quite naturally, the algorithm itself takes as its input, a

list of rules. It also has a list of rules that each given rule

must precede, and which each rule must succeed. If these lists

collectively formed a DAG that represented a single string

of connected edges with a single source and a single sink,

the problem of re-ordering the rules would have been trivial.

The problem is necessarily complex because the set of lists

of preceding and succeeding nodes could be potentially con-

flicting. Our solution represents a heuristic scheme by which

these conflicting requirements are resolved in the best possi-

ble manner.

To be more specific, the algorithm itself takes as its input,

a list of rules. It also maintains two data structures.

• The preceding list of a rule, ri, contains all the rules

that are dependent on ri. Essentially, this means that

ri must appear before the rules in the preceding list in

order to maintain the integrity of the policy.

• The succeeding list of a rule, ri, contains all the rules

that ri is dependent on. Analogous to the above, this

means that ri must appear after the rules in the suc-

ceeding list in order to maintain the policy’s integrity.

Our algorithm contains two main loops that it iterates through.

For every iteration of the outer loop, the inner loop will tra-

verse the whole list. The reason for this is that the algorithm

will compare the current element in the outer loop, rx, with

the current element in the inner loop, ry.

The algorithm will then try to find a swapping window

between rx and ry. A swapping window is defined as an

interval of positions in a firewall in which the two comparing

rules can be swapped, without breaking the integrity of the

firewall policy. The window is found by analyzing the two

comparing rule’s succeeding and preceding lists.

By finding the rule with the highest position in the firewall

in the preceding list for rx and the rule with the lowest posi-

tion in the firewall in the succeeding list of ry, an interval of

positions can be found. Once such an interval has been de-

termined, the algorithm will check if the window is a valid

swapping window for the current rules being compared.

In order to check the validity of the swapping window, the

algorithm will check if the current position of rx is less than

the lowest position in the succeeding list of ry and if the posi-

tion of ry is grater than the highest position in the preceding

list of rx. If the latter expression is evaluated to be True, the

swapping window is deemed to be valid.

However, the above is only valid if rx has a higher posi-

tion in the firewall than ry. In the case where ry has a higher



position in the firewall than rx (as seen in lines 12 and 13

in Algorithm 2) there is a slight difference in the swapping

criteria. In this case, the rx and ry values in the “If expres-

sion” switch places. The swapping mechanism is illustrated

in Figure 1.

Once the algorithm has found a valid swapping window

and thus knows that rx and ry can be swapped without vi-

olating the integrity of the policy, it will do a simple com-

parison of the rules’ matching probabilities in order to de-

cide whether they should be swapped or not. Even if the

algorithm determines that they should be swapped, the al-

gorithm will not properly swap them yet. Rather, the algo-

rithm will do this based on a criterion value, ∆new, explained

below.

The value ∆new is created using the matching probabil-

ity and position number of the rules being compared against

and simply yields the estimated average matching time be-

fore and after swapping rx and ry. This can be said to repre-

sent the swapping rank of ry. The higher the swapping rank,

the more optimal the swap is considered to be. Consequently,

the algorithm will then perform a test to check whether this

∆new value is greater than the current maximum value of ∆,

i.e., ∆max. If it is greater, then ∆max is re-set to assume this

rule’s ∆new value, and this rule is now the optimal swapping

option.

Figure 1: How Algorithm 2 re-orders rules.

When the inner loop has finished its traversal, a check is

performed in order to find if rx should be swapped with a

rule or not. If it should be swapped, the rule with highest

delta value, ∆max, is chosen to be the optimal rule for it to be

swapped with. Finally, the outer loop will complete the iter-

ation and move on to the next rule at which point the process

above is repeated for that rule.

In essence, what this heuristic algorithm tries to achieve, is

to get as many rules as possible, with a high matching prob-

ability, as close to the top of the firewall as possible.

The formal algorithm follows.

Algorithm 2: Our newly-proposed Rule Re-ordering al-
gorithm.

