

"(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other users, including reprinting/ republishing this material for advertising or promotional

purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any

copyrighted components of this work in other works."

Anti-pattern and Code Smell False Positives:
Preliminary Conceptualisation and Classification

Francesca Arcelli Fontana†, Jens Dietrich∗, Bartosz Walter‡, Aiko Yamashita§, and Marco Zanoni†
†Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, Italy

{marco.zanoni,arcelli}@disco.unimib.it
∗School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand

j.b.dietrich@massey.ac.nz
‡Faculty of Computing, Poznań University of Technology, Poznań, Poland

bartosz.walter@cs.put.poznan.pl
§Department of Information Technology, Oslo and Akershus University College of Applied Sciences, Oslo, Norway

aiko.fallas@gmail.com

Abstract—Anti-patterns and code smells are archetypes used
for describing software design shortcomings that can negatively
affect software quality, in particular maintainability. Tools,
metrics and methodologies have been developed to identify these
archetypes, based on the assumption that they can point at
problematic code. However, recent empirical studies have shown
that some of these archetypes are ubiquitous in real world pro-
grams, and many of them are found not to be as detrimental to
quality as previously conjectured. We are therefore interested in
revisiting common anti-patterns and code smells, and building a
catalogue of cases that constitute candidates for “false positives”.
We propose a preliminary classification of such false positives
with the aim of facilitating a better understanding of the effects
of anti-patterns and code smells in practice. We hope that the
development and further refinement of such a classification can
support researchers and tool vendors in their endeavour to
develop more pragmatic, context-relevant detection and analysis
tools for anti-patterns and code smells.

Index Terms—Anti-patterns, code smells, false positives, de-
tection accuracy, conceptual framework

I. INTRODUCTION

Anti-patterns [1–3] and code smells [4] are archetypes

used to describe software design shortcomings that can neg-

atively affect software quality, in particular maintainability.

Numerous tools and methods have been developed to identify

instances of these anti-patterns and code smells in a program

in order to measure its quality. The emphasis on automated

detection tools and techniques is based on the assumption

that these archetypes can actually point out particular parts

of the program that are problematic from the maintenance

perspective. By identifying these parts, adequate remedies

(i.e., refactoring and/or restructuring) can be applied in order

to pay down technical debt [5]. However, recent empirical

studies have demonstrated that some of these archetypes are

rather ubiquitous in real world programs [6, 7] and not all

of them are as detrimental to software quality as previously

conjectured [8–10].

This poses a relatively complex challenge of how to use

anti-patterns and smells as means to assess software quality.

We see two major challenges, one of a practical and another

one of a more methodological nature. First, the high number of

identified instances leads to time-consuming manual examina-

tion, making the usage of code anti-pattern and smell detection

for code inspection rather prohibitive. From a methodological

perspective, we are facing a construct validity issue (i.e.,

“are we measuring really what we intend to measure?”) as

some of the proposed archetypes may constitute forms of

program construction that neither reflect the current common

understanding of what maintainability is [11] nor constitute

the “latent variable” from an empirical perspective.

Thus, we are interested in revisiting common anti-patterns

and code smells, and improve their comprehension by describ-

ing and classifying instances of cases that constitute “false

positives”. We conjecture that state-of-the-art anti-pattern and

smell detection suffers from low precision due to the lack

of attention on these false positives: anti-pattern and smell

instances with no net detrimental effect on quality. A recent

work addressing the definition of false positives can be found

in [12], where some filters are proposed to increase the

precision of smell detection tools. A meta-synthesis [13, 14]

was conducted on: a) the last 10 years of empirical studies

conducted on code smells and anti-patterns, b) theoretical

examples from grey literature, and c) case studies from indus-

try and open source projects. We summarize the results in a

catalogue [15] where we provide the available information re-

garding the definition of each archetype, applicable synonyms,

argumentation, sources used to support the argumentation

(empirical studies or observations from open source/industrial

cases), code examples, and contextual factors that can be used

to judge whether an instance is a false positive or not.

In this paper, we propose a preliminary classification de-

rived in a bottom-up fashion based on all the elements

from the catalogue. The intention behind this classification

is to contribute to a better, richer conceptual framework for

anti-pattern and code smell research. We hope that further

refinement of this classification can support researchers and

tool vendors in their endeavour to develop more precise and

therefore more useful tools and methods for anti-patterns and

code smell detection.

2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering

978-1-5090-1855-0/16 $31.00 © 2016 IEEE

DOI 10.1109/SANER.2016.84

609

The paper is organized as follows: Section II presents back-

ground and related work. Section III presents the approach

followed to develop the catalogue and the classification.

