"(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other users, including reprinting/ republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any
copyrighted components of this work in other works."

Security Challenges with Cross-Domain Information
Exchange: Integrity and Guessing Attacks

Paal E. Engelstad, Senior Member, IEEE,

Abstract—Current research on cross-domain information ex-
change is advocating to move away from the inflexible Bell-La
Padula (BLP) model, into a more complex policy-driven security
model where information objects and end-users are characterized
in terms of complex meta-data. It will lead to higher flexibility
but will also rely not only on guards, but also on automatic
or semi-automatic tools for forming and processing the meta-
data. In this paper, we point out some potential pitfalls with
this approach. The paper focuses specifically on the relaxation of
the BLP security model for confidentiality and discusses security
concerns that arise from the use of such tools in combination
with guards.

Index Terms—Security, classification, labeling, cross-domain
information exchange.

I. INTRODUCTION

URING the last couple of decades the NATO allies have
D gradually realized that the old paradigm of “need-to-
know” is limited and inflexible, and might inhibit efficiency
of military processes and operations. The need-to-know often
results in isolated single-domain information silos.

As a result, a new philosophy of ’need-to-share” is starting
to emerge [1], [2], [3]. This requires that we try to inter-
connect the single-domain information silos, without missing
the opportunity to protect the information. This is referred
to as Cross-Domain Information Exchange. Such information
sharing is considered a strategic capability and a basis for
obtaining information superiority by ensuring that all allies
have the newest and most pertinent information at hand at
any time [4]. An example of information sharing might include
communication and exchange of information objects between
NATO Secret systems, such as the NATO forces, non-NATO
partners and unclassified networks (e.g., of collaborating
international organizations) [5]. Current research on cross-
domain information exchange is advocating to move away
from the inflexible Bell-La Padula model [6], with simple
security classifications and simple security clearances, into
a complex policy-driven security model where information
objects and end-users are characterized in terms of complex
meta-data. The Content-based Protection and Release (CPR) is
an important work within the area, and stands as an example
of this evolution [7] This will lead to higher flexibility but
will also rely on automatic tools for forming and processing
the meta-data. The first part of the paper assumes a system

Document submitted on 27. April 2015.

P. E. Engelstad is with Oslo and Akershus University College of Applied
Sciences (HiOA), Norway, e-mail: paal.engelstad @hioa.no.

This work was partially funded by the University Graduate Center, UNIK.

with simple security classifications and clearances. However,
the paper demonstrates that the same conclusions made for
this simple system, also apply to systems evolved towards the
use of more complex meta-data.

Cross-domain information exchange requires some kind of
information flow control between the two domains. This is
usually implemented by placing a guard between the domains
[5] [71 [8]. (An example is the “reactive guard” in Figure 1).
The guard inspects the information objects that are attempted
to be passed from one domain to the other. The guard may
permit some information objects to pass without problem.
Other information objects, on the other hand, might be as-
sessed as a security risk and may not be released into the other
domain, or they may raise alarms, logging, quarantine and/or
other countermeasures. The main functionality of a guard is
often thought to be confidentiality protection, while the focus
on integrity protection might be somewhat lower. This paper
demonstrates how tightly inter-related these are, and calls for
a stronger focus on integrity protection.

The paper is primarily concerned with the use of two-
way guards, i.e. guards that allow information to pass in
both directions. The medium assurance XML labeling guard
(XLG) [8] represents a simple example of a solution for
cross-domain information exchange, while the High Assurance
Guard (HAG) [5] represents a more advanced solution. Such
two-way guards release information objects from a “high”
(secure) domain onto a “low” (less secure) domain, and
accepts objects from the ”low” domain into the ’high” domain.

This paper points out that even the simplest guard solution
breaks with the Bell-La Padula (BLP) model [6], and that this
feature of guard solutions can easily be exploited. The fun-
damental security problems (that applies to both the simplest
and most advanced guard solutions) are:

1) The security classification process needed for adding a

security label to an unlabeled information object requires
a “write-down” signal (in terms of a classification deci-
sion) from a higher level of security down to a lower
level. This “write-down” breaks with BLP.

2) The blocking functionality of the guard can be used -
similarly to another covert channel - to read out this
binary signal.

3) The security classification process also requires a “read-
down” of topics that are explicitly stated to be classified
at a lower level. The paper shows that this integrity
vulnerability can be exploited to trigger information leak-
age, again taking advantage of the “write-down” signal

(classification decision) in point 1 above.

Regarding point 1: The process of a adding a security label
to an unlabeled information object requires information at a
high classification level. For instance, in a two-class classifica-
tion system with “’Classified” and Unclassified” information
objects, adding a label to an object is a high-level process that
sends a “write-down” signal from the “Classified” security
level down to the “Unclassified” level. Even though this is
only a binary signal (i.e. “label it as Classified” vs “label it
as Unclassified”), the “write-down” breaks with BLP. (The
actual “write-down” signal corresponds to the “Classification
decision” signal illustrated in Figure 1 below.)

Regarding point 2: The blocking functionality of the guard
can be used to reveal the “write-down” information. This
paper describes a “guessing” attack that takes advantage
of this vulnerability and “pumps” the system for Classified
information. The attack is also demonstrated in a Proof-of-
Concept experiment presented in the end of the paper.

Regarding point 3: An additional problem with the security
labeling process is that to be able to classify whether an
object is at a high security level (e.g. "Top Secret”), one
also needs information about which topics should be classified
at a lower level (e.g. ”Confidential”). That is, if the topic
of a document is explicitly noted as “Confidential” in the
system, the information object should not be classified as " Top
Secret”. Thus, there is also a “read-down” process that takes
place during the security labeling process. This paper explains
how this integrity vulnerability can be exploited to trigger
information leakage, and an integrity attack ("learning attack™)
is demonstrated in a Proof-of-Concept experiment in the end
of the paper.

