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Abstract
The purpose of this paper is to study families of Artinian or one dimensional quotients of a
polynomial ring R with a special look to level algebras. Let GradAlgH(R) be the scheme
parametrizing graded quotients of R with Hilbert function H. Let B → A be any graded
surjection of quotients of R with Hilbert function HB = (1, h1, ..., hj , ...) and HA respectively.
If dim A = 0 (resp. dim A = depth A = 1) and A is a �truncation� of B in the sense that
HA = (1, h1, ..., hj−1, α, 0, 0, ...) (resp. HA = (1, h1, ..., hj−1, α, α, α, ...)) for some α ≤ hj , then
we show there is a close relationship between GradAlgHA(R) and GradAlgHB (R) concerning e.g.
smoothness and dimension at the points (A) and (B) respectively, provided B is a complete
intersection or provided the Castelnuovo-Mumford regularity of A is at least 3 (sometimes 2)
larger than the regularity of B. In the complete intersection case we generalize this relationship
to �non-truncated� Artinian algebras A which are compressed or close to being compressed. For
more general Artinian algebras we describe the dual of the tangent and obstruction space of
deformations in a manageable form which we make rather explicit for level algebras of Cohen-
Macaulay type 2. This description and a linkage theorem for families allow us to prove a con-
jecture of Iarrobino on the existence of at least two irreducible components of GradAlgH(R),
H = (1, 3, 6, 10, 14, 10, 6, 2), whose general elements are Artinian level algebras of type 2.
AMS Subject Classi�cation. 14C05, 13D10, 13D03, 13D07, 13C40, 13D02.
Keywords. Parametrization, Artinian algebra, level algebra, Gorenstein algebra, licci, Hilbert
scheme, duality, algebra (co)homology, canonical module, normal module.

1 Introduction
The main goal of this paper is to contribute to the classi�cation of Artinian and one dimensional
graded quotients of a polynomial ring R in n variables (of degree one) over an algebraically closed
�eld k. In particular we study the scheme GradAlgH(R) = GradAlg(H) which parametrizes graded
quotients A of R of depthA ≥ min(1, dimA) and with Hilbert function H. GradAlgH(R) is the
representing object of a correspondingly de�ned functor of �at families and it may be non-reduced.
Thus GradAlgH(R) may be di�erent from the parameter spaces studied by Iarrobino, Gotzmann
and others who study the �same� scheme with the reduced scheme structure. In our approach we
try to bene�t from having a well described tangent and obstruction space of GradAlgH(R) at (A)
at our disposal.

An important technique in determining GradAlg(HA) is to take a graded surjection B → A of
quotients of R with Hilbert functions HB and HA respectively, and, under certain conditions, make
the relationship between GradAlg(HA) and GradAlg(HB) as tight as possible. We review some
results of this technique in Section 1. If B = R/IB, let NB := HomR(IB, B) and let reg(B) =
reg(IB)− 1 be the Castelnuovo-Mumford regularity of B. Let

... → ⊕r2
i=1R(−n2,i) → ⊕r1

i=1R(−n1,i) → R → B → 0

be the minimal resolution and let ε(A/B) =
∑r1

i=1[HB(n1,i)−HA(n1,i)]. Our main results in Section
2 apply to GradAlg(HA) where A is one-dimensional. We prove (cf. Theorem 12)
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Theorem 1. Let R be a polynomial k-algebra and let B = R/IB → A = R/IA, IA 6= 0, be a
graded morphism such that A is Cohen-Macaulay of dimension one and depthB ≥ 1 and such that
X := Proj(A) ↪→ Y := Proj(B) is a local complete intersection of codimension r ≥ 0. Let HA(v) = s
for v >> 0 and suppose either

(a) IB is generated by a regular sequence (allowing R = B), or
(b) Bv → Av is an isomorphism for all v ≤ maxi{n2,i} and dimR− dimB ≥ 2.

Moreover suppose there is an integer j such that Bv ' Av for all v ≤ j − 1 and such that IA

is (j + 1)-regular (i.e. reg(A) ≤ j, or equivalently, HA(v) = s for v ≥ j). Then dim(NA)0 =
dim(NB)0 + rs− ε(A/B) , and

dim(A) GradAlgHA(R) = dim(B) GradAlgHB (R) + rs− ε(A/B) .

In particular A is unobstructed as a graded R-algebra (i.e. GradAlgHA(R) is smooth at (A)) if and
only if B is unobstructed as a graded R-algebra.

One may look upon the conditions on j above as assuming the minimal free resolution of IA/B :=
IA/IB to be semi-linear (close to being linear, cf. (5)), and the conditions of (b) and (a) as requiring
this j to be large enough in the case Y is not a complete intersection (CI).

Theorem 1 is what we need to treat the case where X consists of s points in generic position on
Y in the sense that HA is the truncation of HB at the level s and the points are distinct. Indeed
Geramita et al. ([13]) de�nes such a truncation by

HA(i) = inf{HB(i), s} for i ≥ 0 ,

and they show that there exists a reduced scheme X on Y with truncated Hilbert function HA

provided Y is reduced and consists of more than s points. We prove (cf. Corollary 14)
Corollary 2. Let Y = Proj(B), B = R/IB, be a reduced scheme consisting of more than s points,
and let X = Proj(A) be s points (avoid SingY ) of codimension r in generic position on Y . Let j
be the smallest number such that HA(j) 6= HB(j). If Y is not a CI, suppose j ≥ reg(IB) + 2. Then
dim(NA)0 = dim(NB)0 + rs− ε(A/B) , and

dim(A) GradAlgHA(R) = dim(B) GradAlgHB (R) + rs− ε(A/B) .

Hence A is unobstructed as a graded R-algebra i� B is unobstructed as a graded R-algebra.
Moreover in Corollary 2 (and Theorem 1) we may allow the codimension r to vary along the s

points, say such that the i-th point has codimension ci in Y (Y need not be equidimensional). Then
Corollary 2 holds if we replace rs by

∑s
i=1 ci.

The analogue of Theorem 1 for Artinian algebras is the main result of Section 3 (cf. Theorem 29).
Theorem 3. Let R be a polynomial k-algebra and let B = R/IB → A = R/IA be a graded morphism
such that A is Artinian and depthB ≥ min(1, dimB), and suppose either

(a) IB is generated by a regular sequence (allowing R = B), or
(b) Bv → Av is an isomorphism for all v ≤ maxi{n2,i} and dimR− dimB ≥ 2.

Let F be a free B-module such that F → IA/B is surjective and minimal, and suppose there is an
integer j such that the degrees of minimal generators of the B-module ker(F → IA/B) are strictly
greater than j (e.g. Bv ' Av for all v ≤ j − 1) and such that IA is (j + 1)-regular (i.e. Aj+1 = 0).
Then dim(NA)0 = dim(NB)0 + dim 0HomB(F,A)− ε(A/B) , and

dim(A) GradAlgHA(R) = dim(B) GradAlgHB (R) + dim 0HomB(F,A)− ε(A/B) .

In particular A is unobstructed as a graded R-algebra if and only if B is unobstructed as a graded
R-algebra.
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In Proposition 42 we show an improvement of Theorem 3(a) in the case �Bv ' Av for all v ≤ j−1�.
In this case we can skip the condition Aj+1 = 0, or equivalently (KA)−j−1 = 0 (KA the canonical
module) provided the minimal resolution of KA has no relations in degree greater or equal to j.
This generalization applies to algebras which are compressed or close to being compressed. In the
compressed case the dimension and the smoothness of GradAlg(HA) coincide with the results of
[24].

Theorem 3 applies nicely to Artinian truncations and more generally to Artinian quotients A with
Hilbert function HA = (1, h1, h2, ..., hj−1, α, 0, 0, ..) where HB = (1, h1, h2, ..., hj−1, hj , hj+1, ...) and
α ≤ hj . In that case the relationship between GradAlg(HA) and the open subset GradAlg(HB)η

of GradAlg(HB) consisting of points (B) where reg(IB) ≤ η, may be described by an incidence
correspondence

GradAlg(HB,HA)η
q−→ GradAlg(HB)η ⊂ GradAlg(HB)

↓p

GradAlg(HA)
(1)

where p and q are the natural projections (cf. (8) and Proposition 33 for details).

Proposition 4. Let HB = (1, h1, h2, ...) be the Hilbert function of an algebra B 6= R satis-
fying depthB ≥ 1, and let j, η ≤ j − 2 and α ≤ hj be non-negative integers. Let HA =
(1, h1, ..., hj−1, α, 0, 0, ..) and look to the maps p and q in (1). Then

(i) q is smooth and surjective with connected �bers, of �ber dimension α(hj − α), and
(ii) p is an isomorphism onto an open subscheme of GradAlg(HA).

In particular the incidence correspondence (1) determines a well-de�ned injective application π from
the set of irreducible components W of GradAlg(HB)η, to the set of irreducible components V of
GradAlg(HA) whose general elements satify the Weak Lefschetz property. In this application the
generically smooth components correspond. Indeed V = π(W ) is the closure of p(q−1(W )), and we
have

dimV = dimW + α(hj − α) .

Also Theorem 1 allows a corollary very similar to Proposition 4 in the one dimensional case (cf.
Proposition 19).

In Section 4 we characterize the tangent and obstruction space of GradAlgH(R) at an Artinian al-
gebra (A). Note that if A is Gorenstein with socle degree j and S2IA is the second symmetric power of
IA, then the k-dual of the obstruction space is by [32], Thm. 11 isomorphic to the kernel of the natu-
ral map (S2IA)j → (IA

2)j , or equivalently, to the cokernel of (Λ2IA)j → (IA⊗IA)j ' TorR
1 (IA,KA)0.

This result generalizes to the following result (cf. Theorem 36), in which H2(R, A, KA) is the algebra
homology, cf. (2).

Theorem 5. Let R → A = R/IA be a graded Artinian quotient with Hilbert function H. Then
dim(IA ⊗R KA)0 is the dimension of the tangent space of GradAlgH(R) at (A), and the dual
of 0H2(R,A, KA) contains the obstructions of deforming A as a graded R-algebra. In particular
GradAlgH(R) is smooth at (A) provided the natural �antisymmetrization� map

IA ⊗R IA ⊗R KA → TorR
1 (IA,KA)

(cf. (17)) is surjective in degree zero.

Since we in Theorem 44 show that the parameter space L(H) of level algebras, introduced in
[9] through the ideas of [26], is su�ciently close to being an open subscheme of GradAlgH(R), we
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get that Theorem 5 holds if we everywhere replace GradAlgH(R) by L(H) at a level algebra (A).
Note that the tangent space of L( H) is already well described in [9]. Moreover if A is Artinian of
codimension 3 in R, we show that the obstruction space is contained in the dual of (NA)−3 and we
make explicit a formula which is a lower bound for the dimension of any irreducible component of
GradAlgH(R) (Proposition 39 and Corollary 40).

Finally we look to type 2 level algebras A = R/ann(F1, F2) where F1 and F2 are forms of the same
degree s in the �dual� polynomial algebra of R. Such algebras are studied in [25], and an extended
draft of [25] determines the tangent space of GradAlgH(R) at (A). If HA(i) = min{dimRi, HA1(i)+
HA2(i)} for any i, then {F1, F2} is said to be complementary [25]. Using Theorem 5 we describe the
tangent and obstruction space of GradAlgH(R) at (A) in the following way (see Proposition 45).
Proposition 6. Let {F1, F2} be complementary forms of degree s, and let A = R/IA be the Artinian
level quotient with Hilbert function H given by IA = ann(F1, F2). Let IAi = ann(Fi). Then (IA/IA ·
IA1)s ⊕ (IA/IA · IA1)s is the dual of the tangent space of GradAlgH(R) at (A), and sH2(R, A,A1)⊕
sH2(R,A, A2) is the dual of a space containing the obstructions of deforming A as a graded R-algebra.
In particular if the sequences

IA ⊗R IA
λ−→ IA ⊗ IAi → IA · IAi

where λ(x⊗ y) = x⊗ y− y⊗x, are exact for i = 1 and 2, then GradAlg(HA) is unobstructed at (A)
and we have dim(A) GradAlgHA(R) =

∑2
i=1 dim(IA/IA · IAi)s .

Then we use Proposition 6 and a linkage theorem (Theorem 24) to prove a conjecture of A. Iar-
robino, appearing in the draft of [25], namely that L( H) with H = (1, 3, 6, 10, 14, 10, 6, 2) contains at
least two irreducible components whose general elements are level quotients of type 2 (Example 49).
Once having one example of such a phenomena, we produce in�nitely many by liaison (Remark 50).
Even though this conjecture was open until now, Iarrobino and Boij have in a joint work already
constructed other examples of reducible L( H) whose general elements are type 2 level quotients,
one with H = (1, 3, 6, 10, 14, 18, 20, 20, 12, 6, 2), and they have got a doubly in�nite series of such
components [5].

In this paper we give many examples to illustrate our results, some of them with the use of
Macaulay 2. Among examples of particular interest, in addition to the proven conjecture, we mention
Example 21 of two irreducible components of GradAlg(H) (and of PGor(H)) whose intersection
contains Artinian Gorenstein algebras, and Example 41 of two components of GradAlg(H) with
H = (1, 3, 6, 6, 3, 1) whose general elements of both components are Artinian licci algebras.

Together with co-authors we have in several papers ([30], [32], [34], [35], [36] and [33] which
makes a correction to [36], Ch. 10) studied the scheme GradAlgH(R) and its subset PGor(H) which
parametrizes Gorenstein quotients. The latter is essentially an open subscheme of the former (cf. [32],
Thm. 11, or Theorem 44 of this paper). One will see from [34], [36] and [33] that our cohomological
methods often require the quotients to have depth at least two (in which case GradAlgH(R) is
locally isomorphic to the usual Hilbert scheme, see Propostion 8). In [32] and partially in [34],
we were, however, able to treat Gorenstein algebras A = B/IB of any dimension satisfactorily,
utilizing properties of the canonical module KB. In the present paper we take a major further step
in generalizing our notable cohomological and in�nitesimal approach to treat non-Gorenstein low
dimensional algebras.