Section IV presents and discusses the results from the process.

Section V concludes and suggests avenues for future work.

II. BACKGROUND AND RELATED WORK

Anti-pattern is a term defined by Koenig [1] as the counter-

part of design patterns: instead of providing a real solution to

an identified design issue, it delivers a superficial substitute

that does not properly address it. Violations or improper

interpretations of widely accepted design principles such as

SOLID [16] can also be considered as anti-patterns. ‘Code

smells’ is a term coined by Fowler and Beck [4] for describing

symptoms of deeper issues in the code. They informally de-

scribed and exemplified 22 different code smells, and related

them back to well-known violations of different programming

and design principles. Different approaches for detecting

anti-patterns and code smells have been proposed, and are

currently in use. Some examples of the most recent efforts

are detection strategies [17], which have been implemented

in commercial and open source tools (e.g., inFusion1 and

PMD2), the DECOR method proposed by Moha et al., [18],

JDeodorant3, which matches different code attributes with

refactoring opportunities, and machine-learning algorithms
to discover relations between metrics and code smells (i.e.,

Arcelli et al. [19], Khomh et al. [20]). Recent approaches also

consider code evolution via repository mining, e.g., Palomba

et al. [21]. Systematic literature reviews reported in [22] and

[23] identified empirical studies investigating the impact of

code smells on maintenance. However, the results from both

reviews are inconclusive with respect to the actual effects code

smells have on maintainability. Furthermore, recent work by

Sjøberg et al. [8] and Yamashita [9] suggests that the overall

capacity of smell analysis to explain or predict maintenance

problems is relatively modest. To this we need to consider

the fact that recent studies have pointed out that the presence

of certain anti-patterns is rather predominant in real world

software systems [6, 7].

III. METHODOLOGY

Meta-synthesis was the methodology selected to perform

this work. According to [13], meta-synthesis “attempts to

integrate results from a number of different but inter-related

qualitative studies. The technique has an interpretive, rather

than aggregating, intent, in contrast to meta-analysis of quan-

titative studies.” In our case, we decided to follow a meta-

syntesis instead of a systematic review, because we believe

that the latter may be inadequate to identify all relevant

literature. In particular, we also wanted to cover work that

according to Noblit and Hare [24] is “refutational”, or that

may present oppositional conclusions from the main body of

work or understanding/assumptions in a particular research

topic. Quantitative meta-analysis (e.g., systematic literature

1 http://www.intooitus.com/products/infusion 2 http://pmd.sourceforge.net
3 http://www.jdeodorant.com/

reviews) aims at increasing certainty in the cause and effect

conclusions, trying to to find contradictory results, whereas

qualitative meta-synthesis (such as in our case) seeks to

understand and explain phenomena. In particular, we attempt

to look into the “exceptional” cases where code smells do

not have negative consequences, as to better understand in

which situations they are harmful and when they are not. The

definition we used for a false positive for the search was: a

false positive for an anti-pattern AP or a code smell CS is a

code structure that satisfies the conditions that define AP/CS,

but it is not clear that they have a net detrimental effect on the

quality of the software system under analysis, or considered

in the case study. Net here refers to the fact that their might

be some detrimental effect, but this is outweighed by some

other benefits associated with this design. Meta-synthesis was

conducted on: a) the last 10 years of empirical studies con-

ducted on code smells and anti-patterns, b) practical examples

from grey literature, and c) case studies from industry and

open source projects. Specifically, we searched for the terms

“code smell”, and “anti-pattern” in Google Scholar covering

the remaining period 2012-2014. In addition, we looked at

the references from Zhang [22] and [23] and searched in

GoogleScholar studies citing them. We searched for grey

literature on blogs, books and personal experiences from

projects within academia and industry. We consider this set

a good starting point to investigate false positives from both

a theoretical and an empirical perspective. After we identified

the studies and revelatory cases reported in detail in [15],

we developed a catalogue as to summarize our findings, and

via a bottom-up, iterative discussion, we built a situational

classification of the false positives.

IV. RESULTS AND DISCUSSION

A. Overview of the Catalogue

In Table I, we report an overview of the anti-patterns and

smells that we can associate with at least one category of false

positives. The table also contains examples in the last column.

False positives have been categorized for ten code smells and

two anti-patterns. The names of the false positives categories

and examples used in the table refer to the definitions reported

in Section IV-C.