Some may argue that in the future one will move away
from course-grained security levels ("Top Secret”, Secret”,
etc.) into a policy-driven model where information objects are
labeled with a description of the topic within, and that release
decisions in the guard are taken by comparing the label with
content in a policy database. However, this paper demonstrates
that the attacks are applicable also to this future situation. In
this case, the guessing attack can be used to reveal sensitive
and/or classified information in the policy database.

Both the guessing attack and the integrity attack only
requires clearance at an “Unclassified” level. To demonstrate
the problem with guards, we first assume a simplistic two-
way guard that only focuses on confidentiality protection, i.e.
it blocks “’Classified” information to leak out of the “"High”
domain, while it lets “Unclassified” information to pass in.
We demonstrate that the aforementioned attacks easily can be
carried out from the "Low” domain. The only way to prevent
this is to implement quite strict integrity protection in the
guard.

The paper shows that with guard technology it is not suffi-
cient to focus on confidentiality: Integrity protection becomes
even more important. This is very worrisome, given that the
combination of full confidentiality and integrity protection
(e.g., the combination of both the BLP and Biba [9] models)
is known to construct information silos. Indeed, the whole

intention of using guards is to eliminate those silos, i.e. to
facilitate inter-domain information exchange and information
sharing. The big question is: Will the relaxation of the BLP
model that the guard technology represents call for so strict
integrity protection that the information exchange will be even
more limited than it would be if we stuck with the pure BLP
model?

We would like to point out early that we understand the
need for relaxation of the BLP model to facilitate cross-domain
information exchange. The purpose of this paper is not to point
out that a relaxation is necessarily a bad idea, but rather to
bring to attention specific security concerns and threat vectors
that must be handled properly by the system, both in terms
of good formulation of the security policy and possibly by
implementation of additional security functions targeting the
new security vulnerabilities that might emerge.

II. BACKGROUND
A. Security Filter and Policy

One of the main components of a guard is a security filter.
For instance, a security filter is shown in the “reactive guard”
in Figure 1. The security filter is mainly used to protect the
confidentiality of the domain that the information object is
released from. It reads the security label of the information
object, consults with the security policy, and makes a decision
whether or not to release the object.

B. Deployment scenarios of Automatic Security Classification

A guard usually includes - in addition to the security filter
- a module that automatically double-checks the classification
level of the information object (Figure 1 - Alternative 1). To
do so, the module needs to perform a security classification
of an information object based on its content. (Today, this is
done by “Dirty-word” lists, but in the future more advanced
classification lists and policy-driven methods is expected to
emerge.)

The purpose of the module is to double-check that the
security label carried by the object is correct, before the
original information object with the original label, is passed
to the security filter, possibly along with a modified label
indicating the result of the double-check. If these labels are
conflicting, the security filter will consult with the policy
database to reach the correct release decision.

Such a guard is referred to as a “reactive guard”, because it
acts re-actively, making sure that “Classified” information is
not leaked from the "High” domain inside an “Unclassified”
information object. Thus, it is aimed at mitigating two threats:
The first threat is the mislabeling by a sloppy user and/or
by a bad-performing security classification plugin (Figure 1
- Alternative 2 and/or 3). Another threat to mitigate is an
intentional attempt to send out ”Classified” information within
”Unclassified” information objects, which might be part of
another security attack.

In addition to doing reactive security classification in the
guards, security classification is usually also taken place when
the information object is created and inserted into the domain

Alternative 2: Alternative 3: .
|| Classif. - || Classifl |4 "High®
ns ns i ;
o Leﬂrf],"]g
Classification Classification ;
decision decision Classiliod

\ £y

"PING"

/ | kq%b,. P
L@ | Classification | ' Unclassified

"Low"

VI

Unclassified

Fig. 1: Example of cross-domain information exchange across a guard. In scenario 1, the attacker is inside the "High” domain,
while in scenario 2, the attacker launches the attack from the outside ”Low” domain.

with a security label. This is referred to as proactive security
classification. Typically, this can be done by an author of
a document or by a separate reviewer. With the increasing
amount of information that needs to be classified and labeled,
there is a need for software solutions that are proactively
assisting humans in their classification decision (Alternative
2 in Figure 1).

Finally, the classification can also take place in an interme-
diate node (Figure 1 - Alternative 3). The node might be a
labeling gateway that do automatic security classification and
(re-)labeling, before the information objects are passed into
the domain where the objects are labeled. The intermediate
classification can be either reactive (i.e. the information object
already carries a label before it reaches the gateway) or
proactive (i.e. the information object is unlabeled and obtains
its security classification by the gateway).

III. THE GUESSING ATTACK

A. Attack on a Reactive Guard (Alternative 1)

In this section we propose a novel attack on a guard that
releases information. Consider the same scenario as before
(Figure 1 - Alternative 3). For simplicity, we first consider
attack scenario 1, where User A is an attacker within the
”High” domain, and User 2 is an "Accomplice” in the "Low”
domain. We will later discuss Scenario 2, where the attack is
launched from the “Low” domain, and where the attacker is
not required to have access to the "High” domain.)

Assume two collaborating malicious users, the Attacker
(User A) and the Accomplice (User B), as illustrated in Figure
1). The Attacker is infiltrating the anti-terrorist organization
“High”, but as a subcontractor he has only clearance for
handling “Unclassified” information in their domain. The
“High” domain of the anti-terrorist organization is connected
to the Internet (referred to as the "Low” domain) where the
Accomplice is located. (For illustration, we have assumed that

these subjects are persons, but the Attacker could just as well
be a piece of malicious software, such as a Trojan, while the
Accomplice could just as well be a server.)