I thank Anthony Iarrobino for interesting discussion on the subject and for introducing me to
type 2 level algebras and his conjecture by giving me the extended draft of [25]. I also thank him
and the Northeastern University for their hospitality during my visit to Boston in February 2005.
Moreover I thank Arvid Siqueland for a thorough reading of the manuscript and the referee for useful
and clarifying comments to the exposition.

4



1.1 Preliminaries
Let R be a polynomial k-algebra in n variables of degree 1 where k is algebraically closed. In the
following we focus on the scheme parametrizing Artinian graded quotients B of R, as well as the
scheme parametrizing closed schemes Y = Proj(B) in P = Pn−1, with �xed Hilbert function H.
Both schemes are denoted by GradAlgH(R). When we write Y = Proj(B), we always take B as
the homogeneous coordinate ring of Y and the Hilbert function of B, or Y , as HB(v) = HY (v) :=
dimBv. Now if H(v) = dimBv does not vanish for v >> 0, we call GradAlgH(R) the postulation
Hilbert scheme because this name seems to be most common, at least when it is endowed with its
reduced scheme structure and dimB = 1 (cf. [15], [26]). Since GradAlgH(R) is the representing
object of a certain functor of �at deformations, it may be non-reduced. We continue denoting it by
GradAlgH(R), to make it clear that it may be non-reduced.

Now we recall the de�nition of GradAlgH(R). Let Hilbp(P) be the Hilbert scheme ([17]) parametriz-
ing closed subschemes Y of P = Proj(R) with Hilbert polynomial p ∈ Q[t]. The k-point of Hilbp(P)
which corresponds to Y is denoted by (Y ). A closed subscheme Y of P is called unobstructed if
Hilbp(P) is smooth at (Y ).

Let GradAlg(H) := GradAlgH(R) be the stratum of Hilbp(P) given by deforming Y = Proj(B) ⊂
P with constant Hilbert function HB = H (more precisely its functor deforms the homogeneous
coordinate ring, B = R/IB, of Y �atly), cf. [30] or [32]. GradAlgH(R) allows a natural scheme
structure whose tangent (resp. �obstruction�) space at (Y ) is 0HomB(IB/I2

B, B) ' 0HomR(IB, B)
(resp. 0H2(R, B, B)), i.e. it is given by deforming B as a graded R-algebra ([28], Thm. 1.5). In the
case H(v) does not vanish for large v (i.e. B is non-Artinian), we may look upon GradAlgH(R)
as parametrizing graded R-quotients, R → B, satisfying depthm B ≥ 1 and with Hilbert function
HB = H. If B is Artinian, GradAlgH(R) still represents a functor parametrizing graded R-quotients
with Hilbert function HB = H (see [32], Prop. 9 and Thm. 11). B is called unobstructed as a graded
R-algebra if and only if (i�) GradAlg(HB) is smooth at (B), i.e. at (Y ).
Remark 7. (a) It follows from a theorem of Pardue (Thm. 34 of [47], cf. [15] for the codimension
2 case) that GradAlg(H) is a connected scheme (see also [40]).

(b) Note also that Ragusa-Zappala's result for zero-schemes ([49]), that di�erent minima of the
set of graded Betti numbers yield di�erent components of GradAlg(H), is valid for any H and R.
This follows from the representability of the functor which de�nes GradAlg(H) ([32], Prop. 9), the
semicontinuity of the graded Betti numbers and Ragusa-Zappala's proof because we may avoid the
�very �atness� argument in their proof by using the �atness of the representing object of the mentioned
functor. Note that the set of graded Betti numbers is partially ordered because each Betti number
(i.e. the number of minimal generators of a �xed degree of some �nitely generated syzygy R-module)
obey semicontinuity and may decrease under generization. Thus di�erent minima may occur. In
particular incomparable sets (i.e. sets without a common minimum) of graded Betti numbers lead to
di�erent components in general (see [43] for a discussion).

The following comparison result is due to Ellingsrud ([12]) in the case depthm B ≥ 2, see [28],
Thm. 3.6 and Rem. 3.7 for the general case. Below s(IB) is the minimal degree of the minimal
generators of IB. Note that the openness statements follow easily from the �rst isomorphism by the
semicontinuity of dimH1(Y, ĨB(v)).
Proposition 8. Let B = R/IB satisfy depthm B ≥ 1 and let Y = Proj(B). Then

GradAlgH(R) ' Hilbp(P) at (Y ) ,

provided 0HomR(IB, H1
m(B)) = 0 (e.g. provided depthm B ≥ 2). In particular the open sets

U(H) := {(B) ∈ GradAlgH(R)| vH1
m(B) = 0 for every v ≥ s(IB)}
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and {(B) ∈ GradAlgH(R)| depthm B ≥ 2} of GradAlgH(R) are also open in Hilbp(P).

Here depthm M (or just depthM , M �nitely generated) denotes the length of a maximal M -
sequence in the irrelevant maximal ideal m, and Hi

m(−) is the right derived functor of the functor of
sections with support in Spec(B/m). Note that depthm M ≥ r i� Hi

m(M) = 0 for i < r, cf. [19]. A
Cohen-Macaulay B-module M satis�es depthM = dimM by de�nition. If B is Cohen-Macaulay of
codimension c in R and KB = Extc

R(B,R(−n)) is the canonical module of B, we know by Gorenstein
duality that the v-graded piece of Hi

m(M) satis�es (cf. [19])

vHi
m(M) ' −vExtn−c−i

B (M, KB)∨ .

Two graded quotients, R/J and R/J ′, are said to be linked by a complete intersection if there
exists a homogeneous complete intersection ideal L such that J = L : J ′ and J ′ = L : J (with
L ⊆ J∩J ′). The relationship of being linked generates the equivalence relation, �linkage�. B = R/IB

is said to be licci (and hence Cohen-Macaulay) if it is in the linkage class of a complete intersection
(cf. [44] for a survey).

The algebraic (co)homology groups H2(R,B, M) and H2(R, B, M) may be described as follows.
The former group is given by an exact sequence

0 → H2(R, B, M) → H1 ⊗B M → G1 ⊗R M → IB/I2
B ⊗B M → 0. (2)

in which G1 is R-free, G1 ³ IB is surjective and minimal, and H1 = H1(IB) is the degree one Koszul
homology of IB [39]. For the graded group H2(R, B, M) we only remark that by [1], Prop. 16.1, and
[39], there are injections

0Ext1B(IB/I2
B,M) ↪→ 0H2(R,B,M) ↪→ 0Ext1R(IB,M) (3)

A quotient B = R/IB of codimension c := dimR − dimB in R has a minimal R-free resolution
of the following form (cf. [11])

... → Gc → ... → G1 → R → B → 0 , Gj = ⊕rj

i=1R(−nj,i) (4)

and B is Cohen-Macaulay (CM) i� Gc+1 = 0. The function maxi{nj,i}−j is increasing as a function
in j if B is CM. If B is Artinian (i.e. c = n), then maxi{nc,i} − c is the socle degree of B. More
generally the Castelnuovo-Mumford regularity of IB is given by reg(IB) = max{j,i} {nj,i − j + 1}
and reg(B) = reg(IB)− 1 (cf. [44], p. 8). In particular

max
i
{nj,i} ≤ reg(IB) + j − 1 for any j.

If Gc+1 = 0 and Gc has rank 1 (resp. Gc = R(−s)t), then B is Gorenstein (resp. level of type
t). In these cases B is a compressed Artinian R-algebra if HB (i.e. HB(v) for any v) is as large as
possible for a �xed socle degree and �xed type (cf. [24] for existence).

An R-module M of projective dimension t − 1 is said to have a semi-linear (resp. linear)
resolution provided the minimal resolution of M has the following form

0 → R(−j − t)βt ⊕R(−j − t + 1)αt → ... → R(−j − 1)β1 ⊕R(−j)α1 → M → 0 (5)

(resp. with αi = 0 for all i). With B as in (4) and B → A ' B/IA/B a graded surjection, we de�ne

ε = ε(A/B) =
r1∑

i=1

dim(IA/B)n1,i =
r1∑

i=1

[
HB(n1,i)−HA(n1,i)

]
(6)
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where HB and HA are the Hilbert functions of B and A. If B is a complete intersection (CI),
allowing R = B, then IB/I2

B and the normal module NB = (IB/I2
B)∗ are R-free of rank r1 ≥ 0, and

dim(B) GradAlgHB (R) = dim(NB)0 =
r1∑

i=1

HB(n1,i)

In Lemma 9 and Theorem 12 of the next section we look upon the special case B = R as a CI
with r1 = 0. Throughout we pass to small letters to denote the k-vector space dimension of the
(co)homology groups involved, e.g. for any i ≥ 0,

hi(M̃) = dim Hi(M̃), vhi(R, B, M) = dim vHi(R, B, M), vexti
B(M, N) = dim vExti

B(M, N).

Lemma 9. Let R → B = R/IB → A ' B/IA/B be graded morphisms, let c = dimR − dimB and
suppose either

(a) IB is generated by a regular sequence (allowing R = B), or
(b) c ≥ 2 and Bv → Av is an isomorphism for all v ≤ maxi{n2,i}.

Then 0H2(R, B, IA/B) = 0 and 0homR(IB, IA/B) = ε(A/B). Moreover ε(A/B) = 0 if (b) holds.

Proof. If B is a CI, then it is well known that 0H2(R, B, IA/B) = 0, and moreover that 0H1(R, B, IA/B) '
0HomR(IB/I2

B, IA/B) ' (⊕iIA/B(n1,i))0 and we get the lemma in this case. In (b) it su�ces by (3)
to show 0Exti

R(IB, IA/B) = 0 for i ≤ 1. Applying 0HomR(−, IA/B) to the minimal resolution of IB

deduced from (4), we conclude by the assumptions of (b).

The following Proposition is a part of Prop. 4 of [32] and is used quite often in this paper. Below
GradAlg(HB,HA) is the representing object of the functor deforming surjections B → A of graded
quotients of R of positive depth (for non-Artinian quotients) and with Hilbert functions HB and HA

of B and A respectively. Then there exist natural projection morphisms p : GradAlg(HB,HA) →
GradAlg(HA), induced by p((B → A)) = (A), and q : GradAlg(HB, HA) → GradAlg(HB), induced
by q((B → A)) = (B), which under the assumptions of Prop. 4 of [32] have nice properties.
Recall that A is called HB-generic if there is an open subset U 3 (A) of GradAlgHA(R) such that
every (A′) ∈ U belongs to im p. Now since the surjectivity of the natural map 0HomB(IB, B) →
0HomR(IB, A) together with the injectivity of 0H2(R,B, B) → 0H2(R, B, A) is equivalent to

0H2(R, B, IA/B) = 0

by the long exact sequence of algebra cohomology, we may state [32], Prop. 4 (i), resp. (ii) as (i),
resp. (ii) of the Proposition below.
Proposition 10. Let B = R/IB → A ' B/IA/B be a graded morphism of quotients of R.

(i) If 0H2(B, A, A) = 0, (e.g. 0Ext1B(IA/B, A) = 0), then the projection q : GradAlg(HB,HA) →
GradAlg(HB) induced by q((B → A)) = (B) is smooth with �ber dimension 0homB(IA/B, A) at
(B → A).

(ii) If 0H2(R,B, IA/B) = 0, then the projection p : GradAlg(HB,HA) → GradAlg(HA) induced
by p((B → A)) = (A) is smooth with �ber dimension 0homR(IB, IA/B) at (B → A). In particular
A is HB-generic.
Corollary 11. Let B → A be a graded surjection of quotients of R. If 0H2(B, A,A) = 0 and
0H2(R, B, IA/B) = 0, then A is HB-generic, and we have

dim(NA)0 + 0homR(IB, IA/B) = dim(NB)0 + 0homB(IA/B, A) , and

dim(A) GradAlg(HA) + 0homR(IB, IA/B) = dim(B) GradAlg(HB) + 0homB(IA/B, A) .

Hence A is unobstructed as a graded R-algebra i� B is unobstructed as a graded R-algebra.
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Proof. Using Proposition 10(i) we get

dim(B→A) GradAlg(HB,HA) = dim(B) GradAlg(HB) + 0homB(IA/B, A)

while (ii) implies dim(B→A) GradAlg(HB,HA) = dim(A) GradAlg(HA) +0 homR(IB, IA/B) which
gives one of the dimension formulas. Since smooth morphisms imply surjective tangent maps of
their tangent spaces and since the Hom-groups of Proposition 10 are the tangent spaces of the
�bers, we can argue as above to get the other dimension formula.

2 Families of one dimensional quotients of R.
In this section we focus on families of zero schemes in P = Pn−1 with �xed Hilbert function H,
i.e. we study the (possibly non-reduced) postulation Hilbert scheme GradAlgH(R) where H(v) is a
constant for v >> 0.

If Y ⊂ P = Proj R is a closed subscheme and X = Proj(A) is obtained by choosing s points in
generic position on Y = Proj(B) (see the paragraph before Corollary 2 for a de�nition), the main
theorem of this section implies that A and B are simultaneously unobstructed as graded algebras and
dim(A) GradAlgHA(R) and dim(B) GradAlgHB (R) are closely related (Theorem 12, Corollary 14).
Even though this result may seem new as stated, it is a straightforward consequence of Theorem
9.16 of [36] if Y is a curve. In this section we generalize the result to any scheme Y . In Proposition 19
we extend the result to families, and we �nish by a theorem on linkage of families (Theorem 24).