B. Examples from the Catalogue

1) Abstract Singletons Cause Subtype Knowledge: The

purpose of the Singleton pattern [25] is to provide classes

that can only have one instance by design. Singletons are often

used to provide a single access point for global services, such

as object creation (in combination with the factory pattern),

logging, or access to configuration information. There are

good reasons to use Singleton in combination with abstraction.

For instance, an abstract class is defined that provides the

specification of the services provided by the singleton, and

also provides access to the actual singleton instance via a static

access method. However, the actual singleton instance is an

instance of a concrete, instantiable subclass. If the Singleton

acts as a factory, this separation results in an Abstract Factory.

610

TABLE I
FALSE POSITIVES CATALOGUE OVERVIEW

Code smell / antipattern False Positive Categories False Positive Example

Message Chains 1.1 Design Patterns, 2.3 Analysis Scope Test Class Method, Builder DP
God Method 1.1 Design Patterns, 1.5 Porting from non-OO, 2.1 Source

Code Generators, 2.3 Analysis Scope
GUI Library, GUI Builder, Test Class, Entity Modeling Class,
Parser Class, Visitor DP, Persistence Class

God Class 1.1 Design Patterns, 1.3 Frameworks, 1.5 Porting from non-
OO, 2.1 Source Code Generators, 2.3 Analysis Scope

GUI Library, GUI Builder, Test Class, Entity Modeling Class,
Parser Class, Visitor DP, Persistence Class

Feature Envy 1.1 Design Patterns Visitor DP
Dispersed Coupling 2.3 Analysis Scope Test Class Method
Duplicated Code 2.1 Source Code Generators
Data Clumps 1.4 Optimization, 1.5 Porting from non-OO
Primitive Obsession 1.4 Optimization, 1.5 Porting from non-OO, 2.1 Source Code

Generators
Data Class 1.1 Design Patterns, 1.2 Programming Language, 1.3 Frame-

works, 2.3 Analysis Scope
Exception Handling Class, Serializable Class, Test Class,
Logger Class

Shotgun Surgery 1.2 Programming Language, 1.3 Frameworks, 2.2 Represen-
tation, 2.3 Analysis Scope

Exception Handling Method, Test Class Method, Getter/Setter
Method

Circular Dependencies 1.1 Design Patterns, 2.1 Source Code Generators, 2.2 Repre-
sentation

Visitor DP, AbstractFactory DP, Parser

Subtype Knowledge 1.1 Design Patterns Visitor DP, Singleton DP, AbstractFactory DP

1 p u b l i c s t a t i c NetworkAdmin g e t S i n g l e t o n () {
2 i f (s i n g l e t o n == n u l l) s i n g l e t o n =new NetworkAdminImpl () ;
3 r e t u r n s i n g l e t o n ;
4 }

Fig. 1. Singleton instantiation in Azureus (Vuze) (in class NetworkAdmin)

Because the abstract singleton base class references its con-

crete subclass, a subtype knowledge anti-pattern (STK) [26]

occurs. An example can be seen in Azureus4 and is depicted

in Fig. 1. It is often argued that this is indeed an anti-pattern,

and there are several widely used approaches to break the

reference from the abstract to the concrete type, such as

using reflection (often by using additional abstractions such

as “service locators” or dependency injection [27]). However,

there are good reasons not to do this as any of these methods

introduces additional complexity and therefore also has an

impact on maintainability. On the other hand, if there is one

default implementation that is used in almost all cases, then

the approach seen in Fig. 1 seems like the best solution. Also

note that while instances of STK are common in real world

programs [7], there is little evidence that their presence has a

negative impact on maintainability [10].
2) Data Classes May Improve Performance: Data Class is

described by Fowler as a “dumb data holder” [4]. It means

that the class is used only for storing data and providing

read/write access to it, without any other functionality. This

is a violation of the Single Responsibility Principle [28], as

the infected class has actually no responsibility. However,

several reports conclude that this smell has only little negative

impact on maintainability of the subject class [8, 29, 30],

and could be treated as a secondary issue to be addressed

and fixed. Moreover, classes storing several primitive data

items are recommended in EJB code as Data Transfer Objects,

an enterprise-level design pattern [31]. The combination of

attributes in a single entity improves performance of remote

4 http://sourceforge.net/projects/azureus/

data transfers, which is often a critical factor that outweighs

the detrimental effects of the code smell.

C. Classification

Category 1: Imposed Anti-patterns and smells – Imposed

anti-patterns are side effects of conscious design decisions.