It is known by rumors that the organization "High” has a
special Anti-Terror Control Center (ATCC) near the capital
city, but the location of the control center is "Classified”. The
terrorist organisation has a list of 16 possible locations, and
plans to launch a preemptive strike at the ATCC. For this
strike to be effective the organisation needs to know the exact
location.

Having only access rights according to the “Unclassified”
clearance level within the ”"High” domain, attacker constructs
a forged “Unclassified” information objects containing words
like ATCC and 8 of the possible locations on the list, and
sends it to the Accomplice (along the "PONG” route indicated
in Figure 1). The combination of the word "ATCC” and one
of the 8 locations, triggers the reactive guard not to release the
information object, assuming it contains information about the
secret ATCC.

Having narrowed down the guessing list to only 8 locations,
the Attacker forms a new similar information object containing
the names of four of these locations. This time, the information
object is released by the guard and received by the accomplice.

Thus, the Attacker knows that the right location is amongst
the 4 locations that were not included in the previously sent
information object. The Attacker continues with this binary-
search until the final exact location is determined. A practical
example of how such guessing attacks can be carried out is
demonstrated by the Proof-of-Concept experiments described
in Section V.

One may argue that the guard could do something else
than blocking the messages from the Attacker. However, if the
guard sanitizes the message (removes Classified information)
or quarantines the message (delays for human intervention)
instead, it will be noticed by the Accomplice, who can

collaborate with the Attacker to find out the exact format of
the original message and when it was sent.

B. Guessing attack launched from the ”Low” domain

It should be noted that the attacker is not required to have
any clearance to construct "Classified” information objects in
the attack described above. He is supposedly only creating
unclassified information objects that might “accidentally” be
labeled - or re-labeled in the reactive guard - as ”Classified”.

Furthermore, it is not required that the attacker has inside
access to the "High” network. Consider for example attack
scenario 2 in Figure 1. Now, the Attacker (User B) is outside
in the "Low” domain. He communicates by ping-ponging
unclassified email messages with an unknowing victim on the
inside. The attacker might hide some “garbage” information
far down in the lower part of the email; i.e., in the part
containing previous email exchanges that are practically never
read, and sends it to the victim (indicated by the "PING” route
in the figure.) Each time a message is sent by the attacker, the
“garbage” part is changed. The unknowing victim will send
reply messages back (along the "PONG” route in Figure 1.) If
the reply message is not received from the unknowing insider,
the attacker knows that the garbage part contained sensitive
information.

C. Attacks with Alternative 2 or 3

Security classification that takes place in intermediate nodes
(Figure 1 - Alternative 3), is subject to the guessing attack
in the same way, whether the classification is reactive or
proactive. The only difference is that the security label is set by
the intermediate node instead of being set in the classification
module on the reactive guard. The blocking functionality of
the guard is still used to read out the “Classified” information
in the guessing attack. Also in this situation, the attack can be
waged from the "Low” domain (cf. Section III-B).

Finally, a user can also launch a guessing attack on the
software that assists in proactive security classification (Figure
1 - Alternative 2). Consider a user is getting assistance with
the labeling though an automatic software tool after having
created an information object (Figure 1 - Alternative 2). The
user sends the information object to the software tool. The tool
inspects the content, marks the object with a proposed security
classification and returns it to the user. Again, a malicious user
can wage a “guessing attack” against this software, trying out
different text. Unlike the other attacks, the malicious user is
strictly required to have access to the "High” domain - and to
this particular software, and the covert channel here is not the
blocking of the guard but the fact that the user has direct access
to knowing which security label is assigned to the security
object.

IV. INTEGRITY ATTACKS AND THREAT VECTORS

A. Integrity Attacks Might be Easier to Launch

A module that performs security classification is essential
to protect the site from information leakage. Below, we
describe an integrity attack that can manipulate the module

to assign a too low classification label (e.g. ”Unclassified”) to
an information object that should have a higher classification
(e.g. "Classified”).

While the guessing attack compromises confidentiality from
correctly rejecting information objects to be released, the
integrity attack force the guard to mistakenly leak information
objects that should have been blocked. Thus, the attack on
the integrity of the system, can also compromise the confi-
dentiality of the domain, however in a different way than the
guessing attack.

In some systems, it might be easier to manipulate the
integrity of the system, than getting access to confidential
information. The reason is that many systems are primarily
governed by the BLP model. Confidentiality protection is the
main concern, while integrity protection is often of a somewhat
lower priority.

B. ’Learning attack”: Manipulating the Classification Plugin

The module that does security classification must know how
to distinguish “Top Secret” topics, from Secret” topics, and
so forth. In a simple world, this knowledge can be manually
configured (e.g. by a Dirty Word list”). Moving to a more
complex system means also a trend towards the need for
automatic learning, i.e. the module will have to learn from
existing information object in the system. The classification
of the content of new information objects will be decided by
comparing it to the learnt knowledge.

Thus, if the set of information objects at a given security
classification level in the high domain is manipulated by an
integrity attack, the module will give wrong decisions about
the security classification of new object, leading to wrong
release decisions at the guard. That is, an integrity attack
can affect the confidentiality protection of the domain, due
to the write-down signal that violates the BLP model. There
is a learning threat vector associated with the learning of each
classification level in the system. With only two classification
levels in the example in Figure 1, the two learning threat
vectors is referred to as "TV1” (threat vector 1) and "TV2”
(threat vector 2).