Data: A list of firewall rules
Result: A new and improved ordering of firewall rules

1 for rx in rules do
2 ∆max = 0
3 for ry in rules do
4 ∆new = 0
5 if rx 6= ry then
6 if rx.pos < ry.pos then
7 if rx.pos < succeeding_max(ry) AND

ry.pos > preceding_min(rx) then
8 if rx.prob < ry.prob then
9 ∆new = (ry.prob− rx.prob) ∗

(ry.pos− rx.pos)
10 if ∆max < ∆new then
11 ∆max = ∆new

12 else
13 if ry.pos < succeeding_max(rx) AND

rx.pos > preceding_min(ry) then
14 if ry.prob < rx.prob then
15 ∆new = (rx.prob− ry .prob) ∗

(rx.pos− ry .pos)
16 if ∆max < ∆new then
17 ∆max = ∆new

18 if ∆max > 0 then
19 swap(rx, ry)

4. THEORETICAL RESULTS: ESTIMATION
AND RULE ORDERING

4.1 Designing a Weak Estimator for Batch Up-
dates

Having described our RR algorithm, we now proceed to

the issue of traffic estimation, and design a Weak Estimator

scheme that is relevant for batch updates. The algorithm that

we propose is a modified version of the weak estimator algo-

rithm initially proposed by Oommen et al [13]. It is modified

in such a way that it is able to use a batch of packet matches

(as opposed to a single packet match as the SLWE scheme

from [13] would do) in order to calculate the packet match-

ing probabilities for a given rule. This ensures that the algo-

rithm does not have to constantly perform estimate updates

for each incoming packet.

The algorithm takes as its input a list of rules and a value

for its parameter, λ. It then iterates through the list of rules

and updates the probability associated with each rule by us-

ing the modified weak estimator algorithm given below. Quite

simply put, in order to update the probability associated with

each rule, the algorithm calculates it using the previous prob-



ability of the given rule, p̂i, the total number of packet matches,

M , and the number of packet matches for any single rule, mi.

The pseudocode is given in Algorithm 3.

Algorithm 3: The Weak Estimator algorithm.

Data: A list of firewall rules, and a lambda value
Result: Updated probabilities for each rule in the list of

rules
1 for rule i in rules do

2 p̂i =
mi

M
p̂i + λ(p̂i −

mi

M
)

4.1.1 Theoretical Results: The Batch-oriented Weak
Estimator

In this section, we present some theoretical results related

to our algorithms. The first result concerned the optimal-

ity of the devised Batch-oriented Weak Estimator (Algorithm

3) described above. The algorithm is a generalisation of the

Stochastic Learning Weak Estimator (SLWE) proposed by Oom-

men and Rueda [13]. The main difference is that the Stochas-

tic Learning Weak Estimator operates in an incremental man-

ner, i.e., updates the estimates of the probabilities upon re-

ceiving every single observation. As opposed to this, the

Batch-oriented Weak Estimator proposed here is able to han-

dle a batch of M observations.

Specifically, let X be a multinomially distributed random

variable, which takes on the values from the set {‘1’, . . . , ‘r’}.

We assume that X is governed by the distributionS = [s1, . . . , sr]
T

as follows:

X = ‘i’ with the probability si, where
r∑

i=1

si = 1.

We assume that between two discrete time instants n and

n+ 1, we obtain a batch of M concrete realisations of X . Let

{x(n, 1), x(n, 2), x(n, 3), ..., x(n,M)} denote the batch of M

observations obtained between the time instants n and n+1.

The intention of the exercise is to estimate S, i.e., si for i =

1, . . . , r based on the batch of observations. We achieve this

by maintaining a running estimate P (n) = [p1(n), . . . , pr(n)]
T

of S, where pi(n) is the estimate of si at time ‘n’, for i =

1, . . . , r. We omit the reference to time ‘n’ in P (n) whenever

there is no confusion.

Let mi(n) be the number of elements in the batch:

{x(n, 1), x(n, 2), x(n, 3), ..., x(n,M)}

for which X = ‘i’. Formally, mi(n) =

M∑

k=1

I(x(n, k) = 1)

where I(.) is the indicator function. Then, the values of pi(n), 1 ≤

i ≤ r, are updated in the following way:

pi(n+ 1) ←
mi(n)

M
pi(n) + λ(pi(n)−

mi(n)

M
). (1)

The reader should note that the above algorithm is a gener-

alization of Oommen and Rueda’s original SLWE algorithm

[13]. In fact, when M = 1, the above updated equation coin-

cides with the original algorithm devised in [13].

The properties of the estimator are catalogued and proven

below.