An engineer has made the decision to design the software this

way despite these anti-patterns or smells as s/he believes that

the overall net effect on the quality of the system is positive.

Sub-category 1.1: Anti-patterns and smells imposed by Design
Patterns – In some cases, design patterns can directly cause

certain anti-patterns or smells. Examples in this category are:

• Logger Class: classes wrapping logging functionalities

can be very simple Adapters, that mainly store configu-

ration and redirect or expose existing logging functions.

This kind of adapter is sometimes detected as Data Class.

• Visitors: visitors generate circular dependencies between

visitor and visited classes, and potentially also between

the respective packages. Concrete Visitors are sometimes

detected as God Classes when they implement a large

number of visit() operations that contain complex

algorithms, also visit() methods can also be detected

as Feature Envy, since they inspect the content of unre-

lated classes.

• Singleton and Abstract Factory: some uses of the Single-

ton and Abstract Factory can induce Subtype Knowledge

(see example in Section IV-B).

• Builder: instances of the Builder pattern, using a Fluent

Interface style5, can be detected as Message Chain; this is

often wrong, since that style allows chaining calls to the

same object, while the Message Chain smell addresses

chain of calls to different objects.

Sub-category 1.2: Anti-patterns and smells imposed by the
Programming Language used – Sometimes, certain designs

are used to overcome limitations of the programming language

5 http://martinfowler.com/bliki/FluentInterface.html

611

used. The previously mentioned Visitor example illustrates

this point as well: visitors are used to overcome the lack of

double dispatch in modern object-oriented languages like Java

and C# [32]. Other examples are:

• Exception Handling Class: custom exceptions are often

just empty subtypes of existing exceptions or only add

some descriptive attribute. Their main goal is to com-

municate why something happened, and this makes them

appear as Data Classes, although most foundation classes

of any language are prone to this pattern.

• Serializable Class: the protocol imposed by serialization

in Java often results in creating Data Classes with the

specific purpose of being serialized and de-serialized, and

serve as input/configuration for other classes.

Sub-category 1.3: Anti-pattern and smells imposed by frame-
works – Frameworks like J2EE sometimes recommend using

certain antipatterns, trading them off with other qualitative

attributes that are more valued in a given context. In that

case the benefit of using a proven existing framework (or

component) outweighs the negative effects of design decisions

these frameworks may impose on the software using it. An

example is the use of data transfer objects and entity beans

in J2EE6: while they represent Data Classes, they serve the

purpose of providing object-oriented access to the data model.

Other examples identified in this category are:

• GUI widget toolkits: certain graphical toolkits provide

interfaces that can be extended to integrate a new com-

ponent to the user interface. These interfaces are often

very large, and even just implementing them for simple

functionalities risks to create a God Class.

• Getter/Setter Method: Java Beans prescribe the use of

getters and setters. Since they are typically very simple

methods, they risk to be used in many different parts of

a system. Often, this property makes them to be detected

as Shotgun Surgery instances. As an established pattern

in Java beans, getters and setters can be safely excluded

from being Shotgun Surgery, especially when they are

used in the simplest canonical form. Deciding if a class

property can be exposed to a large part of the system is

probably more tied to the analysis of the domain than to

the applied technical solution.

Sub-category 1.4: Anti-patterns and smells imposed by op-
timisations – Sometimes, engineers make a conscious de-

cision based on the advantages a given design decision

poses over other alternatives that comply better with object-

oriented design principles. This somehow resembles how

de-normalisation is used to tune databases. As an effect,

this can cause anti-patterns such as Primitive Obsession

and Data Clumps. An example is the use of integer bit

flags to encode state. This has been widely used in Java,

for instance in javax.swing.SwingConstants or in

java.lang.reflect.Modifier. Note that recent Java

API additions like EnumSet and EnumMap have added

6 http://www.oracle.com/technetwork/java/transferobject-139757.html

features to Java that offer a more object-oriented replacement

without a significant performance penalty [33].

Sub-category 1.5: Anti-patterns and smells imposed by porting
code from a non-object-oriented programming language –
Engineers sometimes port proven implementations written

in imperative languages to object-oriented languages. This

is commonly used in code that provides established, low-

level algorithms in areas such as encryption, compression and

random number generation. It is a safe strategy to faithfully

port this code, often using a single static method. While this

leads to various smells including Primitive Obsession, Large

Classes and Large Methods, it is a reasonable decision that

minimises project risks.