For instance, advanced classification modules will use clus-
tering and/or regular machine learning to do classification (e.g.
by Support Vector Machines, k-means clustering, etc.). Since
such techniques typically make distinctions between for exam-
ple ’Classified” and ”Unclassified” topics, the module needs
to learn from both the “Classified” and the “Unclassified”
objects that exist in the domain, to be able to distinguish
one class from the other. This means that the module - which
is a “Classified” subject/object/process according to the BLP
model - needs to do a “read-down” from the “Unclassified”
information objects. The read-down is permitted by BLP, but
compromises the integrity of the module.

Thus, by manipulating the ”Unclassified” information ob-
Jjects within a domain you can get the system to release ”Clas-
sified” information objects! An example will be demonstrated
by Proof-of-Concept experiments in Section VI. The exper-
iments demonstrates that even though the system operates

entirely according to the BLP model, except from a simple
write-down signal from the module, the confidentiality of the
entire system can be compromised through the lack of integrity
protection of ”Unclassified” information. Waging an attack on
”Unclassified” information objects, might not be hard in some
systems.

V. GUESSING ATTACK EXPERIMENTS
A. Proof of concept

The intention is to create some simplistic attacks to demon-
strate the principles. The attacks are made simple, so they are
easy to understand. With simple attacks, it is easy to invent
countermeasures. However, it is possible to make the described
attacks more advanced, and harder to prevent. The intention
of this paper is not to point out, whether the attacker or the
defender will win this arms race. The intention is simply to
point out that the attacks are possible. In other words, our
intention is only to demonstrate the proof of concept.

B. Experimental setting

The experimental setup is shown in Figure 2. An attacker
("User 17) is sending unlabeled documents through a labeling
gateway, which assigns the documents with either a ’Clas-
sified” or an “Unclassified” label. The actual label assigned
to a document depends on the content of the document and
the functionality of the classification plugin. The attacker
wants to send the documents (information objects) to the
accomplice (“User 2”). The documents that are labeled as
”Classified” are blocked by the guard and not released, while
the ”Unclassified” documents are released. The attacker and
the accomplice collaborate, so that the accomplice informs
the attacker about the documents that were received. The
attacker can then deduce which documents where labeled as
”Classified” by labeling gateway (or the classification plugin)
and blocked by the guard.

C. Implementation of the classification plugin

The most crucial part of the experimental architecture is the
classification plugin shown in Figure 3. For simply a proof-
of-concept experiment, we implement a simple plugin. The
plugin has both a ”Dirty-Word List” and a classification list.
The document is first checked against a manually configured
“Dirty-Word list”. A Dirty-Word list has a binary outcome; i.e.,
if the document to be classified contains a word (or expression)
that is listed on the ”Dirty-Word list”, the document is assumed
to be ”Classified”. If not, the document content is then to be
checked by the ”Classification List” (Figure 3).

The Classification list” is generated by machine learning.
We use all the existing and available documents in the site,
that for instance can be assumed to be present in the database
(Figure 2). The document is tested against the classification
list, and each word in the document that are on the list is
assigned a value from the list. From the aggregate value, the
plugin calculates p, which is the probability that the document
contains “Classified” information. If the probability is higher
than 50%, the document is most likely to contain classified

information. If not, the document might be sent forward to
additional modules for further testing.

The chain of tests proposed in Figure 3, may contains
not only the “Dirty Word List” and “Classification list”, but
any more additional modules, as indicated in the figure. This
means that a document must fail all the tests to be considered
”Unclassified”: If the document has a positive outcome on
any of the test, the document will be labeled as ”Classified”.
The reason we propose this structure is to reduce the number
of false negatives to a minimum. A false negative means
that a document that contains “Classified” information will
mistakenly be labeled as “Unclassified”. The consequences
is information leakage, which can be critical. This proposed
decision chain means that the number of false positives will
be higher. A false positive means that a document that only
contains “Unclassified” information, is labeled as ”Classified”
and are not released by the guard. The effect of this is
inconvenient, but probably much less critical than a false
negative. For the purpose of our proof-of-concept experiments,
we implemented only the dirty word list and the classification
list.

Notice also in the bottom of Figure 3 that we have added an
optional topic clustering module that might be implemented
in the future. The reason is that we might in the future
move towards solutions with policy-driven security archi-
tectures. Then, the classification plugin probably will need
to determine the different topics of the information object
(e.g., by “clustering”) and add more advanced topic labels
that indicate the topical content of the object. The topic
clustering” process will probably need to consult the policy
database to find the correct match between the detected topics
and the corresponding labels that should be applied. The fact
that the classification plugin

For the actual machine learner that was used to generate the
classification list, we apply Lasso (Least Absolute Shrinkage
and Selection Operator) [?], [?]. The reason for using Lasso
is that it creates sparse solutions that are easily interpretable
by humans [10] [11]. Thus, Lasso is very suitable, because it
makes our proof-of-concept experiment easy to analyze.

As for the exact machine learning, we are using a experi-
mental setup that is exactly similar to the two-class benchmark
experiment as described in [10] and [11], except for some
minor modifications that are explicitly outlined below. Due to
space limitations, we are only describing the machine learning
process briefly below. Readers should instead refer to [10],
[11] and [12] for more detailed information.