THEOREM 1. Let the parameter S of the multinomial distri-

bution be estimated by P (n) at time ‘n’ as per equation (1). Then,

E [P (∞)] = S.

Proof.
The proof is omitted here and can be found in an extended

version of the current article [14].

The next result deals with the rate of convergence of the

mean of the estimator.

THEOREM 2. The rate of convergence of P is fully determined

by λ.

Proof.
The proof follows directly from the corresponding proof in

[13]. It is omitted to avoid repetition.

4.2 Theoretical Results: Triggering Rule Re-
ordering

For triggering the decision to attempt RR in a dynamic en-

vironment, we will use two types of approaches: Schedule-

based rule ordering and Performance-triggered rule order-

ing. In simple terms, the Schedule-based RR will re-order

the rule after a fixed number of packets have been received.

On the other hand, the Performance-triggered RR will re-

order the rules whenever the performance of the current pol-

icy degrades. Obviously, the problem with Schedule-based

approaches is that of determining the periodicity of change.

While changing the rule ordering too frequently results in

unnecessary computation, if it is changed with too low a fre-

quency, it results in a system that is unable to track the en-

vironments. As opposed to this, Performance-triggered or-

dering can avoid both these trends if a degradation can be

detected. However the efficiency of such a scheme is depen-

dent on how fast the degradation can be detected, which is

actually quite related to resolving the change detection prob-

lem.

These two forms of mechanisms for triggering the RR, i.e.,

either periodically or Performance-triggered, are described

in detail in the experimental results, Section 5.

With regard to Algorithm 2 we now prove a central result

related to the condition that we use for swapping two rules,



namely ∆new . We will show that ∆new is simply the dif-

ference between the average matching time before and after

swapping. Indeed, we will prove two important properties

of the RR algorithm which are the following:

• Whenever a swapping is performed, the average match-

ing time of the firewall is decreased;

• The swapping condition based on the concept of the

swapping window will preserve the integrity of the fire-

wall.

In what follows, we shall use the notation that for any rule

ri, located at position ri.pos, the associated probability of it

being invoked is ry.prob.

4.2.1 The Swapping Condition

THEOREM 3. The difference of the average matching time be-

fore and after swapping two rules rx and ry is given by: ∆new =

(ry.prob− rx.prob).(ry.pos− rx.pos)

Proof.
The proof can be found in [14].

4.2.2 Preserving Policy Integrity: Consistent Rule
Re-ordering

Due to space limitations, we will merely present the theo-

rems in this section without proofs. The proofs of the corre-

sponding theorems can be found in an extended version of

the current article [14].

THEOREM 4. A rule rk does not introduce inconsistency (i.e.,

it obeys all precedences relationships) if:

preceding_min(rk) < rk.pos < suceeding_max(rk).

THEOREM 5. If ry.pos < succeeding_max(rx)AND rx.pos >

preceding_min(ry), then swapping rx and ry will not intro-

duce inconsistency.

THEOREM 6. Suppose that: rx.pos < succeeding_max(ry)

AND ry.pos > preceding_min(rx) then swapping rx and ry

will not introduce inconsistency.

5. EXPERIMENTAL RESULTS

In this section we will describe the experimental results

obtained by testing our algorithm on a rigorous suite of en-

vironments. The experiments were divided into two cate-

gories, those involving Static and Dynamic environments

respectively. While the static experiments were designed in

such a manner that they were capable of only verifying the

RR algorithm, the dynamic experiments verified the overall

firewall optimizer. All together, we conducted six experi-

ments, namely three static and three dynamic experiments.

5.1 Performance Metric: The Average Match-
ing Time

The authors of [15] defined a metric describing the average

matching time of an Access Control List (ACL). This metric

can be applied to a firewall precisely because a firewall policy

is comprised of ACL rules with dependency relationships.

The following describes how the metric is calculated.

Let θi represent the matching probability of a rule ri in R.

Then the average matching time of the rule is:

ri ∗ θi

In other words to find the average matching time, we have to

simply multiply the rule ri’s probability with its current po-

sition in the firewall. Extending the above to the firewall, R,

the average matching time of the firewall R can be denoted

as,

N∑

i=1

ri ∗ θi, for N > 1.

