

"(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other users, including reprinting/ republishing this material for advertising or promotional

purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any

copyrighted components of this work in other works."

IncludeOS: A minimal, resource efficient
unikernel for cloud services

Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E. Engelstad, Kyrre Begnum
Dept. of Computer Science

Oslo and Akershus University College of Applied Sciences

Oslo, Norway

alfred.bratterud@hioa.no

Abstract—The emergence of cloud computing as
a ubiquitous platform for elastically scaling services
has generated need and opportunity for new types
of operating systems. A service that needs to be
both elastic and resource efficient needs A) highly
specialized components, and B) to run with minimal
resource overhead. Classical general purpose operat-
ing systems designed for extensive hardware support
are by design far from meeting these requirements.

In this paper we present IncludeOS, a single
tasking library operating system for cloud services,
written from scratch in C++. Key features include:
extremely small disk- and memory footprint, effi-
cient asynchronous I/O, OS-library where only what
your service needs gets included, and only one device
driver by default (virtio).

As a test case a bootable disk image consisting
of a simple DNS server with OS included is shown
to require only 158 kb of disk space and to require
5-20% less CPU-time, depending on hardware, com-
pared to the same binary running on Linux.

Index Terms—unikernel, library OS, full virtual-
ization, virtio

I. INTRODUCTION

While cloud computing is rapidly becoming a

preferred platform for running services, a major

concern is the increased energy consumption of

cloud deployments worldwide. In reports by Green

Peace from 2010 and 2014, the combined energy

consumption of cloud computing surpassed coun-

tries such as Germany, Canada and Brazil [1], [2],

making it the 6th larges energy consumer in the

world. For many such deployments, much of the

computing power is allocated to running virtual

machines, which in turn are running general-

purpose operating systems.

Todays major operating systems were designed

to run a large number of programs in parallel,

supporting a huge spectrum of different hardware

devices ranging from Gigabit network interfaces

to sound cards and last century printers. As a

consequence, modern operating systems require a

lot of disk- and memory for features the service it

runs might not need. They also produce a steady

flow of CPU and I/O usage. For example, for each

Linux- or Windows VM, the hypervisor has to

emulate the timer interrupt, causing the virtual

machine to spend energy while doing nothing.

This might seem negligible at first, but for elastic

cloud services at scale, requiring a large number

of virtual machines, it amounts to a significant

resource waste and a serious limitation to the

capacity of hypervisors [3].

In this paper we present IncludeOS, a single-

tasking operating system designed for virtualized

environments. IncludeOS provides a novel way for

developers to build their C++-based code directly

into a virtual machine at compile-time. The key

contributions of IncludeOS are:

• Extreme resource efficiency and footprint
IncludeOS will use minimal resources com-

pared to standard operating systems. When

idle, it uses no CPU at all. Only the parts of

IncludeOS required for its single service gets

included, which reduces waste and results in

better network and memory performance.

• Efficient deployment process
Using a custom GCC-based toolchain, writ-

ing #include <os> will literally Include

the operating system. During link time the

build-system will extract whatever the service

needs from the pre-compiled OS-library and

form a single binary. A boot sector is attached

and it is all written to an image-file, resulting

in a bootable disk image.

2015 IEEE 7th International Conference on Cloud Computing Technology and Science

978-1-4673-9560-1/15 $31.00 © 2015 IEEE

DOI 10.1109/CloudCom.2015.89

250

• Virtualization platform independence
IncludeOS is written to run on virtualized x86

hardware. The resulting disk-image can be

uploaded directly to openStack via the API or

the web interface, or automatically formatted

to fit most virtualization environments, such

as VirtualBox.

The rest of the paper is organized as follows:

Related work is described in Section 2, and the

design and architecture of IncludeOS in section 3.

Section 4 shows the resource usage and memory

performance of IncludeOS compared to a stan-

dard operating system, and section 5 demonstrates

the performance of a DNS-service running on

IncludeOS, compared to the same binary running

on Linux. Our results are discussed in Section 6

with conclusion and future work.

II. RELATED WORK

The idea of a ”library operating system” dates

at least back to the exokernel from 1995 [4],

were the idea was that the applications in a multi

process OS each provide their own abstractions

over hardware. With the proliferation of virtu-

alization technologies the idea of single tasking

operating systems have regained relevance, and

there has been a surge of activity to find the best

adaptation for the context of cloud computing. A

good overview of is provided by Madhavapeddy

et. al. in [5], where they also present ”Mirage

OS”, and dub this and other recent single-tasking

OS’es unikernels. IncludeOS has many features

in common with Mirage; it is single tasking, it

draws only the required OS functionality from an

OS library, and links these parts together with a

service, to form a bootable virtual machine image,

also called an appliance.