D. The information objects

The information objects used in the experiments are doc-
uments from the Digital National Security Archive (DNSA)
[13]. DNSA contains the most comprehensive collection of
historic and declassified US government documents available
to the public. From DNSA, we chose US policy documents
from three different topics; Afghanistan (AF) in the years
1973-1990, China (CH) in the years 1960-1998 and Philip-
pines (PH) in the years 1965-1986. These were chosen be-

"High"

Guard

Security
filter

Payisse|D

x

Fig. 2: Experimental setup for proof-of-concept

"Dirty DIRTY Check Dirty
Words" WORD LIST Words

Training yes
Set
No
Machine Classi- Find Classif.
Learner >/ fication List probability (p)
\ Addtional !
; class. prosess? |
-l ‘i Sy
l No
Y
Doc. labeled: Doc. labeled:
"UNCLASSIFIED" "CLASSIFIED"
e o
1 iyt u
, POLICY oo » °Pp =
thTABASEJ |____;___,
—__ . 2 ,
'Add "advanced" |
End)< label to doc. 1

-

Fig. 3: classification plugin Implementation

cause they contain a mix of both classified and unclassified
documents. Of a total of 5867 documents available within
these three topics, we removed documents not useful to
our experiments (e.g. those with unknown or inappropriate
classification [10]), ending up with a total of 2793 docu-
ments. Of these, 1070 are ”Unclassified” documents, while the
remaining documents are 1155 “Confidential”, 471 “Secret”
and 97 “Top Secret” documents. For the guessing attack
demonstrated below, we first aggregate the ’Secret” and “Top
Secret” documents into one common “Classified” class, while
we do not use the ”Confidential” documents. The reason is
that in many domains, there are less classified than unclassified
information. Furthermore, this situation also yields a positive
[Bo-value of Lasso (cf. [11] and Table I), which makes the
guessing attack easier to demonstrate.

Note that for training the classification plugin and gener-
ating the classification list, we are only using 70% of the
documents. These corresponds to the documents that reside
in the Document Database in Figure 2. The remaining 30%
of the documents are used as a test set, e.g., we may send it
through the labeling gateway to test the classifier performance
as indicated in Figure 2.

E. Configuring the classification plugin

The documents of in training set was stemmed (i.e. each
word was replaced by its word stem) and stop-words were
removed. Each document was treated as a bag-of-words, where
the frequency of each word in the document was collected.
Looking at all words (or more correctly “stems”) in the
training set, only 1% of the words, namely those with the
highest Information Gain (IG), were used in the machine
learning. The reason for this massive feature selection is that
we want to generate a very short classification list that is
easy to analyze in this proof-of-concept study. The documents
were fed into a Lasso machine learner, which generated the
classification list.

Generally, Lasso is a linear regression model that associates
a (B-value to each word, and finds the optimal values of all the
(B-values, by computing the following minimization:

n d
B = arg min{ - > (1 +exp(—B7z)) + A D IB;]} (D)
i=1 j=1

Here, 3 is the parameter estimates, while z; is a vector
associated with document number i. Each element in the
vector corresponds to one word stem in the model, and the
value of the element represents the number of occurrences of
that word stem in the document.

Due to the L1-norm in the last part of equation 1, Lasso
tends to generate sparse solutions. Thus, the initial number
of 50 words presented to Lasso after the 1G-based feature
selection, is reduced further down to a total number of 37
words. Both this machine learning technique and the feature
selection mentioned above are described in further detail in
[10] and [11].

Lasso is based on logistic regression. After having trained
the classifier (i.e. generated a classification list), a document
k that needs to get its classification level determined can
be compared with the classification list. The number of oc-
currences in the document of each word that is also found
on the classification list is noted down, and the vector xy
for document k is formed. Finally, this is fed back into the
logistic function, to calculate the conditional probability that
the document belongs to one of the two classes:

1

1+ exp(—pTx;))
The [-values are the ones that were determined during the
training (i.e. equation 1).The values y; € {—1,+1} in the
equation are class labels that indicate membership to the class
”Unclassified” ("+1”) or “Classified” (’-1"). Thus, we have
defined the class labels such that p(y; = +1|6,;) is the
probability of the document belonging to the “Unclassified”
class.

Finally, we also consider that the organization is running
two new top secret projects called "FOENIX” and "NSQ”,
which have no occurences in the training set. Thus, a dirty
word list containing the two terms foenix and nsq is generated
manually and added to the classification plugin, in addition to
the classification list that is already generated (Figure 2).

p(yi = +1|8, ;) (2)

F. Guessing attack on the classification list

On behalf of "User 1” in Figure 2, we first generated a list
of words. There are many ways to generate a guessing list.
One way is to manually set up short list of selected words. A
second way is to download an English dictionary, or a subset
of it. A third method is to scan and extract the words from a
large number of documents, preferably within a topic related
to the contents of the documents in the domain. For simplicity,
we chose the latter, and started off with a list of more than
20.000 words.

For each word on the list, we generated a document con-
taining 100 words repeatedly of the word in question, and sent

the forged unlabeled document through the labeling gateway
on behalf of "User 1”.

Since the classification list for simplicity is so short, only
22 documents of the documents that were sent were labeled as
”Classified” by the classification plugin and thus not released
by the guard. The documents that is blocked corresponds to the
the 22 guessed word stems: ambassadori, clear, intellig, kuan,
liaison, like, lord, memorandum, might, moscow, peke, posit,
possibl, postur, probabl, relationship, seem, sensit, should,
suggest, teng, view and warsaw. This means that the clas-
sification module considers documents containing such words
as an indication of sensitive content and an indication that the
document might contain ”Classified” information.

If you think some of the listed words are far-fetched in terms
of classification, remember that for the sake of simplicity, we
first extracted only around 50 words that Lasso was allowed
to use in the first place. Those 50 words were not selected
based on their relevance to security issues, by merely by the
objective information gain they represent. Out of the total
of these 50 words, Lasso used 37 as indicators of security
classification, while the remaining 13 words were deemed by
the Lasso algorithm to be insignificant for the purpose of
classification.(The 13 security-neutral words are ambassador,
believ, chines, chou, communiqu, could, eye, henri, interpret,
next, premier, side and wish.)