Sub-category 1.6: Anti-patterns and smells inherited from
legacy code – Several programming languages miss features

that could express the intent of the programmer more explic-

itly or effectively. Evolution of the language could extend its

capabilities to better address such issues. However, legacy

code often remains unchanged. As an example, consider

marker interfaces in Java, frequently exploited in the pre-

JDK5.0 code to add meta data at a class level. Starting from

JDK5.0, they have been effectively replaced with annotations.

Category 2: Inadvertent anti-patterns and smells – Inadver-

tent antipatterns are created by tools that create (generate) or

consume (analyze) code.

Sub-category 2.1: Inadvertent anti-patterns and smells caused
by source code generators – Studies have shown that code

that is generated automatically is often riddled with anti-

patterns and smells (mainly duplicates and size/complexity-

related smells) [18, 34]. A simple way of avoiding this kind

of false positives (when applicable) is to exclude packages

containing only generated code from the analysis. Examples

identified in this category are:

• GUI builders: often GUIs are created using graphical

editors that generate code. When this code is generated

as a single class, it is often detected as God Class.

• Entity Modelling Class: Generated code to support entity

management can generate large and complicated classes

(e.g., Eclipse EMF7) with complex and duplicated code.

• Parsers: parser generators (e.g., ANTLR) tend to create

a single monolithic parser class. This code is often

identified as God Class, Duplicated Code, and is prone

to Primitive Obsession and Circular dependencies due to

generated code for AST visitors.

Sub-category 2.2: Inadvertent anti-patterns and smells caused
by program representation – Anti-pattern and smell analysis

is typically static analysis that investigates a representation of

the program without executing it. However, there are different

program representations with subtle differences that may have

an impact on the precision of anti-pattern detection. A good

example is Java with its source code and byte code repre-

sentations. The compiler infers new artefacts that can create

new anti-patterns or smell instances. An example is constant

inlining (that could create Shotgun Surgery instances) and

7 https://eclipse.org/modeling/emf/

612

the creation of new methods for accessing private members

in outer classes from inner classes. The use of (non-static)

nested classes leads to Circular Dependencies between the

respective classes caused by the compiler-generated reference

to an instance of the enclosing class(es), and in some cases

to subtype knowledge.
Sub-category 2.3: Inadvertent anti-patterns and smells caused
by analysis scope – Software projects are composed of differ-

ent artefacts and modules. Certain parts of the project may not

reach production, and should not be considered during quality

assessment, or considered separately. An example is:

• Test Classes and Methods: test code usually follows its

own design rules imposed by respective frameworks,

quite different from project ones. It is usually sufficient

to carefully select the source folders/files to analyse to

exclude tests, but sometimes they are mixed with the

main code.

V. CONCLUSION AND FUTURE WORK

Anti-pattern and smell detection relies on constructing

classifiers that assign a given entity to one of two groups:

infected and (anti-pattern/smell)-free. Usually these classifiers

utilize static analysis: metrics values, structural properties,

history of changes or relations with other anti-patterns or code

smells. However, empirical studies show that such detectors

produce numerous false-positives: entities that are incorrectly

classified as infected, whereas manual inspection reveals that

they have no net detrimental effect on software quality.
The detection of the proposed false positive categories could

be implemented as a set of filters. This is a possible step

forward in an effort to define domain- (or context-) specific

smells and anti-patterns that are relevant only in a specific

context, but meaningless or misleading in other contexts.
The main contribution of this paper is a classification

of false positive anti-pattern and code smell instances. This

classification is detailed further in a catalogue [15], which has

the aim of collecting descriptions, examples, and references to

previous empirical evidence that can be used to define proper

filters. Future work includes the implementation of these false

positive definitions via filter definitions in code smell detection

tools and we plan to apply the filters into InFusion8 and

evaluate the effects of the filters on inspection effort (where

a proxy for effort constitutes the number of classes needed to

be inspected).

REFERENCES

[1] A. Koenig, “Patterns and antipatterns,” J. of Object-Oriented Program-
ming, vol. 8, no. 1, pp. 383–389, 1995.

[2] W. Brown, R. Malveau, T. Mowbray, and J. Wiley, AntiPatterns:
refactoring roftware, architectures, and projects in crisis. Wiley, 1998,
vol. 3, no. 4.

[3] B. F. Webster, Pitfalls of object-oriented development. M&T Books,
1995.

[4] M. Fowler, Refactoring: Improving the design of existing code.
Addison-Wesley, 1999.

[5] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” Journal of Systems and Software,
vol. 101, no. 0, pp. 193–220, 2015.