Thus, the average matching time is defined as the average

number of rules that a packet must be compared against be-

fore a match is found. For example, if a policy R has an aver-

age matching time of 2.6, it means that on average, 2.6 pack-

ets will be compared against the rules, {ri}, in R before a

match is found. From this, it is apparent that to optimize a

firewall, the average matching time of the firewall must be

low. By a simple analysis one sees that this can be achieved

by ensuring that the rules with high probabilities are at the

top of the firewall.

5.2 Experimental Environment

The experiments were conducted on virtual machine in-

stances created on the Alto Cloud cloud service at the Oslo

and Akershus University College of Applied Sciences. All the in-

stances were obtained using an ubuntu 14.14 server image

provided in the cloud.

In order to test the algorithms and the resulting firewalls,

we needed two machines. Machine1 (M1) would run the fire-

wall and the optimization algorithms. Machine2 (M2) would

generate network traffic using a traffic generating script. How-

ever, because the firewalls being tested contained rules with

random source and destination IP addresses, the traffic gen-

erating script could not send the traffic through the internet

because it would have been lost and never reached the fire-



wall at M1. This was because there were no hosts in the envi-

ronment that possessed those IP addresses. Consequently, in

order to solve the problem, we needed a direct connection be-

tween M1 and M2. This connection was created by changing

M2’s default gateway to the IP of M1 so that all traffic from

M2 was routed through M1. This ensured that the spoofed

IPs in the network traffic generated by the traffic generating

script running on M2, would reach the firewall at M1. Figure

2 illustrates this.

Figure 2: Proposed firewall testing environment.

5.3 Schedule-based Rule Re-ordering with Dy-
namic Traffic

The intention of this experiment was to test both the RR al-

gorithm and the Batch-oriented Weak Estimator algorithm in

a dynamic network using a Schedule-based re-ordering pol-

icy. The schedule policy was based on the quantity of packet

matches in the firewall.

The experiment used two Zipf distributions based on the

firewall in Table 2.

The first distribution, Zipf_dist_X, gave a higher probabil-

ity to the rules in the group {E - H}, while the second dis-

tribution, Zipf_dist_Y, gave a higher probability to the rules

in the group {A - D}. The firewall optimizer script ran the

RR algorithm for every 100 packet matches generated by the

traffic generating script using the Zipf_dist_X distribution.

After 1,000 packets had been matched, the traffic generator

would switch the distribution to Zipf_dist_Y, while the opti-

mizer script would continue to attempt RR every 100 packet

matches.

With regard to the metric of comparison, for every itera-

tion of the firewall optimizer, we calculated the average match-

ing time of the current firewall policy configuration, using

both the current Zipf distribution probabilities and the prob-

ability values estimated by using the Batch-oriented Weak

Estimator algorithm. Such a process was able to produce the

true average matching time and the estimated matching time

per packet matched. A base line average matching time was

also calculated, which was simply the the average matching

time of the firewall without any RR. Storing these values as

tuples, where each was stored with the current number of

packet matches at the time of calculation, enabled us to cre-

ate a graph displaying the improvement rate of the average

matching time for the performance of the firewall optimizer

script.

The X-axis of the graph represents the total number of

packet matches and the Y -axis represents the average match-

ing time. On this graph, we plotted the progression of the

three different matching time metrics.

5.3.1 Results Obtained

As mentioned earlier, the intention of this experiment was

to test both the rule order and traffic aware algorithms using

a schedule based re-ordering policy in a dynamic network.

The resulting graphs for this experiment are given in Figures

3 and 4 respectively.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

2.5

3

3.5

4

4.5

5 True Average Matching Time

Estimated Average Matching Time

Base Average Matching Time

Figure 3: The results obtained from the first data set com-
paring our algorithm with a traditional schedule-based re-
ordering policy.

The results of the first experiment demonstrate that the

algorithms behaved as expected. We observe that both the

True and Estimated average matching times start with high

values, representative of a poorly-optimized rule ordering.

They both, thereafter, start to gradually improve their times.

However, there are some fluctuations in the results that leads

to a spiking behavior. These spikes might be because of the

nature of the traffic generator, because it does not consis-

tently guarantee that packets with high probabilities are al-

ways chosen. Rather, the generator uses a “roulette wheel”

function in order to decide which rule is to be tested. Thus,

we might end up with rules with relatively low associated

probability being chosen at random and being sent to the

firewall, causing the observed fluctuations.