Common for some of the existing solutions is

that they are designed for supporting a certain

high-level language, such as OCaml in the case of

Mirage, or Java in the case of OSv [6]. Other so-

lutions are limited to partial virtualization relying

on the host to provide abstractions, such as threads

and drivers, in the case of BSD rump kernels [7],

or directly sharing its kernel, such as with Docker

[8]. Others again are highly specialized, such as

ClickOS, which is designed specifically to run

”Click-based middleboxes”, i.e. the Click modular

router [9].

III. INCLUDEOS ARCHITECTURE

A. The Zero-overhead principle

For any service designed to scale by deploying

more virtual machines, it is crucial that each

such machine incurs minimal resource overhead.

In contrast to classical operating systems, which

include as many features as possible, IncludeOS

aims for true minimality in the sense that nothing

should be included by default that the service does

not explicitly need. This corresponds to the zero
overhead principle of e.g. C++; ”what you don’t

use you don’t pay for” [10, p. 10].

B. Statically linked libraries and GCC-toolchain

The mechanism used for extracting only what

is needed from the operating system, is the one

provided by default by modern linkers. Each part

of the OS is compiled into an object-file, such

as ip4.o, udp.o, pci_device.o etc., which

are then combined using ar to form a static

library os.a. When a program links with this

library, only what’s necessary will automatically

be extracted by the linker and end up in the final

binary. To facilitate this build process a custom

GCC-toolchain has been created.

IncludeOS does not have a program loader, so

there is no classical main-function, with param-

eters and return value. Instead, a Service-class

is provided, and the user is expected to implement

Service::start which will be called after the

OS has completed initialization.

C. Standard libraries

RedHat’s newlib has been chosen as C stan-

dard library implementation primarily because it

is small, and designed to rely on only a handful

of system calls, and because it compiles into

a statically linked library. This way the linker

will again naturally include only the parts of the

standard library actually used by either the OS

components or the service itself, leaving out the

rest.

The C++ standard library is larger and trickier.

Since the STL containers rely heavily on excep-

tions we have chosen not to use these inside the

kernel, but instead an exception-free variant by

Electronic Arts, EASTL [11]. While this imple-

mentation contains the most important parts of

STL such as string, streams, vector and map,

251

it is not complete so several features have been

implemented, and some are still in the pipeline.

Our version of this library will be available to the

service (i.e. userspace), but future work is likely

to include a port of a full-featured implementation

such as GCC’s libstdc++.

D. Virtio network driver

IncludeOS currently has only one device driver,

namely a VirtioNet Device driver. The key benefit

of virtio is that the hypervisor does not need

to emulate a certain physical device, but instead

can insert data directly into a queue in mem-

ory shared by the guest. While Virtio 1.0 has

recently emerged as an OASIS standard [12],

none of the hypervisors used during development

supported any of the new features. Therefore the

driver currently only implements Virtio Legacy
functionality, but development has been done with

future support for Virtio 1.0 in mind. Our current

implementation uses the PCI bus and has not

enabled MSI-x (Message signaled interrupts).

E. Modular, object oriented network stack

While existing network stacks were considered

to be ported into IncludeOS, other implementa-

tions are usually tightly entangled with the operat-

ing systems to which they belong, relying heavily

on local conceptions of drivers, threads, modules

etc. With the additional constraint of the no over-
head principle, it becomes necessary to heavily

modularize the stack so that services which, for

instance, only require a single interface with IPv4

UDP, doesn’t need to pay for the overhead of rout-

ing, TCP, IPv6 etc. Fig.1 shows the design of the

current implementation of the IncludeOS network

stack, as used in the DNS service described below.

While it is not yet complete, it will respond as

expected to ARP-requests, answer ping and, as

demonstrated below, fully support a functioning

DNS server. Key design decisions include:

1) Completely modularized design: The objects

shown in Fig.1 are again encapsulated into an

”Inet”-class, but this is just a thin wrapper. The

key idea is that many different such IP-stacks

can be formed, reusing some of the objects, and

replacing others, such as for instance a stack with

a different link-layer protocol, a dual IPv4-IPv6

stack, an IPv6-only stack etc.