A zero-dimensional closed scheme X ↪→ Y is said to be a local complete intersection (l.c.i) of
codimension (r1, ..., rt) with respect to X = X1 ∪ ... ∪ Xt if X can be written as a disjoint union
X = X1 ∪ ... ∪Xt where, for each i, the ideal (JX/Y )x is generated by an OY,x-regular sequence of
length ri for every x ∈ Xi. If ri are equal for all i, say ri = r, we simply say X ↪→ Y is an l.c.i
of codimension r. Note that in the case ri = 0, then Xi is mapped isomorphically onto an open
subscheme of Y . Below NB := HomB(IB/I2

B, B) is the normal module of B in R, ε(A/B) is de�ned
in (6), n2,j in (4) and the HB-genericity of A is de�ned in the text before Proposition 10.

Theorem 12. Let R be a polynomial k-algebra and let B = R/IB → A = R/IA, IA 6= 0, be a
graded morphism such that A is Cohen-Macaulay of dimension one and depthm B ≥ 1, and such
that X := Proj(A) ↪→ Y := Proj(B) is a local complete intersection of codimension (r1, ..., rt) with
respect to X = X1∪ ...∪Xt. Let HA(v) = s and HXi(v) = si for v >> 0 (so s =

∑
i si) and suppose

either
(a) IB is generated by a regular sequence (allowing R = B), or
(b) Bv → Av is an isomorphism for all v ≤ maxi{n2,i} and dimR− dimB ≥ 2.

Moreover suppose there is an integer j such that Bv ' Av for all v ≤ j − 1 and such that IA is
(j + 1)-regular (or equivalently, such that HA(v) = HB(v) for v ≤ j − 1 and HA(v) = s for v ≥ j).
Then A is HB-generic, dim(NA)0 = dim(NB)0 +

∑
i risi − ε(A/B) , and

dim(A) GradAlgHA(R) = dim(B) GradAlgHB (R) +
t∑

i

risi − ε(A/B) .

In particular A is unobstructed as a graded R-algebra if and only if B is unobstructed as a graded
R-algebra.

Remark 13. Theorem 12 applies to quotients B → A ' B/IA/B where the mapping cone con-
struction produces the minimal resolution of A from the free resolution of B and a semi-linear
resolution of IA/B (modulo redundant terms). For instance if M := IA/B and t = r − 1 in (5) (i.e.
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depth IA/B = 2), then Bv ' Av for all v ≤ j − 1 and IA is (j + 1)-regular, and Theorem 12 applies.
Also in the case depth IA/B = 1 in which the �Gr−1 → ... → G1�-part of the minimal resolution
0 → Gr → ... → G1 → IA/B → 0 is semi-linear, then Theorem 12 applies because the contribution
from Gr becomes redundant in the minimal resolution of A. Thus the condition on j of Theorem 12
essentially requires IA/B to have a semi-linear resolution; in the non-CI case j must be large enough
to have (b) ful�lled (e.g. j ≥ reg(IB) + 2).
Proof. It is enough to prove that A is HB-generic and the two dimension formulas. Due to Corol-
lary 11 it su�ces to show 0H2(B, A, A) = 0 and 0homB(IA/B, A) =

∑
i risi, as well as 0H2(R, B, IA/B) =

0 and 0homR(IB, IA/B) = ε(A/B). The latter follows from Lemma 9. Let NX/Y the normal sheaf
of X ↪→ Y . Since dimX = 0 and the composition x ↪→ X ↪→ Y is a local complete intersection for
any x ∈ X, then the sequence (9.6) in the proof of Thm. 9.16 of [36] is still exact (cf. [28], Lem. 3.5
and (3.3)) and may be written as

0 → 0H1(B, A, A) → H0(NX/Y ) → 0HomR(IA/B, H1
m(A)) → 0H2(B, A,A) → 0 .

Hence 0H2(B, A, A) = 0 and 0HomB(IA/B, A) ' 0H1(B,A, A) ' H0(NX/Y ) provided

0HomR(IA/B, H1
m(A)) = 0 .

Since H1
m(A)v ' H2

m(IA)v ' −vExtn−2
R (IA, R(−n))∨, we get that H1

m(A)v = 0 for v ≥ j by the
(j + 1)-regularity of IA. Note that since 0 → Av → H0(OX(v)) → H1

m(A)v → 0 is exact, it follows
that the vanishing of H1

m(A)v = 0 for v ≥ j is equivalent to HA(v) = dimAv = s for v ≥ j. Now,
using (IA/B)j−1 = 0 we conclude that 0HomR(IA/B, H1

m(A)) = 0.

Hence it su�ces to show dimH0(NX/Y ) =
∑

i risi. Since Supp(X) is �nite, we know that
h0(OXi) =

∑
x∈Supp(Xi)

length(OXi,x) = si. Using that NX/Y,x is a free OX,x-module of rank ri for
any x ∈ Supp(Xi), we conclude by

h0(NX/Y ) =
t∑

i

∑

x∈Supp(Xi)

length(NX/Y,x) =
t∑

i

∑

x∈Supp(Xi)

ri · length(OXi,x) =
t∑

i

risi .

Theorem 12 is precisely what we need to treat the case where X consists of s points in generic
position on Y (i.e. HA is the truncation of HB at the level s and the points are distinct). Indeed if
we de�ne the truncation of HB at the level s by

HA(i) = inf{HB(i), s} for i ≥ 0 ,

then a theorem of Geramita-Maroscia-Roberts ([13]) show that there exists a reduced scheme X on
Y with truncated Hilbert function HA as above provided Y is reduced and consists of more than s
points. Denoting the singular locus of Y by SingY , we get
Corollary 14. Let Y = Proj(B), B = R/IB, be a reduced scheme consisting of more than s points,
and let X = Proj(A) be s points (avoid SingY ) in generic position on Y . Let j be the smallest number
such that HA(j) 6= HB(j). If Y is not a CI, suppose j ≥ maxi{n2,i}+1 (e.g. j ≥ reg(IB)+2). Then
X ↪→ Y is an l.c.i of codimension (r1, ..., rt) with respect to some decomposition X = X1 ∪ ... ∪Xt.
Moreover A is HB-generic, dim(NA)0 = dim(NB)0 +

∑
i risi − ε(A/B) , and

dim(A) GradAlgHA(R) = dim(B) GradAlgHB (R) +
t∑

i

risi − ε(A/B) .

Hence A is unobstructed as a graded R-algebra i� B is unobstructed as a graded R-algebra.
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Proof. Since OY,x and OX,x are regular local rings for any x ∈ X, it follows that X ↪→ Y is an
l.c.i of codimension as in Corollary 14. By the de�nition of s generic points, (IA/B)j−1 = 0. Since
HA(v) 6= HA(j) for v ≥ j, it follows that IA is (j +1)-regular (and j-regular if s = HA(j−1)). Then
Theorem 12 applies supposing j large enough.

Remark 15. It is well known that the Hilbert polynomial pB(x) equals HB(x) for all x ≥ reg(IB)−1.
Thus the number j ≥ reg(IB) + 2 of Corollary 14 is so large that pB(x) = HB(x) for x ≥ j − 3. In
particular using Corollary 14 with say j = reg(IB) + 2, we get an algebra A with Hilbert function
HA(x) = HB(x) = pB(x) for x ∈ {j − 3, j − 2, j − 1} and HA(x) = s for x ≥ j.

Example 16. (an obstructed one-dimensional level algebra A with HA = (1, 5, 9, 13, 13, 13, ...)).
The subset of the Hilbert scheme Hilbdx+1−g(P4) consisting of rational normal curves of degree

d = 4 has been thoroughly studied ([42], [46]). Indeed this subset forms a smooth, irreducible open
subscheme of Hilb4x+1(P4) whose closure V is an irreducible component of dimension 5d + 1 = 21.
All arithmetically CM (ACM) curves are contained in the component V by [42]. Moreover the normal
sheaf of the general curve Yg of V satis�es H1(NYg) = 0, while for instance Y = Proj(B), the union
of four lines meeting at a point, belongs to the same component V and satis�es dimH1(NY ) = 3 (cf.
[36], Rem. 9.9), i.e. Y is an obstructed reduced ACM curve. Both curves have the same graded Betti
numbers, e.g.

0 → R(−4)3 → R(−3)8 → R(−2)6 → R → B → 0 .

Since the locus of ACM curves in GradAlg(H) is open in Hilb4x+1(P4) by Proposition 8, then V
corresponds to an irreducible component of GradAlg(H) to which (Yg) and (Y ) belong. Let X =
Proj(A) (resp. Xg = Proj(Ag)) be obtained by choosing s ≥ 13 generic points on Y (resp. Yg).
Since dimBv = 4v + 1 for v ≥ 0, we see that Corollary 14 applies for j ≥ 4. It follows that Ag is
unobstructed while A is obstructed as graded R-algebras and

dim(Ag) GradAlg(HAg) = dim(NAg)0 = h0(NYg) + s = 21 + s

(resp. dim(NA)0 = dim(NB)0 + s = 24 + s). In particular if s = 13, then HA = HAg =
(1, 5, 9, 13, 13, 13, ...), and it is straightforward to see that Ag and A are level algebras with the same
graded Betti numbers, e.g. the minimal resolution of IA is

0 → R(−7)4 → R(−6)12 ⊕R(−4)3 → R(−5)12 ⊕R(−3)8 → R(−4)4 ⊕R(−2)6 → IA → 0.

Corollary 14 applies also to families of reduced schemes Y which are not necessarily equidimen-
sional.

Example 17. Let H(x) = 3x + 1 for x ≥ 0, so H = (1, 4, 7, 10, 13, ...). If Y1 = Proj(B1) ⊂ P3

is a twisted cubic curve and Y2 = Proj(B2) is the union of a plane space curve C of degree 3
and a point P outside the plane containing C, then it is easy to see that both curves belong to
the same stratum GradAlg(H) of the Hilbert scheme Hilb3x+1(P3). We claim they belong to two
di�erent components of GradAlg(H). Indeed (Y1) belongs to a 12-dimensional irreducible component
of GradAlg(H), and using NY2 ' NC ⊕ NP and that C ↪→ P3 and P ↪→ P3 are CI, we easily get
h0(NY2) = 15 and H1(NY2) = 0. Invoking Proposition 8 we see that (Y2) belongs to a 15-dimensional
irreducible component of GradAlg(H), cf. [48] for a complete description of Hilb3x+1(P3). The
minimal resolution of IB2 (resp. IB1) is of the form

0 → R(−4) → R(−4)⊕R(−3)3 → R(−3)⊕R(−2)3 → IB2 → 0 (7)

(resp. of the form (7) where both R(−4) and two of R(−3) are removed). Since Corollary 14 applies
for j ≥ 5, let X1 = Proj(A1) (resp. X2 = Proj(A2)) be obtained by choosing s ≥ 13 generic
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points on Y1 (resp. Y2); on Y2 we must choose P as one of the s generic points to get the right
Hilbert function. It follows that Ai are unobstructed as graded R-algebras for i = 1 and 2 and that
dim(A1) GradAlg(H ′) = 12 + s where H ′ = (1, 4, 7, ..., 3j − 2, s, s, ...), 3j − 2 ≤ s < 3j + 1. Since
X2 ↪→ Y2 is an l.c.i of codimension (1, 0) with respect to the decomposition X2 = C2 ∪ P where C2

consists of s− 1 points, we get

dim(A2) GradAlg(H ′) = 15 + s− 1 = 14 + s .

Hence we get two di�erent components of GradAlg(H ′). Finally if s = 13 it is straightforward to
see that A2 has the minimal resolution

0 → R(−7)3 ⊕R(−4) → R(−6)6 ⊕R(−4)⊕R(−3)3 → R(−5)3 ⊕R(−3)⊕R(−2)3 → IA2 → 0.

Once the connection between GradAlg(HA) and GradAlg(HB) for s generic points X on Y is
as nice as described in Corollary 14, one may also ask if their irreducible components correspond
exactly and similar questions. E.g., may we look upon Ag of Example 16 as the general element of
an irreducible component of GradAlg(HAg)? To see that the answer is yes we use some ideas of [32].

De�nition 18. Inside GradAlgH(R), H 6= HR, we look to the following open subsets, Smc(H) (resp.
SmCM(H)), consisting of points (R/I) such that Proj(R/I) is a smooth geometrically connected
scheme (resp. smooth and arithmetically CM). Here �points� should be considered as �Ω-points�
where Ω is an over�eld of k. Moreover let Smc(H)η be the open subset of Smc(H) consisting of
points (R/I) where the Castelnuovo-Mumford regularity satis�es reg(I) ≤ η. Similarly we let CI(H)
(resp. CM(H)) consist of points (R/I) where I is generated by a regular sequence (resp. R/I is
CM).

Now let
SmCM(HB, HA)η := p−1(SmCM(HA)) ∩ q−1(Smc(HB)η)

where q : GradAlg(HB,HA) → GradAlg(HB) and p : GradAlg(HB,HA) → GradAlg(HA) are the
two natural projection morphisms. (e.g. q((B → A)) = (B)). Denoting the following restrictions of
p and q by the same letters, we get a diagram (incidence correspondence)

SmCM(HB,HA)η
q−→ Smc(HB)η ⊂ GradAlg(HB)

↓p

GradAlg(HA)
(8)

Proposition 19. Let HB be the Hilbert function of some smooth connected curve Proj(B), B 6= R,
and let HA be its truncated Hilbert function at the level s, i.e. HA(i) = inf{HB(i), s} for i ≥ 0. Let
j = min{i|HA(i) 6= HB(i)}, let η ≤ j − 2 and look to the maps p and q in (8). Then

(i) q is smooth and surjective and its �bers are geometrically connected, of �ber dimension s,
and

(ii) p is an isomorphism onto an open subscheme of GradAlg(HA).
In particular the correspondence (8) determines a well-de�ned injective application π from the set of
irreducible components W of Smc(HB)η, to the set of irreducible components V of GradAlg(HA),
in which generically smooth components correspond. Indeed V = π(W ) is the closure of p(q−1(W )),
and we have

dimV = dimW + s .