8 https://www.intooitus.com/products/infusion

[6] H. Melton and E. Tempero, “An empirical study of cycles among classes
in Java,” Empirical Soft. Eng., vol. 12, no. 4, pp. 389–415, 2007.

[7] J. Dietrich, C. McCartin, E. Tempero, and S. Shah, “Barriers to mod-
ularity – An empirical study to assess the potential for modularisation
of Java Programs,” in Proceedings QoSA2010, 2010.

[8] D. Sjøberg, A. Yamashita, B. Anda, A. Mockus, and T. Dybå, “Quanti-
fying the effect of code smells on maintenance effort,” IEEE Trans. on
Soft. Eng, vol. PP, no. 99, p. 1, 2013.

[9] A. Yamashita, “Assessing the capability of code smells to explain
maintenance problems: an empirical study combining quantitative and
qualitative data,” Empirical Soft. Eng., vol. 19, no. 4, pp. 1111–1143,
aug 2014.

[10] T. D. Oyetoyan, J.-R. Falleri, J. Dietrich, and K. Jezek, “Circular de-
pendencies and change-proneness: An empirical study,” in Proceedings
SANER’15. IEEE, 2015.

[11] A. Yamashita and L. Moonen, “Do code smells reflect important
maintainability aspects?” 2012, pp. 306–315.

[12] F. Arcelli Fontana, V. Ferme, and M. Zanoni, “Filtering code smells
detection results,” in Proceedings ICSE’15 (poster track). IEEE, 2015.

[13] D. Walsh and S. Downe, “Meta-synthesis method for qualitative re-
search: A literature review,” J. of Adv. Nursing, vol. 50, no. 2, 2005.

[14] University of Toledo, “Types of literature reviews,” 2014.
[15] F. Arcelli Fontana, J. Dietrich, B. Walter, A. Yamashita, and

M. Zanoni, “Preliminary catalogue of anti-pattern and code smell false
positives,” Poznań University of Technology, Tech. Rep. RA-5/15,
2015. [Online]. Available: http://www2.cs.put.poznan.pl/wp-content/
uploads/2015/11/RA-5-2015.pdf

[16] R. C. Martin, Agile Software Development, Principles, Patterns and
Practice. Prentice Hall, 2002.

[17] M. Lanza and R. Marinescu, Object-oriented metrics in practice.
Springer, 2006.

[18] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “DECOR:
A method for the specification and detection of code and design smells,”
IEEE Trans. on Soft. Eng., vol. 36, no. 1, pp. 20–36, 2010.

[19] F. Arcelli Fontana, M. Zanoni, A. Marino, and M. Mäntylä, “Code smell
detection: towards a machine learning-based approach,” in Proceedings
ICSM’13. IEEE, 2013.

[20] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui, “BDTEX:
A GQM-based Bayesian approach for the detection of antipatterns,” J.
of Systems and Software, vol. 84, no. 4, pp. 559–572, apr 2011.

[21] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change
history information,” in Proceedings ASE’13. IEEE, 2013.

[22] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells: a review of
current knowledge,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 23, no. 3, pp. 179–202, apr 2011.

[23] A. Yamashita, “Assessing the capability of code smells to support soft-
ware maintainability assessments: Empirical inquiry and methodological
approach,” Doctoral Thesis, Univ. of Oslo, 2012.

[24] G. Noblit and R. Hare, Meta-Ethnography: Synthesising qualitative
studies. Newbury Park: Sage, 1988.

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson, 1994.

[26] A. J. Riel, Object-oriented design heuristics, 1st ed. Boston, MA,
USA: Addison-Wesley, 1996.

[27] M. Fowler, “Inversion of control containers and the dependency injec-
tion pattern,” 2004, http://www.martinfowler.com/articles/injection.html.

[28] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2003.

[29] W. Li and R. Shatnawi, “An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution,”
J. of Systems and Software, vol. 80, no. 7, pp. 1120–1128, jul 2007.

[30] F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An exploratory study of
the impact of code smells on software change-proneness,” in Proceeding
WCRE’09. IEEE, 2009.

[31] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Professional, 2003.

[32] R. Muschevici, A. Potanin, E. Tempero, and J. Noble, “Multiple dispatch
in practice,” in Proceedings OOPSLA’08. New York, NY, USA: ACM,
2008.

[33] J. Bloch, Effective Java (2nd ed.), 2nd ed. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2008.

[34] C. Parnin and C. Görg, “Lightweight visualizations for inspecting code
smells,” in Proceedings SoftVis’06. ACM, 2006.

613