When comparing the True and Estimated average match-

ing times, we observe that they both match, relatively closely,

with the Estimated values being consistently slightly below

the true average matching times. Besides these observations,



Source Destination

No. Unique Name Proto. IP PORT IP PORT Action Prob.

1 A UDP 190.1.* * * 90 accept 0.1147
2 B UDP 190.1.1.* * * 90-94 deny 0.0812
3 C UDP 190.1.2.* * * * deny 0.4286

4 D UDP 190.1.1.2 * * 94 accept 0.1866

5 E TCP 190.1.* * * 90 accept 0.0621
6 F TCP 190.1.1.* * * 88 deny 0.0499
7 G TCP 190.1.1.2 * * 88-94 deny 0.0415
8 H TCP 190.1.2.* * * * accept 0.0353

Table 2: The firewall policy used for the experiment.

the base line time behaves as expected: it starts with a high

average packet matching time until the switch, at which point

it decreases rather sharply, and attains a matching time that

is relatively close to the optimal.

The results of the second experiment are given in Figure 4.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

1.5

2

2.5

3

3.5

4

4.5

5
True Average Matching Time

Estimated Average Matching Time

Base Average Matching Time

Figure 4: The results obtained from the second data set
comparing our algorithm with a traditional schedule-based
re-ordering policy.

These graphs display more unexpected results as there seems

to have been more fluctuations. While the base line times are

as expected, the True and Estimated times seem to be too

flat. Again this could simply be due to the random phenom-

ena due to the traffic generator. More importantly, we also

observe that the True and Estimated times are not relatively

aligned anymore, which might be because of the generally

low updates to each rule as it matches a packet given by the

weak estimator function.

5.4 Performance-Triggered Rule Re-ordering
using a Sliding Window

The intention of this experiment was to observe the behav-

ior of the algorithms when using a Performance-triggered

criterion. Such a Performance-triggered criterion was based

on a sliding window comprising of the most recent values of

the estimated average matching time of the firewall. The ex-

periment consisted of two parts both of which used the same

Zipf distribution throughout the experiment. However, the

first part shuffled the Zipf distribution at the traffic genera-

tor after every 500 packets sent. The second part shuffled the

distribution after every 1,000 packets sent.

The firewall optimizer script ran the RR algorithm accord-

ing to a Performance-triggered condition. The condition con-

sisted of a list of the latest average matching times of the

firewall. With each new calculation of the average match-

ing time, the value was added to the list and if the list was

full, the oldest element would be removed in order to make

space for the latest value. This is, essentially, a sliding win-

dow. In order to decide whether to run RR or not, the opti-

mizer script determined the trend of the sliding window. If

the trend demonstrated that the average matching time was

increasing, the RR procedure would be invoked. Otherwise,

the RR procedure would not be called. The trend was calcu-

lated by computing the average of all but the latest value in

the sliding window, and the average was compared against

the latest value. If the average was greater, RR would run;

otherwise, it would not.

The results enabled us to create a graph, in which the X-

axis represented the total number of packet matches, and the

Y -axis represented the average matching time.

5.4.1 Results Obtained

The results obtained by running this experiments are given

in Figures 5 and 6.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800

2

3

4

5

6

window size 10

window size 50

window size 100

Figure 5: The graph obtained for the experiment with a dy-
namic environment where the distribution switched every
500 packets sent.



0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800

2

3

4

5

window size 10

window size 50

window size 100

Figure 6: The graph obtained for the experiment with a dy-
namic environment where the distribution switched every
1,000 packets sent.

From observing the results we see that, in general, the av-

erage matching time decreased with the window size. The

reason for this is because the scheme is provided with more

information to determine if the trend displays an overall in-

crease or decrease in the matching time. A small window

size will, generally speaking, yield a lot of false positives re-

sulting in a RR that occurs too early. For example, we notice

that in Figure 5, when the window size is 10, the average

matching time is consistently higher than for a window size

equaling 50 and 100. However, in the graph where the distri-

bution was switched after 1,000 (rather than just 500) packets,

we observe that even a window size of 10 is able get compar-

atively good results relative to window sizes of 50 and 100.

The reason for this is that the network traffic state will stay in

a relatively stable state for a longer time span until the switch

occurs. Of course, there are some fluctuations here, but they

can be be caused by the random nature of the traffic genera-

tor.

Overall, the results match the expected results.