2) Delegates as connections between modules:
We use ”The fastest possible C++ delegates”1 as

connections between modules. The delegates were

tested and found to yield identical performance to

plain C function pointers. Connecting two network

modules via delegates only, essentially means

that each object only knows about the function

signature of one relevant member function (i.e.

method) in the class it connects to. For example,

the UDP class only knows that it has a pointer to a

class called ”network layer”, on which it can call

the ”transmit” function to pass outbound packets

down stream. In the current implementation, each

module is compiled separately, and are instantiated

and connected to each other at run-time by the

Inet-object. This Inet class has full control over

this connection and could instead decide to reroute

the UDP output to any other object as needed.

Work is underway to completing TCP- and IPv6

support, and to make the stack completely stand-

alone, runnable in Linux user space.

F. Asynchronous I/O and deferred IRQ

Currently, all IRQ handlers in IncludeOS will

simply (atomically) update a counter, and defer

further handling to the main event-loop, whenever

there is time. This eliminates the need for a context

switch, while also eliminating concurrency-related

issues such as race conditions. The CPU is kept

busy by having all I/O be asynchronous, so that

no blocking occurs. This encourages a callback-

based programming model, such as is common in

modern Javascript applications.

IV. RESOURCE FOOTPRINT

A key benefit of the IncludeOS architecture is

that only what the service actually needs gets

included, thus minimizing the memory wasted

on unused features. As shown in Fig. 2 it turns

out that a fully virtualized Qemu-instance run-

ning a ”Hello world” service and the IncludeOS
operating system has a much smaller memory

footprint than a normal Java program running on

a PC (8.45 MB vs. 28.29 MB). In contrast, the

minimal memory footprint of an Ubuntu 14.04

virtual machine, which is the reference operating

1Originally described by Don Clugston at CodeMonkeys
(http://goo.gl/OW8g9P), with a C++11 update described on
Stack Exchange code review, http://goo.gl/6TR44w

252

Prot.Prot.
Prot.

Eth.Type
Eth.Type

Pong

Req.
Resp.

Ping

Eth.Type

Prot. oPro

1 n 2^16
1

n 2^16

IncludeOS IP-Stack

DelegateMethod
Object

Downstream - Transmit
Upstream

TX RX

Ethernet

IP6IP4

ARP

TCPICMPUDP

Driver - VirtioNet

Device (Virtio)

53

DNS

reply

Fig. 1. The design of the IncludeOS IP stack. Each box is an
instantiation of a class, connected at runtime by fast delegates.
The clean interface between modules makes makes it simple to
replace parts, test modules independently or even completely
rewire the IP stack during runtime. The classes have very few
or no external dependencies, except for the standard library.
Dashed lines represent modules yet to be completed.

system for OpenStack guest systems, is around

300 MB.

The small memory footprint also has the effect

of making IncludeOS exceptionally quick to boot

- a minimal IncludeOS vm boots in about 0.3

seconds.

A. Memory performance

It is well known that hardware supported virtu-

alization gives good overall performance. Never-

theless, the x86 architecture leaves much room for

the operating system to influence this, by choice of

CPU modes and memory protection schemes etc.

While any general purpose operating system has

to use hardware supported memory protection to

ensure integrity among processes, a single-tasking

operating system can chose to disable these fea-

tures. The current IncludeOS prototype runs in

32-bit protected mode, but with virtual memory

switched off. This eliminates the need for memory

address translation inside the guest, which will

reduce the complexity of memory access to a

certain degree.

The STREAM benchmark [13] was used to

give an rough idea of the memory performance

of IncludeOS, vs. Ubuntu, and to test the hy-

pothesis of whether disabling paging inside a

virtual machine would have an immediate effect

on memory performance. In order to ensure fair

timing on IncludeOS and Linux, the STREAM

source code was equipped with a custom time-

keeping function, based on the rdtsc-instruction,

replacing gettimeofday.

To account for differences in virtualization

technologies, the following experiments were

performed on a Dell PowerEdgeTMR815, with

4 x 12-core AMD OpteronTM6234 CPU’s at

2.4GHz and 128 GB of memory2, and a Fujitsu

PRIMERGYTMTX2540 M1, with one 6-core

Intel R© Xeon R© E5-2420 v2 CPU’s at 2.2GHz and

8 GB of memory3.

We experienced a high degree of variability

when running the memory bandwidth tests. As a

means to assure the consistency of the results, a

Welsh two sample t-test was carried out between

the first and the second half of the samples. The

data set was considered consistent only when

216 x 8GB DDR3 DIMM’s at 1600 MHz
31 x 8GB DDR3 DIMM at 1600 MHz

253

IncludeOS Ubuntu64 Ubuntu32 Native

77
00

77
50

78
00

78
50

STREAM, Intel Xeon

IncludeOS Ubuntu64 Ubuntu32 Native

65
00

65
50

66
00

66
50

67
00

STREAM, AMD Opteron

Fig. 3. Memory bandwidth as reported by the STREAM ”Triad” workload, for each of the test VM’s, running on hypervisors
with Intel Xeon and AMD opteron CPU’s, respectively.