Proof. (i) By Geramita et al. [13] we get the surjectivity of q. Since we showed 0H2(B, A, A) = 0
in Theorem 12, the smoothness of q follows immediately from Proposition 10(i). To show that the
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�bers of q are (geometrically) connected, one may simply look at the �ber as the variation of s
generic points on a �xed Y , i.e. as a non-empty dense set of Y s. This set is irreducible since Y is
irreducible, and we conclude as claimed.

(ii) In Lemma 9 we showed 0Exti
R(IB, IA/B) = 0 for i ≤ 1 assuming j ≥ reg(IB) + 2. By

Proposition 10(ii) this implies that p is smooth and unrami�ed. It is easy to see that j ≥ reg(IB)+1
implies that p is injective (in fact, universally injective or �radiciel�), cf. Lemma 7(a) of [32]. Hence
we get (ii) by [18], Thm. 17.9.1. Now combining (i) and [20], Prop. 1.8, we get that q−1(W ) is an
irreducible component of SmCM(HB,HA)η. The application π is therefore well de�ned, and it is
injective by (ii). Finally since q is smooth and p is an open immersion, we easily get the dimension
formulas.

Remark 20. If we in Proposition 19 drop the assumption dimProj(B) = 1 and maintain the other
assumptions, we still get that q is smooth and that p is an isomorphism onto an open subscheme (but
the irreducibility of q−1(W ) may fail).

Now we consider an example of several components of GradAlg(HA), which one may, as in
[43], distinguish by the incomparability of the set of graded Betti numbers (Remark 7). Applying,
however, Proposition 19 to our example we can also describe as well the graded Betti numbers of
some algebras in the intersection of the two components. Below ∆H is the �rst di�erence of H, i.e.
∆H(v) = H(v)−H(v−1) for any integer v, in which case ∆HA is of the form (1, c1, c2, ..., ct, 0, 0, ...)
(with ct 6= 0) if A is one-dimensional. In this case we often write ∆HA as

∆HA = (1, c1, c2, ..., ct) ,

i.e. as the so-called h-vector of A. In the Artinian case, the h-vector of A coincides with the Hilbert
function HA provided we write HA in the form; HA = (1, h1, h2, ..., ht), with ht 6= 0 and hj = 0 for
j > t.

Example 21. In [50] C. Walter gives examples of in�nitely many Hilbert schemes of space curves
containing obstructed smooth curves of maximal rank. Indeed his example of a smooth space curve Y
of the lowest degree (i.e. the curve with Hilbert polynomial p(x) = 33x−116 which we consider below)
was independently discovered by Bolondi et al [6] and it was the �rst example of an obstructed curve
of maximal rank which was detected. In [6] we showed that Hilb33x−116(P3) contains at least two
irreducible components whose intersection contains (Y ). Since the curve Y = Proj(B) is of maximal
rank, we have 0HomR(IB, H1

m(B)) = 0, and Proposition 8 applies. It follows that the corresponding
algebra B is obstructed as a graded algebra since Hilb33x−116(P3) is not smooth at (Y ). Indeed (B)
sits in the intersection of two irreducible components W1 and W2, both of dimension 4d = 132, of
the postulation Hilbert scheme of space curves GradAlg(HB), cf. [35], ex. 35.

In [35] we also considered the minimal resolution of B as well as the minimal resolution of the
general elements B1 and B2 of W1 and W2 respectively. Indeed

0 → G3 = R(−9) → R(−10)2 ⊕R(−9)⊕R(−8)4 → R(−9)⊕R(−8)⊕R(−7)5 → IB → 0

is exact and we get the minimal resolution of B1 (resp. B2) by making the factor R(−9) redundant
in two di�erent ways, i.e. by removing this factor from the leftmost (G3) and the middle term (G2),
(resp. from G2 and rightmost term G1). The Castelnuovo-Mumford regularity for all three curves
satis�es reg(I) = 9, and the Hilbert function of all algebras is

(1, 4, 10, 20, 35, 56, 84, 115, 148, 181, 214, ...) .

Thus taking s ≥ 214 points X = Proj(A) on Y in general position and correspondingly for the
others, then Proposition 19 applies with j ≥ 11. Or more precisely, both W1 and W2 and its
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intersection essentially belong to Smc(HB)9 ⊂ GradAlg(HB), and Proposition 19 applies to (every
element Proj(B′) of) Smc(HB)9 and an s-dimensional linear space of choices of s generic points
on Proj(B′). Hence for each s ≥ 214 it follows that X is in the intersection of two irreducible
components V1 and V2 of the postulation Hilbert scheme GradAlg(HA) of dimension dimVi = 132+s
for i = 1, 2. In the special case s = 214 we have ∆HA = (1, 3, 6, 10, 15, 21, 28, 31, 33, 33, 33, 0, ...),
and it is not di�cult to see that the minimal resolution of IA is

0 → R(−13)33 ⊕G3 → R(−12)66 ⊕G2 → R(−11)33 ⊕G1 → IA → 0.

and that the minimal resolutions of the corresponding general elements Proj(Ai) of Vi are obtained
by removing the free factor R(−9) from G3 and G2 (resp. from G2 and G1). Looking to the corre-
sponding sets of graded Betti numbers of A1 and A2 we see that they are incomparable.

We �nish this section by recalling some known results about the postulation Hilbert scheme
GradAlgH(R), consisting of zero-dimensional schemes Proj(A) of degree s. Since we have observed
that 0H2(R,A, A) = 0 implies the smoothness of GradAlgH(R) at (A), we remark that the smooth-
ness results of Remark 22(i) (when A is generically a CI) and of Remark 22(ii) also follow from
works of Herzog, Buchweitz-Ulrich and Huneke ([21], [8] and [22]). Moreover for Remark 22(iii) we
remark that Buchweitz's thesis [7], or [8], show that a generically CI licci quotient is unobstructed.
Now in addition to Theorem 12 and Proposition 19, we have

Remark 22. (i) If Proj(R) = P2, then Gotzmann ([15]) shows that GradAlgH(R) is irreducible and
he �nds its dimension ([26], Thm. 5.21 and Thm. 5.51). It is smooth by licciness and say (iii) below
(or by [15] provided GradAlgH(R) is reduced). As indicated by Iarrobino-Kanev ([26], Remark to
Thm. 5.51), the dimension formula given in [33], Rem. 4.4, holds in this case ([33], Rem. 4.6).

(ii) If Proj(R) = P3, then the the open part of GradAlgH(R) consisting of Gorenstein quotients
is irreducible (cf. [10]), of known dimension by ([31], Remark to Thm. 2.6) and smooth by say (iii)
below. This dimension formula is included in [30], Thm. 2.3 with a proof (which also takes care of the
Artinian case). [30], Prop. 3.1 contains a second �dual� dimension formula for the same parameter
space.

(iii) Let Proj(R) = Pn and let A and A′ be two graded CM quotients algebraically linked by a
CI B of type (a1, ..., am) with resolution (4). By [30], Prop. 1.7, then A and A′ are simultaneously
unobstructed as graded algebras, and we have

dim(A) GradAlgHA(R)−
m∑

i=1

HA(ai) = dim(A′) GradAlgHA′ (R)−
m∑

i=1

HA′(ai) .

(iv) Let B = R/IB be a graded, generically Gorenstein CM quotient with canonical module KB

and let A be the Gorenstein algebra given by a regular section of σ ∈ (K∗
B)t for some integer t, i.e.

given by a graded exact sequence 0 → KB(−t) σ−→ B → A → 0.
a) If B is licci, then A is unobstructed as a graded R-algebra (indeed H2(R, A,A) = 0), and,

dim(A) GradAlgHA(R) = dim(B) GradAlgHB(R) + dim(K∗
B)t − 1− δ(B)−t

where δ(B)v = v homB(IB/I2
B,KB)− v ext1B(IB/I2

B,KB).
b) If Proj(B) is locally Gorenstein and t >> 0, then A and B are simultaneously unobstructed

as graded algebras, and the dimension formula of a) holds (with δ(B)−t = 0).
This theorem is true in arbitrary dimension of B. It is proved in [32], Thm. 16 and is a

substantial generalization of some of the statements of (ii) above because, when we apply it to a CM
B of codimension two (necessarily licci), we get the dimension formula of (ii) by [32], Ex. 26. The
preprint [34] contains further generalizations of this theorem.
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By (iii) we see that CI-linkage preserves the smoothness of the parameter spaces. Due to [29],
Prop. 3.4 it also preserves the irreducibility of the linked family. To de�ne the linked family, let
CICM(HB,HA) consist of points (B → A) such that B is CI and A is CM, i.e.

CICM(HB,HA) := p−1(CM(HA)) ∩ q−1(CI(HB))

where p : GradAlg(HB,HA) → GradAlg(HA) (resp. q) is the second (resp. �rst) projection mor-
phism (e.g. q((B → A)) = (B)). In the case dimA = dimB (not necessarily equal to one) and
(B → A) ∈ CICM(HB,HA), the linked algebra is de�ned by A′ := B/HomB(A,B). This de�nition
extends to families and preserves �atness [29]. Indeed by [29], Thm. 2.6 there is an isomorphism τ
of schemes and obvious second projection morphisms p and p′ �tting into

τ : CICM(HB,HA) '−→ CICM(HB,HA′)
↓p ↓p′

GradAlg(HA) GradAlg(HA′)
(9)

where τ is given by sending (B1 → A1) to (B1 → A′1 := B1/HomB1(A1, B1)).

De�nition 23. Let the Hilbert polynomials pB and pA (corresponding to HB and HA respectively)
have the same degree (≥ −1) and let U be a locally closed subset of im p in (9). Then the HB-linked
family of U is

U ′ := p′(τ(p−1(U))

Theorem 24. In (9) the morphisms p and p′ are smooth and their �bers are geometrically connected,
of �ber dimension ε(A/B) at (B → A) and ε(A′/B) at (B → A′) respectively. In particular the HB-
linked family U ′ is irreducible (resp. open in GradAlg(HA′)) if and only if U is irreducible (resp.
open in GradAlg(HA)).

Proof. The proof of [30], Prop. 1.7 takes care of the smoothness of p and p′ and their �ber dimension.
It remains to prove the connectedness of the �bers since the other conclusions then follow easily.
The connectedness is, however, a straightforward consequence of the proof of Theorem 1.16 of [29]
(that part of the proof doesn't require deg p > 0 and it is easy to reformulate it for the Artinian case
as well), cf. [41], Ch. VII for similar results.

Of course Theorem 24 implies Remark 22(iii) above. We may use Theorem 24 to see that many
other properties are by preserved by linkage. Indeed subsets of GradAlg(H) for which the members
allow the same sequence of CI-linkages which ends in a CI, is irreducible. It does not mean that the
subset of GradAlg(H) of licci quotients is irreducible, as the following example shows.

Example 25. We claim GradAlgH(k[x, y, z, w]) with ∆H = (1, 3, 6, 6, 3, 1) contains (at least) two
irreducible components whose general elements are licci. Of course, the general element of one of the
components is an arithmetically Gorenstein scheme consisting of 20 points, with minimal resolution

0 → R(−8) → R(−5)4 ⊕R(−4) → R(−4)⊕R(−3)4 → R → A1 → 0.

We get A1 by starting with a CI of type (1, 1, 2) and then perform general CI-linkages of type (2, 3, 3)
and (4, 3, 3). It follows that the component is generically smooth of dimension 44 by using Re-
mark 22(iii), or Theorem 24, twice.

To get the other component, we start with a point Proj(A), i.e. a CI of type (1, 1, 1), and
we proceed by performing six general CI linkages of type (1, 2, 3), (2, 2, 4), (2, 3, 4), (3, 4, 4), (3, 4, 5),
(3, 3, 5), in this order. (The �rst �ve linkages are the same as for the level algebra 64] in the appendix
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C of [14]; hence GradAlg(H) with ∆H = (1, 3, 6, 7, 6, 2) also contains two �licci� components. By
experimenting with Macaulay 2 we have learned that the three linkages; (2, 3, 4), (3, 4, 4), (3, 4, 5)
above may be reduced to one single linkage; (3, 3, 4)). We get in this way an open subset U of
GradAlg(H) of algebras A2 with minimal resolution

0 → R(−8)⊕R(−7)⊕R(−6) → R(−7)⊕R(−6)⊕R(−5)5 → R(−5)⊕R(−3)4 → R → A2 → 0.

Since the Betti numbers do not coincide with the general element A1 of the other component, the
closure of U must be a generically smooth component of dimension 44 by Theorem 24.

(This example holds correspondingly for codimension 3 quotients with h-vector (1, 3, 6, 6, 3, 1) in
a polynomial ring of any dimension. For the Artinian case, see Example 41).

3 Families of Artinian R-quotients (possibly Gorenstein).
In this section we look to families of Artinian algebras A of Hilbert function H = HA, i.e. we
study the scheme GradAlg(H) in the Artinian case with a special look to level and Gorenstein
Artinian quotients. In particular we give examples of codimension 4 (resp. 3) quotients where
GradAlg(H) has at least two components with a Gorenstein (resp. level) algebra belonging to the
intersection of the two components. Moreover we notice that almost all the results of the preceding
section (cf. Remark 22) are known in the Artinian case, except Theorem 12 and Proposition 19,
whose corresponding Artinian counterparts are the main new results of this section (Theorem 29 and
Proposition 33). Of course there are a few changes to Remark 22, mostly concerned with references,
and we include some further results. To summarize,

Remark 26. (i) Iarrobino shows that GradAlgH(k[x, y]) is irreducible ([23], Thm. 2.9) and he �nds
the dimension ([23], Thm. 2.12 and Thm. 3.13). It is smooth by licciness (or by [23], Thm. 2.9
provided GradAlgH(k[x, y]) is reduced). Also in this case, the dimension formula given in [33], Rem.
4.4, holds (by the indicated argument of [33], Rem. 4.6).