To analyze the result of the attack, we have to inspect the
entire classification list, which is shown i Table I. We observe
that our guessing attack has detected the 22 most sensitive
words on the classification list (wherewarsaw is the most
sensitive word, since it has the lowest 3-value). The only two
words not detected by our guessing attack are the two least
sensitive words with a negative [-value, namely chiao and
soviet.

G. Merging the dirty-word list into the classification list

In the lower pane of Table I we also find the two terms
foenix and nsq. These terms are given a practically infinitely
low f-value. Documents can be evaluated in the same way
as for the classification list, i.e. using equation . This means
that even for the longest documents, only one occurrence of
either the term foenix or nsq will result in the document to
be labeled as ”Classified”. In this way, it is in fact possible to
merge the automatically generated classification list with the
manually configured dirty-word list. The net result will be the
same as for the classification plugin architecture outlined in 3.

H. A guessing attack on the Dirty Word list

Assume the attacker wants to find any Attacker three-letter
acronyms used by the organization, and only those that are not
a three-letter stem of a word in a dictionary. First, the attacker
generates all combinations of three-letter acronyms, i.e. 17576
acronyms in total, with the 26 letters of the English language.
The attacker uses his dictionary to eliminate all three-letter
combinations that correspond to a word stem of any word in
the dictionary. There are a number of stemming tools available
for stemming words. Of the 23477 words in total in our limited

TABLE I: Classification list. Words in the left pane has neg-
ative (5-values and contribute towards a security classification
of “Classified”, while words in the right pane has positive
(B-values and contribute towards a security classification of
”Unclassified”.

| Word stem B~ pw(w=100) | Word stem B+ py(w = 100) |
warsaw -5,43 (4,77E-24) talk 0,07 (0,787)
kuan -4,96 (5,45E-22) fund 0,15 (0,895)
ambassadori -3,02 (1,49E-13) manila 0,20 (0,936)
peke -2,86 (7,40E-13) crimin 0,37 (0,987)
sensit -1,92 (8,57E-09) question 0,40 (0,990)
intellig -1,85 (1,82E-08) china 0,41 (0,992)
lord -1,31 (3,89E-06) safeti 0,80 (1-1.71E-04)
relationship -1,06 (4,779E-05) human 1,08 (1-1.09E-05)
seem -1,03 (6,26E-05) servic 1,31 (1-1.00E-06)
possibl -1,02 (6,78E-05) info 1,38 (1-5,00E-07)
probabl -0,99 (9,73E-05) refuge 1,98 (1,000)
might -0,79 (6,62E-04) dear 6,01 (1,000)
postur -0,70 (1,63E-03)
memorandum -0,69 (1,98E-03)
liaison -0,50 (0,013)
should -0,45 (0,021) BIAS:
posit -0,24 (0,143) Bo 0,63 (0,652)
suggest -0,14 (0,320)
like -0,12 (0,353)
teng -0,11 (0,379)
view -0,09 (0,444)
clear -0,09 (0,423)
MOSCOW -0,07 (0,481)
chiao -0,05 (0,534)
soviet -0,02 (0,603)
foenix -1E99 (0)
nsq -1E99 (0)

dictionary, we had only 739 stems containing exactly three
letters. Thus, after removing these stems, we ended up with
16837 acronyms in total that are shuffled in a random order.

On behalf of the attacker, we split the 16837 acronyms in
two, with 8418 acronyms in one part and 8419 in the other.
According to our algorithm, we send (on behalf of the attacker)
a document containing the smallest number of acronyms of
the two parts. In our random run, the acronym (’nsq) was
not in this part, and the document was therefore passed to
the accomplice. Thus, we split the remaining 8419 acronyms
that were not sent in that document in two, and send out a
new document containing half of them, that is 4209 acronyms.
This time, the document is blocked, which means that the
secret acronym (’nsq”’) turned out to be contained in the sent
document. The 4209 acronyms there are split in two and a
document containing half of them, namely 2104 acronyms, are
sent out. In this way, we use binary search to narrow down.
After between 14 - 16 sent documents, we find that the secret
acronym is "NSQ”.

1. Guessing attack launched from the ”Low” domain

It should be noted that in the attacks demonstrated above,
the attacker is not required to have any clearance to con-
struct ”Classified” information objects. Furthermore, it is not
required that the attacker has inside access to the “High”
network. As pointed out in Section III-B, such an attack can
also be launched from the “Low” domain, unless sufficient
integrity protection mechanisms are implemented in the guard.

The aim of the experiments is to demonstrate that the
relaxation of BLP creates problem unless integrity protection
is introduced to counter-balance the negative effects of the
relaxation. Thus, in the experiments it is assumed that the
guard only focuses on confidentiality, and not on integrity
protection. Thus, the guard is effectively a two-way guard
were “Unclassified” information objects can pass freely from
the "Low” domain into the “High” domain. Due to this
assumption, the guessing attack can easily be launched by an
outsider that has no direct access to the "High” domain.

J. Guessing attack on a high-performance solution

In the experiments above, we removed the security-sensitive
keywords to create a scenario with a challenging corpus. Now,
we launch the same attack on high-performing domain, i.e.
on a solution where these keywords are allowed to be taken
into account. This time, the keyword secret were amongst
the sensitive words that were guessed, and the word is the
second strongest indicator of a “’Classified” document. Listed
in increasing order of importance, the detected words were
peke, might, memorandum, henri, secret and warsaw

The less important sensitive words that were not detected
(i.e.Integrity AttackPerformance those that are weaker indica-
tors of the “Classified” class than those that were detected)
are: soviet, ambassador, seem, possibl, kuan, relationship
and should (listed in incresing order of importance).