IncludeOS C Python Node.js Java

Service including OS
Service excluding OS

Minimal memory usage

M
em

or
y

us
ag

e
in

 M
b

0
5

10
15

20
25

30

8.45

0.36

4.84

9.38

28.29

Fig. 2. Showing the minimal memory usage of an IncludeOS
virtual machine including a ”Hello world” program, the
necessary parts of the OS- and standard libraries, and a
custom bootloader, in addition to the Qemu process itself.
In comparison ”Hello world”-programs in various language
frameworks, excluding their operating systems, are shown.

this t-test yielded a p-value of more than 0.1.

In contrast, a t-test between the IncludeOS and

Ubuntu64 data sets gave a p-value of 2.2× 10−16

on both hypervisors.
Fig. 3 shows that IncludeOS has a small but

consistent advantage over the Ubuntu VM’s on

the Intel Xeon server, but a small disadvantage

of on the AMD server. However, on all servers,

the difference between IncludeOS and the Ubuntu

VM’s were less than 0.5%.

V. CASE: INCLUDEOS AS A DNS SERVER

In order to demonstrate the performance of

IncludeOS running a real service, a simple DNS-

service was written in such a way that the same

binary could be run on both IncludeOS and Linux.

The goal with this experiment is to demonstrate

the resource overhead caused by the operating

system, so it is not crucial to use feature-complete

DNS-server, as long as both platforms run the

same service. The service that was tested is es-

sentially a partial implementation of the DNS

protocol, allowing the service to answer real DNS-

queries from tools such as nslookup and dig,

but limited to A-records.

A. Experiment setup
Since IncludeOS does not have a program

loader or a classical shell, but rather is a part of the

254

program, the DNS-functionality was compiled into

an object file that could be linked with IncludeOS

and with a Linux executable respectively. On the

Linux side a standard UDP socket was used, lisen-

ing to port 53. All incoming data was then passed

to the pre-compiled DNS-class for processing. The

resulting reply was then passed back over the

socket. On IncludeOS a lambda was registered as

a callback for any packets entering UDP port 53.

The lambda would simply pass the data buffer on

to the pre-compiled DNS-service, and send the

reply directly down the stack via the transmit-

function in the UDP-class. The resulting disk

image is only 158 Kb, including the kernel with

interrupt handlers and event-loop, virtio-driver,

network stack and bootloader.

The DNS-service was made to populate its

registry with 10000 synthetic A-records, each cor-

responding to linearly increasing IP-addresses.

A program was written in C++ to run the

experiment in a controlled fashion. The program

would do the following:

1) Boot the DNS server as a subprocess, regis-

tering the PID.

2) When completely booted, record the contents

of /proc/<PID>/stat at the hypervisor

3) Run nslookup 1000 times, each with a

different query

4) Record the contents of

/proc/<PID>/stat again, and calculate

the difference in CPU-time.

5) Repeat the above for IncludeOS and Linux

every other time, 100 times each.

The experiment was run on the same hardware

as mentioned above, a 48-core AMD Opteron

server, and a newer 6-core Intel Xeon server.

B. Experiment results

As shown in fig.4 the DNS service spent signifi-

cantly less CPU time while running on IncludeOS,

compared to when running on Ubuntu. On AMD

IncludeOS uses 20% fewer CPU-ticks on average

total, and 70% fewer ticks on average spent inside

the guest CPU. On Intel IncludeOS uses 5.5%

fewer CPU-ticks on average total, and 66% fewer

ticks inside the guest.

In the figure, ”guest time” is the time spent

inside the virtual CPU, and ”host time” is the time

spent running the Qemu process, emulating the

virtual hardware. The main factor affecting time

spent in the host process, as opposed to inside the

guest, is the number of vm exits, i.e. execution of

protected instructions, which has to be forwarded

to the hypervisor or emulated. For instance the in-

structions out, used for most bus communication,

and hlt used to idle, are protected and will cause

VM exits.