(ii) If R = k[x, y, z], then the open part of GradAlgH(R) consisting of Gorenstein quotients is
irreducible ([10]) and smooth of known dimension ([30], Thm. 2.3). See also [22], Cor 4.9 for the
smoothness.

(iii) of Remark 22 holds as stated in Remark 22.
(iv) of Remark 22 holds as well. One may make a little progress to (iv,b) by stating it as:
b) If Proj(B) is a locally Gorenstein zero-scheme of degree s and if t ≥ 2 reg(IB), then A and

B are simultaneously unobstructed as graded algebras, and the dimension formula of (iv, a) holds
(with δ(B)−t = 0 and dim(K∗

B)t = s, cf. [32], Rem. 22). We formulate this using the ideas of
Proposition 19 as Theorem 27 below ([32], Prop. 23, cf. [34] for further generalizations).

(v) One may, via the Macaulay correspondence, consider the set PS(s, j, n) of Gorenstein quo-
tients obtained from the set of homogeneous polynomials of degree j in the �dual� polynomial ring,
of the form

f = Lj
1 + ... + Lj

s ,

where Li are general enough linear forms and s is �xed. If HA (which we denote by H(s, j, n))
contains a subsequence of the form (s, s, s), then the closure of PS(s, j, n) in GradAlgHA(R) deter-
mines by Macaulay duality a generically smooth irreducible component of GradAlgHA(R) of known
dimension ([26], Thm. 4.10A and Thm. 1.61, see Thm. 4.13 for similar results when HA does not
contain such a subsequence).

(vi) In the interesting Gorenstein Artinian codimension 4 case, there is a structure theorem when
HA = (1, 4, 7, h, i, ...) with 3h− i−17 ≥ 0, allowing us to describe well the corresponding (generically
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smooth) irreducible component of GradAlgHA(R) ([26]). In [37] Johannes Kleppe comes up with
classes of generically smooth components of known dimension of a similar nature.

(vii) Compressed Artinian algebras of �xed socle degrees belong to an irreducible generically
smooth component of known dimension by [24], Thm. IIB.

To accomplish Remark 26(iv,b), let Ut ⊂ GradAlg(H ′) be an open subscheme consisting of
points (B) such that B is CM and such that Proj(B) is a locally Gorenstein zero-scheme of degree
s satisfying HB = H ′ and reg(IB) ≤ t/2. Recall that a regular section of σ ∈ (K∗

B)t de�nes a
graded Gorenstein algebra A given by the exact sequence 0 → KB(−t) σ−→ B → A → 0. Let
q : GradAlg(HB,HA) → GradAlg(HB) be the �rst projection and let q−1(Ut)reg be the intersection
of q−1(Ut) by the space of those quotients (B → A) which correspond to regular sections of (K∗

B)t.
Then we have a diagram where we have restricted the two natural projection morphisms q and
p : GradAlg(HB, HA) → GradAlg(HA) to q−1(Ut)reg:

q−1(Ut)reg
qres−−→ Ut ⊂ GradAlg(HB)

↓pres

GradAlg(HA)
(10)

Theorem 27. With notations as above, then
(i) qres : q−1(Ut)reg → Ut is smooth and surjective, and its �bers are geometrically connected

of �ber dimension s− 1, and
(ii) pres is an isomorphism onto an open subscheme of GradAlg(HA).

In particular the correspondence (10) determines a well-de�ned injective application π from the set
of irreducible components W of Ut, to the set of irreducible components V of GradAlg(HA), in
which generically smooth components correspond. Indeed V = π(W ) is the closure of pres(q−1

res(W )),
and we have

dimV = dimW + s− 1 .

Proof (also of Remark 26(iv,b)). These results are almost exactly the second part of Thm. 16 (cf.
Rem. 22) and Thm. 24 (cf. Prop. 23) of [32] with a slight improvement for the case dimB = 1.
Indeed in replacing �t >> 0� by �t ≥ 2 reg(IB)� we assumed in [32], Rem. 22 and Prop. 23(iii) that B
was generically syzygetic (e.g. Proj(B) locally licci). This was needed in Prop. 23(iii) to show that
pres was smooth. Since, however, KB(−t) ' IA/B and the R-dual of (4) is a free resolution of KB(1),
we have (IA/B)v = 0 for v ≥ t + 1 − reg(IB). Hence we may use Lemma 9 and Proposition 10(ii)
of this paper to see that pres is smooth under the assumption t ≥ 2 reg(IB) without requiring B
to be generically syzygetic. Note also that qres is surjective by [4], Thm. 3.2, (cf. [32], Rem. 22).
Since the remaining part of Theorem 27 was proved in [32] (Prop. 23, Thm. 24, cf. Rem. 25(a)), we
get the theorem. Moreover note that Remark 26(iv,b) follows from Theorem 27 since we may get
δ(B)−t = 0 and dim(K∗

B)t = s from Proposition 10 (or by directly using [32], Rem. 14(a) and the
�rst part of Rem. 22). Hence also in Remark 26(iv,b) it su�ces to suppose t ≥ 2 reg(IB) without
requiring B to be generically syzygetic.

Now we illustrate Theorem 27. The bene�t of using Theorem 27 instead of Remark 26(iv,b) is
clear because it is a statement about the whole subscheme Ut ⊂ GradAlg(H ′) and not only about a
point in Ut. E.g. note that if we apply (iv,b) to the two components of GradAlg(H ′) of Example 17,
say with s = 13 and t ≥ 10 to simplify, we get two components of PGor(H), or of GradAlg(H), with

H = (1, 4, 7, 10, 13, 13, ..., 13, 10, 7, 4, 1)

of dimension 37 and 39 where the number 13 occurs t− 7 times. The existence of such components
for PGor(H) is now well known ([3], see also [27]). Since, however, GradAlg(H) is connected there
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are graded Artinian quotients belonging to the intersection of the components of GradAlg(H). But
are there Gorenstein quotients in this intersection? The answer would be yes if the intersection of the
two components of GradAlg(H ′) of Example 17 contains points (B) such that Proj(B) is a locally
Gorenstein zero-scheme because we then could apply Theorem 27! We doubt that there exists such
a quotient B, i.e. we expect that the intersection of the two mentioned components of PGor(H) is
empty (cf. Piene-Schlessinger's characterization of the intersection of the two components described
in Example 34). Here is an example where we somehow control the intersection.

Example 28. (Two components of PGor(H) with non-empty intersection)
In Example 21 we showed the existence of an algebra, which we now call B whose corresponding

point (B) of the postulation Hilbert scheme, GradAlg(HB), sat in the intersection of two irreducible
components V1 and V2 of GradAlg(HB) of dimension dimVi = 132 + s = 346 for i = 1, 2. The
element (B) as well as the two general elements (Bi) of Vi were obtained by taking s = 214 generic
points on certain curves of Hilb33x−116(P3). One of the curves had minimal resolution

0 → G3 = R(−9) → G2 = R(−10)2 ⊕R(−9)⊕R(−8)4 → G1 = R(−9)⊕R(−8)⊕R(−7)5 → I

Moreover HB = HBi = (1, 4, 10, 20, 35, 56, 84, 115, 148, 181, 214, 214, 214, ...) and the minimal reso-
lution of IB (resp. of IB1, or IB2) was

0 → R(−13)33 ⊕G3 → R(−12)66 ⊕G2 → R(−11)33 ⊕G1 → IB → 0 (11)

(resp. (11) in which the factor R(−9) from G3 and G2, or from G2 and G1, were removed).
Since we have reg(IB) = reg(IBi) = 11, we may use Theorem 27 to get, for every t ≥ 22, two

generically smooth irreducible components of PGor(HA) of dimension 132 + s + s− 1 = 559 whose
intersection is non-empty, i.e. the intersection contains an obstructed Gorenstein Artinian algebra
whose h-vector is the (t + 1)-tuple

HA = (1, 4, 10, 20, 35, 56, 84, 115, 148, 181, 214, 214, ..., 214, 181, 148, ..., 4, 1)

where the number 214 occurs t − 19 times. The corresponding sets of graded Betti numbers of the
general elements, A1 and A2, of the two components turn out to be incomparable because the factors
R(−9) (and R(−t + 5)) appearing in the resolution of IA become redundant in di�erent ways in the
resolutions IA1 and IA2. Of course, for every s ≥ 214 we can construct similar examples.

Now we prove the analogue of Theorem 12, which is the main result of this section.

Theorem 29. Let R be a polynomial k-algebra and let B = R/IB → A = R/IA be a graded
morphism such that A is Artinian and depthm B ≥ min(1, dimB), and suppose either

(a) IB is generated by a regular sequence (allowing R = B), or
(b) Bv → Av is an isomorphism for all v ≤ maxi{n2,i} and dimR− dimB ≥ 2.

Let F be a free B-module such that F → IA/B is surjective and minimal, and suppose there is an
integer j such that the degrees of minimal generators of the B-module ker(F → IA/B) are strictly
greater than j (e.g. Bv ' Av for all v ≤ j − 1) and such that IA is (j + 1)-regular (i.e. Aj+1 = 0).
Then A is HB-generic, dim(NA)0 = dim(NB)0 + 0 homB(F, A)− ε(A/B) , and

dim(A) GradAlgHA(R) = dim(B) GradAlgHB (R) + 0homB(F, A)− ε(A/B) .

In particular A is unobstructed as a graded R-algebra if and only if B is unobstructed as a graded
R-algebra.

17



At least in the case depthm B ≥ 1, the natural application of Theorem 29 is the same as
for Theorem 12; the minimal resolution of A should be the one of B in addition to a semi-linear
contribution coming from IA/B via the mapping cone construction, cf. Remark 32.

Proof. All we need to prove is the two dimension formulas. Due to Corollary 11 it su�ces to show
0H2(R, B, IA/B) = 0 and 0homR(IB, IA/B) = ε(A/B) together with

dim 0HomB(IA/B, A) = 0homB(F, A) and 0Ext1B(IA/B, A) = 0 , (12)

because the latter of (12) implies 0H2(B, A, A) = 0. By Lemma 9 it su�ces to prove (12). Let

F ′ → F → IA/B → 0 (13)

be the �rst terms of a B-free minimal resolution of IA/B. Applying 0HomB(−, A) = 0 onto (13)
and using Aj+1 = 0, we get 0HomB(IA/B, A) ' 0HomB(F, A) and 0Ext1B(IA/B, A) = 0 by the
assumption, and we are done.

Remark 30. By the long exact sequence of algebra cohomology, we have the exact sequence

→ 0H2(B, A, A) → 0H2(R, A, A) → 0H2(R, B, A) → .

Since it is well known that H2(R,B,−) = 0 if Theorem 29(a) holds and since we have 0H2(B, A, A) =
0 by the proof above, it follows that we in Theorem 29(a) have

0H2(R, A, A) = 0 .

Remark 31. A natural choice of j in Theorem 29 such that (IA/B)j−1 = 0 and such that (b) holds,
is j ≥ reg(IB)+2, in which case we have that IA is (j+1)-regular i� IA/B is (j+1)-regular, and that
HA(x) = HB(x) = pB(x) for x ≥ j − 3, cf. Remark 15. Since it then follows that B ' A provided
B is Artinian, the (only) real application of Theorem 29(b) seems to be in the case depthm B ≥ 1.
It is, however, natural to use Theorem 29(a) also when depthm B = 0.

Remark 32. Suppose depthm B ≥ 1 and that IA/B is (j + 1)-regular, and look to

0 → IA/B → B → A → 0 . (14)

Since H0
m(IA/B) = 0, we have depthm IA/B ≥ 1, i.e. pdR(IA/B) ≤ n − 1 and in fact pdR(IA/B) =

n − 1 since pd(A) = n. A mapping cone construction applied to (14) in which we use the minimal
resolutions of IA/B and B, leads easily to an R-free resolution of A. Moreover if IA/B admits a
semi-linear resolution, then (IA/B)j−1 = 0, and conversely provided reg(IA/B) = j + 1. Note that
A becomes a level algebra if IA/B admits a linear resolution. In particular, the natural application
of Theorem 29(b) is the same as for Theorem 12, cf. Remark 13, i.e. the minimal resolution of A
should be the one of B in addition to a semi-linear contribution coming from IA/B via the mapping
cone construction.