VI. INTEGRITY ATTACK EXPERIMENTS
A. Attack by changing or forging ”Unclassified” documents

Now, we consider an attacker sending bogus “Unclassified”
information into the “High” domain, e.g. by communicating
with an unknowing victim on the inside. Either, the attacker
can generate new documents that are forged as real ”Unclassi-
fied” documents. Alternatively, he may change existing ones, if
the integrity protection of “Unclassified” information objects is
not high. For simplicity, we assume the latter in the following.
However, conclusions will be the same.

Assume that the attacker manipulates a number of “Unclas-
sified” documents, so that each contains w words of each of
the sensitive words detected in the guessing attack.

An attacker can often easily guess some sensitive words. In
the demonstration presented here, we assume that the attacker
has used the guessing attack to obtained the same sensitive
words that were detected in the guessing attacks presented
above, and that the attacker adds w of each of these words into
the “Unclassified” documents that he is able to manipulate.

We assume first that the attacker attacks the high-performing
system described above, i.e. as described in Section V-J. He
forges documents containing 100 words of each of the detected
sensitive words (i.e., w = 100), using the sensitive words that
were detected in the guessing attack above on that specific
system (cf. Section V-J).

B. Demonstration of the impact of the attack

By communication with the domain (e.g. using the ping-
ponging described above), such “Unclassified” information

“Learning” / Integrity Attack (w = 100)

0.8 N
L
E 0.6 || —— Accuracy (TP+TN) 7
2 —— False Negatives (FN)
% 0.4 False Positives (FP) |
&

0.2 N

0 : : :
0 200 400 600 800

Number of forged documents

Fig. 4: The impact of “learning attack” on performance. Red
lines are the rates of the false negatives, where solid vs dashed
lines represent attack on a high vs a low performing system
(i.e., keywords included vs ignored.

might easily be stored in the "High” domain. Stored docu-
ments are typically used later for the training, since keeping
the machine learner up-to-date is a requirement to maintain
performance. The attack has impact on the training, because
the manipulated “Unclassified” documents are now included
in the training set used to generate the classification list in
the classification plugin. In this way, the attacker changes the
performance of the output of the classification plugin. How
much the performance is manipulated, depends on how many
of the “Unclassified” documents used in the training that the
attacker is able to manipulate.

In this part, we have only assumed that the attacker is able
to inject "Unclassified” information into the "High” domain.
Thus, we are only studying the impact of the attack on the
training of our machine learner, as a function of the number
of manipulated documents. Results are shown in Figure 4.

We are mostly concerned about the attacks impact on
the False Negative (FN) rate, shown by the red curves in
Figure 4. The reason is that a false negative means that the
classifier assigns “Unclassified” to an information object that
”should be” classified as “Classified”. This means that the
document can be mistakenly leaked out of the domain, and
the confidentiality of the domain is compromised.

The false negative rate is measured by the test set. Since the
test set (which is only used for our analysis) is unchanged by
the attack, we compare the real, actual classification of each
document in the test set with the classification level that the
classifier would assign to it. The solid red curve in Figure 4
refers to the high-performance domain where the rate of false
negatives is low in the first place (cf. Section V-J). We observe
that the curve is steadily increasing. This means that for a hign
number of manipulated documents, the attacker is gradually

oy

8

=

Q

g

g

.5 4 | |

8

b5 —— W=10000, Norm=T

> ol —— W=100, Norm=T ||
—— W=25, Norm=T

W=100, Norm=F
0 | | | |
0 10 20 30 40 50

Number of forged documents

Fig. 5: The impact of “learning attack™ on the false negatives
in a high performing system (keywords included)

destroying the training set, and the information leakage will
easily increase correspondingly.

Now, assume that the attacker launches a similar attack on
the low-performance domain (cf. Section V-F), meaning that
the guessed words used in the manipulated documents are also
replaced with those detected in Section V-F. The resulting
False Negative rate is shown by the dashed red curve in Figure
4. The curve starts off by a higher False Negative rate, since
this correponds to the performance of the low-performance
domain before the attack. Otherwise, the curve follows the
same pattern. Both curves meet at the same point when the
number of manipulated documents reaches 751. This is not
unexpected, as the total number of “Unclassified” documents
in the training set is 751.

More interestingly is perhaps what happens at a smaller
scale in Figure 4 where the number of manipulated documents
is typically less than 10. We observe that the rate of the False
Negatives are raising sharply, before it quickly stabilizes. The
sharp increase in this part can be explained by the insertion of
the sensitive words into the “Unclassified” training set. This
is in contrast to the gradual increase for higher number of
manipulated documents discussed above, where much of the
slow increase is attributed by the fact that the entire training
set is getting corrupted.

The small-scale effect of only a few documents manipulated
is shown at a higher resolution in Figure 5. To give a simple
overview, the Figure shows only results for the attack on the
high-performance domain. The solid red curve in Figure 5
is the same as the solid red curve in Figure 4 (except for
the differences in scale on the x-axis). We observe a shart
increase in the rate of False Negatives, which means that the
attack is quite efficient after being able to manipulate only a
few documents.