6. CONCLUSION

The main goal of this paper was to investigate how we

could optimize a firewall’s rule ordering using the network’s

traffic statistics.

The problem statement was addressed by developing two

algorithms to achieve the Rule Re-ordering (RR) in order to

optimize the firewall’s rules in a dynamic network. The first

algorithm was a RR algorithm. It was distantly based on

the philosophy introduced in [1]. However, our algorithm

used more complex criteria for initiating RR, and we exper-

imentally demonstrated that it was able to reduce the aver-

age matching time by as much as 68% than the algorithm

due to [1]. Our second main contribution was to devise a

traffic-aware algorithm. It was based on the weak estimator

algorithm proposed in [13]. However, it was modified to ac-

commodate a batch updating of the rule probabilities rather

than having to rely on keeping track of every packet in the

system in order to update the rule probabilities.

Through various rigorous experiments, we have been able

to show that the firewall performance optimizer worked very

well, and that it was able to re-order the rules by using dy-

namic and time-varying information gleaned from the net-

work.

References

[1] E. W. Fulp, “Optimization of network firewall policies

using ordered sets and directed acyclical graphs,” in

Proc. of IEEE Internet Management Conference, 2005.

[2] L. Rueda and B. J. Oommen, “Stochastic automata-

based estimators for adaptively compressing files with

nonstationary distributions,” Systems, Man, and Cyber-

netics, Part B: Cybernetics, IEEE Transactions on, vol. 36,

no. 5, pp. 1196–1200, 2006.

[3] D. Evans, “The internet of things: How the next evo-

lution of the internet is changing everything,” CISCO

white paper, vol. 1, 2011.

[4] Q. Duan and E. Al-Shaer, “Traffic-aware dynamic fire-

wall policy management: techniques and applications,”

Communications Magazine, IEEE, vol. 51, no. 7, pp. 73–79,

July 2013.

[5] S. Acharya, J. Wang, Z. Ge, T. Znati, and A. Greenberg,

“Traffic-aware firewall optimization strategies,” in Com-

munications, 2006. ICC ’06. IEEE International Conference

on, vol. 5, June 2006, pp. 2225–2230.

[6] C. Benecke, “A parallel packet screen for high speed

networks,” in Computer Security Applications Conference,

1999.(ACSAC’99) Proceedings. 15th Annual. IEEE, 1999,

pp. 67–74.

[7] O. Paul, M. Laurent, and S. Gombault, “A full band-

width atm firewall,” in Computer Security-ESORICS

2000. Springer, 2000, pp. 206–221.

[8] L.-P. Bigras, M. Gamache, and G. Savard, “The time-

dependent traveling salesman problem and single ma-

chine scheduling problems with sequence dependent

setup times,” Discrete Optimization, vol. 5, no. 4, pp. 685–

699, 2008.

[9] V. Grout and J. McGinn, “Optimisation of policy-based

internet routing using access control lists,” in Proceed-

ings of the 9th IFIP/IEEE Symposium on Integrated Network

Management, 2005.



[10] A. Schrijver, “On the history of combinatorial optimiza-

tion (till 1960),” Handbooks in Operations Research and

Management Science: Discrete Optimization, vol. 12, p. 1,

2005.

[11] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan,

“Optimization and approximation in deterministic se-

quencing and scheduling: a survey,” Annals of discrete

mathematics, vol. 5, pp. 287–326, 1979.

[12] A. Tapdiya and E. Fulp, “Towards optimal firewall rule

ordering utilizing directed acyclical graphs,” in Com-

puter Communications and Networks, 2009. ICCCN 2009.

Proceedings of 18th Internatonal Conference on, Aug 2009,

pp. 1–6.

[13] B. J. Oommen and L. Rueda, “Stochastic learning-based

weak estimation of multinomial random variables and

its applications to pattern recognition in non-stationary

environments,” Pattern Recognition, vol. 39, no. 3, pp.

328–341, 2006.

[14] R. Mohan, A. Yazidi, B. Feng, and B. J. Oommen, “On

optimizing firewall performance in dynamic networks

by invoking a novel swapping window-based paradigm,”

Unabridged version of this paper. To be Submitted for Publi-

cation.

[15] V. Grout, J. Davies, and J. McGinn, “An argument for

simple embedded acl optimisation,” Computer Commu-

nications, vol. 30, no. 2, pp. 280–287, 2007.