Theorem 29 applies nicely to Artinian truncations and more generally to Artinian quotients A
with Hilbert function HA = (1, h1, h2, ..., hj−1, α, 0, 0, ..) where HB = (1, h1, h2, ..., hj−1, hj , hj+1, ...)
is the Hilbert function of B and α ≤ hj . To see it let, in a very similar way to what we did in
De�nition 18 and Proposition 19, GradAlg(H)η (resp. GradAlg(HB, HA)η) be the open subset of
GradAlg(H) consisting of (R/I) (resp. (B = R/I → A)) where the Castelnuovo-Mumford regularity
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satis�es reg(I) ≤ η. Then we have a diagram as in (8) where we now restrict the natural projection
morphism q : GradAlg(HB,HA) → GradAlg(HB) and p to GradAlg(HB,HA)η ;

GradAlg(HB,HA)η
q−→ GradAlg(HB)η ⊂ GradAlg(HB)

↓p

GradAlg(HA)
(15)

Below we restrict to the case B 6= R, even though the proposition holds for B = R with the following
small changes; skip the lower indices η in (15) and drop the assumption η ≤ j − 2 below, and note
that GradAlg(HR) is a smooth scheme consisting of one point. Recalling that an Artinian quotient
A has the Weak Lefschetz property if the multiplication map Av

· l−→ Av+1 by a general linear form
l is either injective or surjective for every v, we have

Proposition 33. Let HB = (1, h1, h2, ...) be the Hilbert function of an algebra B 6= R satis-
fying depthm B ≥ 1 and let j, η ≤ j − 2 and α ≤ hj be non-negative integers. Let HA =
(1, h1, h2, ..., hj−1, α, 0, 0, ..) and look to the maps p and q in (15). Then

(i) q is smooth and surjective with geometrically connected �bers, of �ber dimension α(hj −α),
and

(ii) p is an isomorphism onto an open subscheme of GradAlg(HA).
In particular the incidence correspondence (15) determines a well-de�ned injective application π from
the set of irreducible components W of GradAlg(HB)η, to the set of irreducible components V of
GradAlg(HA) whose general elements satisfy the Weak Lefschetz property. In this application the
generically smooth components correspond. Indeed V = π(W ) is the closure of p(q−1(W )), and we
have

dimV = dimW + α(hj − α) .

Proof. (i) To any point (B′) of GradAlg(HB)η, let A′ := ⊕j−1
i=0B′

i ⊕ Vj where Vj is an α-dimensional
quotient of B′

j . This shows that q is surjective. Moreover we get the smoothness of q from Propo-
sition 9(i) since 0H2(B, A,A) = 0 by the proof of Theorem 29. To show that the �bers of q are
(geometrically) connected, one may look upon the �ber as the Grassmannian of α-dimensional quo-
tients of B′

j . Since the Grassmannian is irreducible, we conclude easily.
(ii) Since the proof of the Weak Lefschetz property is standard (depthm B ≥ 1), the proof is the
same as for (ii) of Proposition 19.

We will call an Artinian algebra A with Hilbert function HA as in Proposition 33 with α = 0
an Artinian truncation in degree j. Moreover, by Remark 31, we normally need j ≥ reg(IB) + 2
for some B to use Proposition 33 with GradAlg(HB)j−2 non-empty. Having several irreducible
components with a non-empty intersection in GradAlg(HB)η, we get exactly the same type of
irreducible components with a non-empty intersection for their Artinian truncations in a �xed degree
j (for every j ≥ η + 2) in GradAlg(HA) (for instance, the B and the components given by the Bi of
Example 21, we leave the details to the reader). We �nish this section by another example.

Example 34. (obstructed Artinian level algebra with Hilbert function (1, 4, 7, 10, 13, 0, 0, ...)).
We have seen that Y1 = Proj(B1) ⊂ P3, a twisted cubic curve and Y2 = Proj(B2), a union

of a plane space curve C of degree 3 and a point P outside the plane containing C, correspond to
two di�erent irreducible components of the stratum GradAlg(H) of the Hilbert scheme Hilb3x+1(P3)
where H = (1, 4, 7, 10, 13, ...). Indeed (Y1) belongs to a 12-dimensional irreducible component of
GradAlg(H) while (Y2) belongs to a 15-dimensional irreducible component of GradAlg(H). Using
Piene-Schlessinger's Theorem from [48] to see a complete description of Hilb3x+1(P3), we also get
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that the general element of the intersection of the two components (which is 11-dimensional) is a
curve Y = Proj(B) with an embedded point. The minimal resolution of I = IB or IB2 (resp. IB1)
are of the form

0 → R(−4) → R(−4)⊕R(−3)3 → R(−3)⊕R(−2)3 → I → 0 (16)

(resp. of the form (16) where both R(−4) and two of R(−3) are removed). Hence the regularity of
IB and IBi for i = 1 and 2 is at most 3, i.e. the two components and its intersection essentially
belong to GradAlg(H)3. Applying Proposition 33 for j ≥ 5 and η = 3 and to any α ≤ 3j +1, we get
two irreducible components Vi of GradAlg(HA) with a well described non-empty intersection. Indeed
let X1 = Proj(A1) and X2 = Proj(A2) (resp. X = Proj(A)) be obtained by modding out by hj − α
linearly independent forms of (B1)j and (B2)j (resp. Bj) and all forms of degree j + 1. It follows
that Ai are unobstructed as graded R-algebras for i = 1 and 2 and that dim(A1) GradAlg(H ′) = 12+
α(hj−α) and dim(A2) GradAlg(H ′) = 15+α(hj−α) where H ′ = (1, 4, 7, ...3j−5, 3j−2, α, 0, 0, ...).
Moreover (A) is a singular point of GradAlg(H ′)and belongs to the 11 + α(hj − α)-dimensional
intersection of the components. Finally if α = 0 and j = 5 it is straightforward to see that the free
terms of a minimal resolution of A2 (and A) are

0 → R(−8)13 → R(−7)42 ⊕R(−4) → R(−6)45 ⊕R(−4)⊕R(−3)3 → R(−5)16 ⊕R(−3)⊕R(−2)3

4 Tangent and obstruction spaces of Artinian families.
In this section we consider graded Artinian algebras with a special look to level quotients of k[x, y, z].
Note that, in most cases, results such as Theorem 29, Proposition 33 and Remark 26 do not apply
because their assumptions limit their applications considerably. We can, however, still analyze
GradAlgH(R) at a point (A) in�nitesimally by means of its tangent and obstruction spaces and
a certain obstruction morphism, cf. [38]. In the following we make these spaces more explicit by
duality (Theorem 36), and since we show that the parameter space of level schemes, L(H), of [9]
is su�ciently close to being an open subscheme of GradAlgH(R) (cf. Theorem 44), we can use our
results to study L( H). In particular we study in detail the level type 2 algebras which correspond
to a pencil of forms by apolarity ([25]), and we prove in Example 49 a conjecture of Iarrobino on
the existence of several irreducible components of L(H) when H = (1, 3, 6, 10, 14, 10, 6, 2).

Indeed inside GradAlgH(R) there is an open set, possibly empty, consisting of graded Artinian
Gorenstein quotients R → A with Hilbert function H (which essentially is the scheme PGor(H), see
[32]). An elementary way of �nding the obstruction space of PGor(H) is to compute the kernel of
the natural surjection

ηj : (S2IA)j → (IA
2)j

from the second symmetric power to the second power of IA in the socle degree j of A. Indeed, up to
duality, this kernel is isomorphic to 0H2(R, A,A), the obstruction space of PGor(H). To generalize
this result to any Artinian A, we remark that ker ηj is isomorphic to the cokernel of the natural
morphism (Λ2IA)j → TorR

2 (A, A)j (at least if char(k) 6= 2). This formulation allows a generalization
to any Artinian A. Indeed there is a special product, given as an antisymmetrization map ([1], Prop.
24.1),

TorR
1 (A,A)⊗A TorR

1 (A,KA) → TorR
2 (A,KA) (17)

with cokernel H2(R, A, KA). Up to duality we will show that the zero degree piece of this cokernel
is the obstruction space of GradAlgH(R) at (A). To prove it we need a variation of the following
spectral sequence

Extp
A(Hq(R,A, A),M) =⇒ Hp+q(R, A,M)
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(cf. [1], Prop. 16.1). Keeping also the spectral sequence ([21], Satz 1.2)

Extp
C(TorA

q (M,KC),KC) =⇒ Extp+q
A (M,C) (18)

in mind (C a CM quotient of A with canonical module KC), the following result is not surprising
Proposition 35. If B → A → C are quotients of R of arbitrary dimension and if C is CM with
canonical module KC , then there is a spectral sequence converging to H∗(B, A,C) ;

′Ep,q
2 := Extq

C(Hp(B,A, KC),KC) =⇒ Hp+q(B,A, C) . (19)

In particular if C is a graded Artinian algebra, then there is a degree-preserving isomorphism

HomC(Hq(B, A, KC),KC) ' Hq(B, A,C) .

Proof. One knows that HomA(M, C) ' HomC(M ⊗A KC ,KC), M an A-module. Using this we can
prove our proposition in the usual way, i.e. by considering the double complex

K∗,∗ = HomC(Diff(B, A∗, A)⊗A KC , I∗)

where 0 → KC → I∗ is an injective resolution of the C-module KC and Diff(B, A∗, A) := ΩA∗/B⊗A∗
A is the complex of Kähler di�erentials based on a simplicial resolution, A∗, of the B-algebra A
(as in [1], Prop. 17.1, so each Ai is a polynomial ring over B). If we in ′′Ep,q

2 �rst take homology
of K∗,∗ with respect to the second variable (i.e. I∗), we get ′′Ep,0

2 = Hp(B, A, C) and ′′Ep,q
2 = 0

for q > 0 because Extq
C(KC ,KC) = 0 for q > 0 by Cohen-Macaulayness and the fact that each

Diff(B, Ai, A)⊗A C is C-free. Calculating ′Ep,q
2 by reversing the order, i.e. by �rst taking homology

with respect to the �rst variable, we get (19). Finally since KC is an injective C-module in the
Artinian case, we are done.

Theorem 36. Let R → A = R/IA be a graded Artinian quotient with Hilbert function H. Then the
dual of (IA ⊗R KA)0 is the tangent space of GradAlgH(R) at (A), and the dual of 0H2(R, A,KA)
contains the obstructions to deforming A as a graded R-algebra. Moreover

dim (IA ⊗R KA)0 − 0h2(R, A, KA) ≤ dim(A)GradAlg(H) ≤ dim (IA ⊗R KA)0.

In particular GradAlgH(R) is smooth at (A) provided the natural map

IA ⊗R IA ⊗R KA → TorR
1 (IA,KA)

of (17), i.e. the map ζ concretely described in (20) below, is surjective in degree zero.
Proof. Since it is known that the tangent (resp. �obstruction�) space of GradAlg(HA) at (A) is
0H1(R, A, A) = 0HomA(IA/I2

A, A) ' 0HomR(IA, A) (resp. 0H2(R, A,A)) by [28], Thm. 1.5, we get
the description in Theorem 36 of these spaces by Proposition 35. Then the left inequality of the
dimension formula follows rather easily from [38], Thm. 4.2.4 while the right inequality is trivial.
Hence we get all conclusions of the theorem once we have shown that the surjectivity in (17) and the
surjectivity of ζ in (20) are equivalent. Indeed TorR

2 (A,KA) ' TorR
1 (IA,KA) and TorR

1 (A,KA) '
IA⊗R KA and the map of (17) is just the natural map ζ : IA⊗R IA⊗R KA → TorR

1 (IA, KA) uniquely
described in the following way. Let 0 → N → F → KA → 0 be a short exact sequence where F is
A-free. Applying IA ⊗R (−) onto this sequence we get an injection TorR

1 (IA,KA) ↪→ IA ⊗N which
together with the surjection F ³ KA lead to the composition

IA ⊗R IA ⊗R F ³ IA ⊗R IA ⊗R KA
ζ−→ TorR

1 (IA,KA) ↪→ IA ⊗R N (20)

given by x⊗ y ⊗ ω → x⊗ (yω)− y ⊗ (xω) ∈ IA ⊗R N (cf. [2], Prop. 9, p. 204 for details).
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Remark 37. Let M be a graded A-module and let 0 → N → F → M → 0 be a graded exact sequence
where F is A-free. Arguing as in the proof above, we see that vH2(R,A, M) is the homology in degree
v of (21) below. Hence it vanishes if and only if the sequence

IA ⊗R IA ⊗R F
λ−→ IA ⊗R N → IA ⊗R F , (21)

where λ(x⊗ y ⊗ ω) = x⊗ (yω)− y ⊗ (xω), is exact in degree v ([2], Prop. 9, p. 204).
Remark 38. Let A = R/IA be a graded Artinian algebra and let M be a �nitely generated R-module.
Using (18) we get

HomA(TorR
q (M, KA),KA) ' Extq

R(M, A) .

Thus (IA ⊗R KA)v (resp. vTorR
1 (IA,KA)) is dual to −vHomR(IA, A) (resp. −vExt1R(IA, A)) and the

dual of the degree v part of (17) augmented by vH2(R, A,KA) yields an exact sequence

−vH2(R,A, A) ↪→ −vExt1R(IA, A) → −vHomR(IA ⊗R IA, A)

where the left injective map must be the right inclusion of (3) in degree −v.
In the codimension 3 case it turns out that −vExt1R(IA, A) is also dual to v−3HomR(IA, A):

Proposition 39. Let R → A = R/IA, R = k[x, y, z] be a graded Artinian quotient with Hilbert
function H and minimal resolution

0 → ⊕r3
i=1R(−n3,i) → ⊕r2

i=1R(−n2,i) → ⊕r1
i=1R(−n1,i) → R → A → 0 . (22)

Then vExti
R(IA, A) ' vTorR

1−i(IA,KA(3)) for 0 ≤ i ≤ 1 and NA := HomR(IA, A) satis�es

dim(NA)v − vext1R(IA, A) =
3∑

j=1

rj∑

i=1

(−1)j−1H(nj,i + v)−H(−v − 3) .