So far we have only considered a scenario with w = 100. As

expected, if the attacker inserts a higher number of sensitive
words in the manipulated documents, the impact of that
document on the training gets higher, and the attack gets
more effective. This is shown by the three curves labeled with
”Norm=T". ("Norm-T means that for these curves, we normal-
ized the word frequencies by the square root of the document
lengths, following the same procedure in our previous works
[10], [11] and [12].) However, the effect of adding more words
in each document is also decreasing with an increasing number
of inserted words. Indeed, using only a modest number of
words, e.g., w = 25, has also a quite significant impact on the
system.

The green curve shows that without normalization wrt docu-
ment lengths ("Norm=F"), the rate of false negatives is better.
On the other hand, document normalization might mitigate
the negative effect of the integrity attack. A further study on
the effects of various parts of training algorithms is left for
future work. The study should focus particularly on the pre-
processing steps to the training (e.g., normalization) and how
different steps impact on false negatives, attack mitigation, etc.

VII. CONCLUSION

Current research on cross-domain information exchange is
advocating to move away from the simple, course-grained
security classifications and clearances, into a more flexible,
fine-grained policy-driven security model where information
objects and end-users are characterized in terms of complex
meta-data. Both policy databases, guards and (semi-)automatic
tools - such as topic classifiers, policy databases or security
classifiers - are needed to realize this vision. The increased
automation and flexibility comes at a cost of a relaxation of
the Bell-La Padula model. The paper shows that this leads
to concrete vulnerabilities that might be easy to exploit -
especially in combination with the use of guards.

First, many of the required tools (e.g. a security classifier or
a policy database) will need to have some knownledge about
what information is more sensitive and what information is less
sensitive, and this knowledge is sensitive information in itself.
The “guessing attack™ is designed to obtain this knowledge,
by the use of the blocking functionality of the guards.

The drive towards more complexity, means a higher need
for tools that automatically learns from the environment. The
“learning” attack is an integrity attack on this learning process
that leads to information leakage at the guards of potentially
all possible information objects within the domain.

Both the “guessing attack” and the “learning attack™ are
demonstrated by proof-of-concept experiments. To be easy to
grasp and analyze they were shown in a simplified context,
e.g. in terms of a traditional system with two security levels.
Still, a more complex model (or at least part of it) will still
have topics that will form a lattice in terms of different levels
of security. Therefore, the issues with “write-down” will still
persist; and the BLP-based approach to analyse the threats
will still be valid. Thus, the fundamental security concerns
presented in this paper are not eliminated by moving into a
more complex model. The biggest difference is that in a more

complex policy-driven model, the guessing attack described
in this paper will not primarily reveal the content of a secret
classification list, but will instead pull sensitive information
directly out of the policy database.

The paper demonstrates that the relaxation of BLP will open
up for a new family of integrity attacks and threat vectors that
in the next step also can lead to compromised confidentiality.
This means that it is not longer sufficient to focus on confi-
dentiality: Integrity protection becomes even more important.
This is very worrisome, given that the combination of full
confidentiality and integrity protection (e.g. the combination
of both BLP and Biba) is known to construct information silos.
So, will the envisioned relaxation of the BLP model call for
so strict integrity protection, that the information exchange
becomes even more strict than the pure BLP model?

The work in this paper does not represent a show-stopper
for flexible cross-domain information exchange. However, it
points out issues that need to be considered in future work.

REFERENCES
[1]1 C. Cavas, Petraeus: US must share more info with allies. [Online],
http://www.defensenews.com/story.php?i=4623591, 2015. [Online].

Available: http://www.defensenews.com/story.php?i=4623591

[2] P-P. Meiler and M. Schmeing, Secure Service Oriented Architectures
(SOA) supporting NEC, (Technical Report TR-IST-061) NATO, 2009.

[3] U. Wolf, “Does NATO meet the challenge of the information era?” in
23rd International Workshop on Global Security, Berlin, Germany, 2006.

[4] N. Brown, Statement for the Record Before the 108th Congress Com-
mittee on Armed Services. US House of Representatives, 2003.

[5] K. Wrona and G. Hallingstad, “Development of high assurance guards
for nato,” in Proc. Military Communications and Information Systems
Conference (MCC), 2012.

[6] D. E. Bell, “Looking back at the bell-la padula model,” in Proc. 21st
Annual Computer Security Applications Conference (ACSAC), 2005.

[71 K. Wrona and S. Oudkerk, “Content-based protection and release
architecture for future nato networks,” in Proc. Military Communications
Conference, 2013, pp. 206-213.

[8] K. Wrona, S. Oudkerk, and G. Hallingstad, “Development of high as-
surance guards for nato,” in Proc. Military Communications Conference,
2010.

[9] K. Biba, “Integrity considerations for secure computer systems,” MITRE

Tecnical Report, MTR-3153, 1977.

P. E. Engelstad e al., “Automatic security classification with lasso,”

Proceedings of The 16th International Workshop on Information Security

Applications (WISA 2015), Jeju Island, Korea, August 20-22, 2015.

P. E. Engelstad, H. L. Hammer, A. Yazidi, and A. Bai, “Advanced

classification lists (dirty word lists) for automatic security classification,”

Proceedings of The 7th IEEE International Conference on Cyber-

enabled distributed computing and knowledge discovery (CyberC, 2015),

Cyber Security and Privacy (CSP), Xian, China, Sept 17-19, 2015.

, “Analysis of time-dependencies in automatic security classifica-

tion,” Proceedings of The 7th IEEE International Conference on Cyber-

enabled distributed computing and knowledge discovery (CyberC, 2015),

Cyber Security and Privacy (CSP), Xian, China, Sept 17-19, 2015.

Digitial nation security archive. “http://nsarchive.chadwyck.com/home.

do”. Accessed: 2015-03-26.

[10]

[11]

[12]

[13]

	1
	2