Hence vExt1R(IA, A) is dual to (NA)−v−3 for every v. Moreover if (NA)−3 = 0, then 0H2(R, A,A) = 0
and GradAlg(H) is smooth at (A) of dimension

∑3
j=1

∑rj

i=1(−1)j−1H(nj,i).
Proof. Applying 0HomR(−, R) to (22) we get an R-free resolution of KA(3). Then we get the
complex

0 → A → ⊕r1
i=1A(n1,i) → ⊕r2

i=1A(n2,i) → ⊕r1
i=1A(n3,i) → KA(3) → 0

by tensoring the resolution of KA(3) by A. Note that the map A → ⊕r1
i=1A(n1,i) is zero since its

matrix is given by the generators of IA. It follows that the homology groups of the complex

0 → ⊕r1
i=1A(n1,i) → ⊕r2

i=1A(n2,i) → ⊕r1
i=1A(n3,i) → 0

are precisely TorR
2−j(A,KA(3)) for 0 ≤ j ≤ 2 and that TorR

0 (A,KA(3)) ' KA(3). Moreover by
applying 0HomR(−, A) onto the minimal resolution of IA deduced from (22), we get exactly the
latter complex. Hence the homology groups of the complex are also Extj

R(IA, A) for 0 ≤ j ≤ 2 by the
de�nition of Ext. In particular vExt2R(IA, A) ' KA(3)v and vExtj

R(IA, A) ' vTorR
2−j(A,KA(3)) '

vTorR
1−j(IA,KA(3)) for 0 ≤ j ≤ 1 where the last isomorphism is easily proved by tensoring the exact

sequence 0 → IA → R → A → 0 by KA(3). Since the alternating sum of the dimension of the terms
in a complex equals the alternating sum of the dimension of its homology groups, we also get the
double summation formula by combining with dimKA(3)v = dim A−v−3.

Finally we know that (IA ⊗ KA(3))v is dual to −v−3HomR(IA, A) = (NA)−v−3 by Remark 38
and that vExt1R(IA, A) ' vTorR

0 (IA, KA(3)) by the �rst part of the proof. Hence vExt1R(IA, A) is
dual to (NA)−v−3 and since 0Ext1R(IA, A) contains 0H2(R,A, A) which is dual to 0H2(R, A, KA) by
Remark 38 we conclude by Theorem 36.

22



Corollary 40. With A as in Proposition 39 we have
3∑

j=1

rj∑

i=1

(−1)j−1H(nj,i) = 1−
3∑

j=1

rj∑

i=1

(−1)j−1H(nj,i − 3) .

Moreover the sum on the left above, which we call ρ(H), depends only upon the Hilbert function H
and not upon the graded Betti numbers. We have

dim(A) GradAlgH(k[x, y, z]) ≥ ρ(H) .

Indeed ρ(H) is a lower bound for the dimension of any irreducible (non-embedded) component of
GradAlgH(k[x, y, z]).

Proof. The duality of the proposition shows that

dim(NA)v − vext1R(IA, A) = −v−3ext1R(IA, A)− dim(NA)−v−3 .

Putting v = 0 we get the equality of the two expressions of ρ(H) of the corollary by using the corre-
sponding formula of Proposition 39 for v = 0 and v = −3. Moreover, by Theorem 36 and Remark 38,
the number dim(NA)0 − dim 0H2(R, A,A) is a lower bound of dim(A) GradAlgH(k[x, y, z]). Using
Remark 38 we get ρ(H) to be a possibly smaller lower bound. Finally let V be a non-embedded irre-
ducible component of GradAlgH(k[x, y, z]) and let (A′) ∈ V such that dim(A′) GradAlgH(k[x, y, z]) =
dimV . Note that the sum which de�nes ρ(H) depends only upon the Hilbert function because the
contribution from all ghost terms (i.e. common direct free factors in consecutive terms in the mini-
mal resolution of A) or from incomparable sets of graded Betti numbers (Remark 7) sums to zero!
Hence dimV ≥ ρ(H) by the �rst part of the proof, we are done.

Example 41. To illustrate Proposition 39, we consider H = (1, 3, 6, 6, 3, 1) and the two di�erent
irreducible components (now of GradAlgH(k[x, y, z])) of Example 25 whose general elements are licci.
Looking to the minimal resolutions of Ai of Example 25, we get

dim(NAi)0 − 0ext1R(IAi , Ai) = 4H(3)− 4H(5) = 20 .

By Remark 38, 0Ext1R(IA1 , A1) = 0 since we get 0TorR
1 (IA1 ,KA1) ↪→ (IA1 ⊗ IA1)5 = 0 by using

KA1 ' A1(5). (Indeed this 0Ext1 -group always vanishes in the compressed Gorenstein case.) Thus
the �Gorenstein� component has dimension 20 (also well known by [24]), while Remark 26(iii) or
Theorem 24 applied to the successive linkages (1, 2, 3), (2, 2, 4), (2, 3, 4), (3, 4, 4), (3, 4, 5), (3, 3, 5)
obtained from a CI of type (1, 1, 1), shows that the other component is generically smooth of dimension
21. Thus 0ext1R(IA2 , A2) = 1.

An alternative way of describing A2 is to specify the three generators, F1, F2 and F3, of degree
3, 4 and 5 respectively, in the dual polynomial algebra of R which we will consider more closely later
in this section. Indeed if we take F1 to be a general polynomial of degree 3 (i.e. an element of some
open set of the irreducible parameter space of all forms of degree 3), F2 to be a sum of length 4 of
general linear forms to the 4-th power and F3 to be a sum of length 2 of general linear forms to the
5-th power, we get precisely A2 as A2 = R/ann(F1, F2, F3) (verifyed by using Macaulay 2).

Recall that if A itself admits a semi-linear R-free resolution (except possibly at the minimal
generators of IA), then

0H2(R, A,A) = 0 (23)
by Remark 30 and Remark 32. This vanishing also follows from Theorem 36. Moreover using
Theorem 36, we can prove a �dual� result. Indeed suppose IA admits a semi-linear resolution except
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possibly at the left end of the resolution, i.e. suppose IA has minimal generators only in degree j
and j + 1 and that the resolution continues by

0 → G⊕R(−j − n + 1)αn → R(−j − n + 1)βn−1 ⊕R(−j − n + 2)αn−1 → ... → F1 → IA (24)

where G is any R-free module. Here F1 = R(−j − 1)β1 ⊕ R(−j)α1 and R is the polynomial ring
k[x1, ..., xn] with n ≥ 2. Then (23) holds. Using (18) we can even replace F1 by

F1 = R(−j − 1)β1 ⊕R(−j)α1 ⊕ (⊕m
i=1R(−ai)) , ai < j for all i (25)

where the set of generators {f1, ..., fm} which correspond to {a1, ..., am} form a regular sequence,
and still get (23), i.e.;

Proposition 42. Let A = R/IA be a graded Artinian quotient with Hilbert function H, whose
minimal resolution is given by (24) and (25) where the generators {f1, ..., fm} of IA which correspond
to {a1, ..., am} form a regular sequence. Let B = R/(f1, ..., fm) (and B = R if m = 0). Then
0H2(R, A, A) = 0 and GradAlg(H) is smooth at (A). Moreover

dim(A)GradAlg(H) = −nhomR(G, B)− −nhomR(G,A) +
m∑

i=1

H(ai).

Proof. By the long exact sequence of algebra cohomology (Remark 30) and (3) we get 0H2(R, A,A) =
0 provided we can show Ext1B(IA/B, A) = 0. Continuing the long exact sequence of Remark 30 to
the left we see that Ext1B(IA/B, A) = 0 also leads to

dim(NA)0 =homB(IA/B, A) + homB(IB/I2
B, A) . (26)

To show Ext1B(IA/B, A) = 0, we improve a little bit upon Theorem 36 by using (18). Indeed we have
HomA(TorB

q (IA/B,KA),KA) ' Extq
B(IA/B, A). Hence it su�ces to show 0TorR

1 (IA/B,KA) = 0.
Now look to the exact sequence

→ R(j + n− 1)βn−1 ⊕R(j + n− 2)αn−1 → G∗ ⊕R(j + n− 1)αn → KA(n) → 0

which we tensor with IA/B(−n). By the de�nition of TorR
1 (IA/B,KA), it su�ces to show (IA/B(−n)(j+

n − 1))0 = 0 and (IA/B(−n)(j + n − 2))0 = 0. This is true since (IA/B)j−1 = 0 by assumption.
Moreover the argument also shows (IA/B ⊗KA)0 ' dim(G∗(−n)⊗ IA/B)0. Hence we get

0homB(IA/B, A) = dim TorB
0 (IA/B,KA) = −nhomR(G,B)− −nhomR(G, A) ,

and we conclude by (26) and the fact that IB/(IB)2 ' ⊕m
i=1B(−ai).

Proposition 42 with B = R applies nicely to compressed Artinian algebras. Indeed the number
−nhomR(G, B)−−nhomR(G,A) coincides with the dimension of the corresponding component given
in Thm. IIB of [24]. If B 6= R, Proposition 42 also applies to non-compressed algebras:

Example 43. As a special case of Proposition 42 we look to Artinian level quotients with �almost
semi-linear� resolution. All level algebras below may be constructed as A = R/ann(F1, F2) where
F1 and F2 are forms of degree 7 in the dual polynomial algebra of R (cf. later discussion). Indeed
we easily construct in this way algebras Ai with Hilbert functions HA1 = (1, 3, 6, 10, 15, 12, 6, 2),
HA2 = (1, 3, 6, 10, 14, 12, 6, 2), HA3 = (1, 3, 6, 10, 13, 12, 6, 2) and corresponding minimal resolutions

0 → R(−10)2 → R(−7)5 ⊕R(−6)5 → R(−5)9 → IA1 → 0
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0 → R(−10)2 → R(−7)6 ⊕R(−6)4 → R(−6)2 ⊕R(−5)6 ⊕R(−4) → IA2 → 0

0 → R(−10)2 → R(−7)7 ⊕R(−6)3 → R(−6)4 ⊕R(−5)3 ⊕R(−4)2 → IA3 → 0 .

Only A1 is compressed, but since one may show that the minimal generators of IAi of degree 4 (which
we use to de�ne Bi) form a regular sequence, Proposition 42 applies (we have used Macaulay 2 to
check it and to �nd the minimal resolutions). Hence the algebras Ai are unobstructed and since
−nhomR(G, M) = 2 · dimM7 and dim(Bi)7 = (i− 1) dimR3 for i = 2 and 3 (and B1 = R), we get
the number

dim(Ai)GradAlg(HAi) = 2 · dim(Bi)7 − 2 · dimHAi(7) + (i− 1)HAi(4)

to be 68, 62, 54 for i = 1, 2, 3 respectively.

To this end we consider level algebras of CM-type t. Let LevAlg(H) be the open set of
GradAlg(H) (and hence open as a subscheme with its induced scheme structure) consisting of
graded level quotients with Hilbert function H. Since we work with Artinian algebras there is an-
other known scheme, L( H), parametrizing graded level quotients with suitable Hilbert function H,
namely the determinantal loci in the Grassmannian G(t, j) of t-dimensional vector spaces of forms
of degree j, cut out by requiring their �catalecticant matrices� to have ranks given by the Hilbert
function (see [9], and [26], Sect. 1.1 for the Gorenstein case). Then the underlying sets of closed
points of L(H) and LevAlg(H) are the same by apolarity (the Macaulay correspondence), and their
tangent spaces are isomorphic ([9], Thm. 2.1 for L( H), and [28], Thm. 1.5 for GradAlg(H)). Since
one may by the proof below see that LevAlg(H) and L(H) are in fact isomorphic as topological
spaces (expected since they have the Zariski topologies and the bijection between them is natural),
we have

Theorem 44. Let R → A be a graded Artinian level quotient with Hilbert function H. Then
dim(A) GradAlgH(R) = dim(A) L(H). Hence L(H) is smooth at (A) if and only if GradAlgH(R) is
smooth at (A). In particular L(H) is smooth at (A) provided 0H2(R, A,A) = 0, i.e. provided the
map of (17) is surjective in degree zero, or equivalently, the displayed sequence of Remark 37 with
M = KA is exact in degree zero.

Proof. Let V ⊂ L( H) be a closed irreducible subset, and let V have the reduced scheme structure.
By the de�nition of L(H), the restriction of the �universal� bundle of the Grassmannian G(t, j) to V
de�nes via apolarity a family of graded Artinian level quotients, AV , over V with constant Hilbert
function H. Since V is integral, it follows that the family (i.e. the morphism Spec(AV ) → V ) is
�at ([45], Lect. 6). Hence we have a morphism π : V → LevAlg(H) by the universal property
of GradAlg(H). π(V ) is irreducible and closed in LevAlg(H) (it is closed because an �inverse�
(LevAlg(H))red → L( H) on closed points exists, by [26], p. 249). So chains of closed irreducible
subsets in L( H) and LevAlg(H) correspond, and the spaces have the same dimension. Since their
tangent spaces are isomorphic, it follows that GradAlgH(R) is smooth at (A) i� L(H) is smooth at
(A). Then we conclude by Theorem 36 since the surjectivity of (17) in degree zero is equivalent to
the exactness of the corresponding sequence in Remark 37.

As an application we consider certain type 2 level algebras studied by Iarrobino in [25], i.e.
level algebras given by A = R/ann(F1, F2) where F1 and F2 are forms of the same degree j in the
dual polynomial algebra of R, upon which R acts by di�erentiation (�without coe�cients�). Let
Ai := R/ann(Fi). Since we have IA = IA1 ∩ IA2 , we get an exact sequence

0 → A → A1 ⊕A2 → R/(ann(F1) + ann(F2)) → 0.
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In an extended draft of [25] the author determines the tangent space of LevAlg(H) at such an (A)
and he gives it a manageable form in the case {F1, F2} is complementary, i.e. provided

HA(i) = min{dimRi,HA1(i) + HA2(i)} for any i . (27)

where HA = H. Our Theorem 36 gives us, not only a tangent space which coincides with his, but
it provides us also with the following manageable form of the obstruction space.
Proposition 45. Let {F1, F2} be complementary forms of degree j, and let A = R/IA be the
Artinian level quotient with Hilbert function H given by IA = ann(F1, F2). Let IAi = ann(Fi).
Then (IA/IA · IA1)j ⊕ (IA/IA · IA2)j is the dual of the tangent space of GradAlgH(R) at (A), and
jH2(R, A, A1)⊕jH2(R, A,A2) is the dual of a space containing all obstructions of deforming A as a
graded R-algebra. In particular if the sequences

IA ⊗R IA
λ−→ IA ⊗R IAi ³ IA · IAi

where λ(x⊗ y) = x⊗ y − y ⊗ x, are exact in degree j for i = 1, 2, then GradAlg(H) (and L(H)) is
smooth at (A) and we have

dim(A) GradAlgH(R) =
2∑

i=1

dim(IA/IA · IAi)j

Remark 46. The map IA⊗RIA
λ′−→ IA⊗RIA, de�ned by λ′(x⊗y) = x⊗y−y⊗x, obviously commutes

with λ above. Since λ′ factors via the natural surjection IA ⊗R IA ³ Λ2IA (in char(k) 6= 2), then λ
also does. In char(k) 6= 2 the exactness of the two sequences of Proposition 45 is therefore equivalent
to the exactness of

Λ2IA → IA ⊗R IAi ³ IA · IAi , (28)
i = 1, 2, in degree j. Indeed, by Remark 37, jH2(R,A, Ai) is the homology of (28) in degree j. In
particular if (IA⊗R IA)j ' (S2IA)j (e.g. (IA⊗R IA)j ' (IA

2)j), then the exactness of the sequences
of Proposition 45 is equivalent to (IA ⊗R IAi)j ' (IA · IAi)j.
Proof. Let s(IA) be the minimal degree of a minimal generator of IA and let A = R/(ann(F1) +
ann(F2)) . Since {F1, F2} is complementary, we get (A)v = 0, i.e. Av ' (A1)v⊕ (A2)v for v ≥ s(IA).
It follows that

(KA1)v ⊕ (KA2)v ' (KA)v

for v ≤ −s(IA). De�ning K by the long exact sequence

0 → K → KA1 ⊕KA2 → KA → 0 , (29)

we get (K)v = 0 for v ≤ −s(IA). By considering a minimal R-free resolution of IA, it follows that

0TorR
i (IA, K) = 0 for i ≤ 0 . (30)

Now applying IA ⊗ (−) onto (29), or more precisely using the corresponding long exact sequence of
algebra homology, we get

0Hi(R,A, KA1 ⊕KA2) ' 0Hi(R, A,KA)

for i = 1 and 2 because 0TorR
1 (IA, K) ' 0TorR

2 (A, K) ³ 0H2(R, A,K) is surjective (cf. (17)) and
IA⊗R K ' H1(R, A,K), i.e. 0Hi(R, A,K) vanishes for i = 1 and 2 by (30). Then we conclude easily
by Ai ' KAi(−j), Theorem 36 and Remark 37. Indeed we have

(IA ⊗R KAi)0 ' (IA ⊗R Ai(j))0 ' (IA ⊗R R/IAi)j ' (IA/IA · IAi)j
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and we get (IA ⊗R KA)0 ' (IA ⊗R KA1)0 ⊕ (IA ⊗R KA2)0 as well as

0H2(R, A, KA) ' jH2(R, A, A1)⊕jH2(R, A,A2) .

By the assumption of the exactness of the sequences and by Remark 37 (letting F = R and N = IAi),
we get the vanishing of 0H2(R,A, KA) and we are done.

Remark 47. As Iarrobino points out in the draft of [25], Theorem 4.8A of [24] implies that if F1 is
any form of degree j and F2 is a sum of length s of linear forms to the j-th power (i.e. the Hilbert
function of A2 = R/ann(F2) equals H(s, j, n) of Remark 26(v)), then {F1, F2} is complementary
provided we choose the linear forms of F2 general enough. It follows that HA is given by (27).

First we give an easy example which may also be treated by Proposition 42.

Example 48. (a) Let H = (1, 3, 6, 10, 6, 2). By Remark 47 there are forms F1 and F2 where each
Fi is a sum of length 5 of linear forms to the 5-th power (i.e. HAi = (1, 3, 5, 5, 3, 1)) and such that
the Hilbert function of A = R/ann(F1, F2) is H. Then A is compressed. From the Hilbert functions
we see that s(IA) = 4 while s(IAi) = 2. Moreover, the socle degree of A and Ai are 5, and we get
(IA ⊗ IAi)5 = 0 for i = 1 and 2. By Proposition 45 it follows that GradAlg(H) is unobstructed at
(A) and we have

dim(A) GradAlg(H) = 2 · dim(IA)5 = 38 .

(b) Let H = (1, 3, 6, 9, 6, 2), let F1 be as in (a), while we now let F2 be a sum of length 4 of general
linear forms to the 5-th power. Hence HA2 = (1, 3, 4, 4, 3, 1) and H = HA where A = R/ann(F1, F2)
by Remark 47. From the Hilbert functions we see that s(IA) = 3 and s(IAi) = 2. Since we easily see
that IA⊗ IAi ' IA · IAi is an isomorphism in degree 5 for i = 1 and 2, we get by Proposition 45 that
GradAlg(H) is unobstructed at (A) and that

dim(A) GradAlg(H) = 2 · dim(IA)5 − dim(IA · IA1)5 − dim(IA · IA2)5 = 35 .

Loosely speaking it is, for i = 1, 2, the relations of IA ·IAi in degree j, modulo those coming from
the relations of IA ⊗ IAi and the generators of ∧2IA, which contribute to 0H2(R, A, A). Of course
the vanishing of 0H2(R, A,A) as well as the dimension of GradAlgH(R) is usually straightforward
to get from Proposition 45 provided s(IA) + s(IAi) ≥ j for i = 1, 2, as in Example 48.

We �nish this paper by proving a conjecture of Iarrobino, appearing in the draft of [25], namely
that L( H) with H = (1, 3, 6, 10, 14, 10, 6, 2) contains at least two irreducible components, where
one of the components contains Artinian level type 2 algebras given by 2 forms of Hilbert function
H1 = (1, 3, 6, 9, 9, 6, 3, 1) and H2 = (1, 3, 4, 5, 5, 4, 3, 1), as in Remark 47, and the other contains level
type 2 algebras constructed via 2 forms with Hilbert function H3 = (1, 3, 6, 10, 10, 6, 3, 1) and H4 =
(1, 3, 4, 4, 4, 4, 3, 1). As pointed out in the Introduction, even though this conjecture was open until
now, Iarrobino and Boij have in a joint work already constructed other examples of reducible L( H)
whose general elements are level quotients of type 2, one with H = (1, 3, 6, 10, 14, 18, 20, 20, 12, 6, 2),
and moreover got a doubly in�nite series of such components [5].

Example 49. Let H = (1, 3, 6, 10, 14, 10, 6, 2). We claim that there are at least two components V1

and V2 of L( H) whose general elements are Artinian level type 2 algebras, that dimV1 = 46 and
dimV2 = 47 and that both components are generically smooth.

To get the component V1 of dimension 46, take F1 to be a sum of length 4 of general linear
forms to the 7-th power and take F2 to be a general polynomial of degree 7. If Ai = R/ann(Fi) and
A = R/ann(F1, F2), then HA2 = (1, 3, 6, 10, 10, 6, 3, 1), HA1 = (1, 3, 4, 4, 4, 4, 3, 1) and HA = H.
It su�ces to show that A is unobstructed and that dim(A) GradAlg(H) = 46. To do so we use
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Proposition 45. Indeed from the Hilbert functions we see that s(IA) = s(IA2) = 4 and s(IA1) = 2.
Hence (IA ⊗ IA2)7 = 0. Moreover since IA has one generator of degree 4 and 8 generators of degree
5 and A1 is a complete intersection of type (2, 2, 6), it follows that all relations of IA · IA1 must be
of degree greater or equal to 8. We get that (IA ⊗ IA1)7 ' (IA · IA1)7 is an isomorphism of vector
spaces of dimension 2 · (3 + 8) = 22. Hence Proposition 45 applies and we get the unobstructedness
of A and

dim(A) GradAlg(H) = 2 · dim(IA)7 − dim(IA · IA1)7 = 46 .

To get the other component, let now F1 be a sum of length 9 of general linear forms to the 7-th
power (i.e. HA1 = (1, 3, 6, 9, 9, 6, 3, 1)), let F2 be, say F2 = x6y+xy6+z7 and let A = R/ann(F1, F2).
Then the the Hilbert function of A is H by Remark 47. We claim that A is licci! Indeed it is easily
checked by Macaulay 2 that A above admits the following CI-linkages to a CI of type (1, 1, 3). We
start with a general CI of type (4, 5, 7) whose generators are contained in IA and follow up by general
CI-linkages of type (4, 5, 6), (4, 4, 6), (4, 4, 5), (3, 3, 5), (3, 3, 4), (2, 2, 4) and (2, 2, 3), in this order.
Then A is unobstructed and dim(A) GradAlg(H) = 47 by Remark 26(iii) or Theorem 24 and we are
done (of course, once using Macaulay 2 it is easier to see that the tangent space is 47-dimensional by
computing 0ext1(IA, IA). The unobstructedness of A is, however, not at all easy to see by Macaulay
2 computations because 0Ext1R(IA, A) ' 0Ext2(IA, IA) is 1-dimensional and so is 0H2(R,A, A) by
Proposition 45 and Remark 46. Hence we really need to use that the unobstructedness property is
preserved under CI-linkages, which is true by Theorem 24).

Macaulay 2 also provides us with the following minimal resolution

0 → R(−10)2 → R(−8)2 ⊕R(−7)⊕R(−6)8 → R(−7)⊕R(−5)8 ⊕R(−4) → R → A → 0 .

Thanks to Theorem 24 we claim this is the minimal resolution of the general element of V2! Indeed
by Theorem 24 we know that general CI-linkages take open sets onto open sets. Hence if we start
with a general CI of type (1, 1, 3) and reverse all the general CI-linkages above, we get a general
element of V2 which one may check (Macaulay 2) has the minimal resolution described above. Note
the ghost-term R(−7). This term is not present in the minimal resolution of the algebra we described
in V1 which, by Macaulay 2, has another ghost-term, namely R(−6). Still we claim that the gen-
eral elements of V1 and V2 have di�erent but comparable sets of graded Betti numbers. Indeed in
Iarrobino's draft [25] he also mention that there is another algebra A′ = R/ann(F1, F2) with HA′ =
(1, 3, 6, 10, 14, 10, 6, 2) obtained by taking two general enough forms {F1, F2} with Ai = R/ann(Fi)
and HAi = (1, 3, 5, 7, 7, 5, 3, 1) for i = 1, 2. We have used Macaulay 2 to see that if each Fi for
i = 1, 2 is of the form Fi = (l1)5 ∗ (l2)∗ (l3)+(l1)∗ (l2)5 ∗ (l3) where lj are general linear forms, then
A′ has a minimal resolution as above without ghost-terms. Hence the set of graded Betti number of
the general elements of V1 and V2 have a common minimum and the claim is proved.

Remark 50. (a) We have tried to look for other examples of several �level type 2 components� of
smaller socle degree, but have not yet fully succeeded. A promising candidate is H = (1, 3, 6, 9, 9, 6, 2)
where we get a level type 2 algebra A by starting with a CI of type (2, 2, 3) and linking in one step
via a CI of type (4, 4, 3). By Remark 26(iii) we have 0homR(IA, A) = 33. Moreover we have an
A′ = R/ann(G1, G2) with 0homR(IA′ , A

′) = 35 (checked by Macaulay 2) by taking G1 (resp. G2) to
be a sum of length 3 (resp. 6) of general linear forms to the 6-th power. It follows that A belongs to a
33-dimensional generically smooth component while, due to the size of the tangent spaces, there are
only two possibilities for A′. It is either obstructed, or it is unobstructed in which case it belongs to
an irreducible component di�erent from the �licci� component. We have not yet been able to decide
which of the possibilities that occur.

(b) One may construct other examples of several �level type 2 components� of larger socle type by
taking the two components of Example 49 and performing a biliaison, starting with general CI's of
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type (5, 5, b) containing the general elements of the components and follow up by general CI-linkages
of type (b, b, b), b ≥ 7. Using Theorem 24, we get two irreducible components of GradAlg(H ′)
whose general elements are level type 2 quotients of socle degree 3b − 8 (H ′ may be computed from
H = (1, 3, 6, 10, 14, 10, 6, 2)).

Remark 51. If we want to compare the parameter space of type 2 codimension 3 level algebras to
the corresponding space of Gorenstein algebras, we see many di�erences. In the level type 2 case,

(i) the parameter space may be reducible (Example 49 and Remark 50(b)),
(ii) 0H2(R, A,A) may be non-vanishing (e.g. Example 49, there are many more).

In the Gorenstein case (i) and (ii) are false. We have, however, not yet been able to �nd two
irreducible �level type 2 codimension 3 components� with a type 2 level algebra in the intersection,
nor have we been able to �nd an obstructed type 2 codimension 3 level algebra.

Since the general elements of the components of Example 49 have di�erent sets of graded Betti
numbers, one may look for multiple components in LevAlg(H) (e.g. of �type 2�) or in GradAlg(H)
whose general elements have the same sets of graded Betti numbers. We have in [32], Ex. 26 and
Rem. 27 described several such examples, the simplest one consists of �level type 3 codimension 3
components� (resp. �Gorenstein codimension 4 components�) whose general algebras are level (resp.
Gorenstein) of dimension 2 (resp. dimension one). We may truncate the algebras (Proposition 33),
or better, divide by some twist of the canonical module (Theorem 27) to get many examples of e.g.
multiple �Artinian Gorenstein codimension 5 components� whose general elements have the same
sets of graded Betti numbers. We are, however, not aware of examples of multiple components in the
same Betti stratum in the level (resp. Gorenstein) Artinian codimension 3 (resp. 4) case.
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