C. Limitations in the experiment
The network stack in IncludeOS is far from

complete, and may not fully conform to RFC

standards. It has been implemented using a prag-

matic approach, providing only what needs to be

in place for the DNS service to function in prac-

tice. For this reason, there might be certain net-

working features that are required by the RFC’s,

which if implemented would cause slowdown to

IncludeOS. To the authors knowlege, no such

features would significantly change the results.

Additionally, IncludeOS does not yet implement

the standard socket API, leaving more work for

the application programmer, but also one less

abstraction. At most, using sockets would incur

a few extra cycles of processing time inside the

guest CPU.

VI. DISCUSSION

The main benefits of IncludeOS, compared to

traditional Linux VM’s are

• Extremely small disk- and memory footprint

• Overall performance increase, due to simplis-

tic design

• No host- or software dependencies, other than

virtual x86 hardware, and standard virtio for

networking.

• Very fast boot time - less than 0.3 seconds.

• No system call overhead; the OS and the

service are the same binary, and system calls

are simple function calls, without passing any

memory protection barriers

• No unnecessary overhead from timer inter-

rupts

• No I/O-waiting, but rather an event-based

asynchronous I/O-model

• No overhead of emulating the Programmable

Interrupt Timer (i.e. no periodic timer inter-

rupts and no preemptive scheduling)

• Reduced number of VM exits by keeping the

number of protected instructions very low.

255

IncludeOS Intel Ubuntu Intel IncludeOS AMD Ubuntu AMD

CPU−time host
CPU−time guest

CPU time, 1k DNS queries, aggregated
C

P
U

−
tim

e

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

CPU−time, 1k DNS queries, actual data

C
P

U
−

tim
e

IncludeOS Total, Intel
IncludeOS guest, Intel
IncludeOS Total, AMD
IncludeOS guest, AMD
Linux Total, Intel
Linux Guest, Intel
Linux Total, AMD
Linux Guest, AMD

Fig. 4. CPU-time required to execute 1000 DNS-requests, on IncludeOS and Ubuntu, running on Intel- and AMD systems.
IncludeOS and Ubuntu are running the same DNS sevice binary. On AMD, IncludeOS uses 20% fewer CPU-ticks on average
total, and 70% fewer ticks on average spent inside the guest CPU. On Intel IncludeOS uses 5.5% fewer CPU-ticks on average
total, and 66% fewer ticks inside the guest. Error bars represent the 95% confidence interval over 100 samples.

• A simple and highly modular zero-copy IP

stack

A. Deferring all interrupts

That being so, IncludeOS in its current form is

not fit for every task. In particular, deferring all

IRQ’s will cause the VM to seem unresponsive

(i.e. not answer ping) under workloads requiring

a lot of CPU activity pr. request (this is not

the case for DNS) For many services, a non-

preemptive kernel can work well, but services with

realtime requirements are likely to require time-

based interrupts. For DNS, and any other service

with only a small CPU-load pr. request, a simple

ping to the server would reply promptly, even

at high loads, without any preemption. For ser-

vices requiring several seconds of CPU-processing

for each request, ICMP-packets would simply be

queued until the virtio-queue was full, at which

point they would be dropped, giving the impres-

sion of an unresponsive service.

B. Performance across platforms

An initial hypothesis motivating the memory

performance experiment was that disabling paging

inside a cloud guest would give a performance

benefit. While we are confident in the data we

presented, we have also experimented with other

memory benchmarks, giving up to 8% differ-

ence between IncludeOS and Ubuntu, some times

in favor of IncludeOS, some times in favor of

Ubuntu. A large number of factors affect memory

performance, such as CPU cache, page size, data

alignment, the use of SSE etc. and especially on

the 48-core server with many numa nodes, we

found great variability in results. Further research

is required to fully account for the effect of virtual

memory inside guests. While it is possible that

this has played a role in our DNS experiment, our

conclusion so far is that the main reason for the

increased CPU-performance of IncludeOS is due

to the overall simplicity of the system.

C. CPU-time outside the guest

It might seem puzzling that an IncludeOS VM

spends more time than Ubuntu, ”outside the guest

CPU”. This means that the Qemu process has to

do a bit more work to run an IncludeOS VM,

as opposed to a Linux VM. IncludeOS however,

more than makes up for this, by spending 66-70%

less time inside the guest CPU - which is most

likely due to the fact that IncludeOS simply does

256

less work; there are no timer interrupts interrupt-

ing, and no scheduler that has to consider other

processes. It is harder to explain why IncludeOS

spends more time outside the guest, but one pos-

sibility is that the virtio driver is more optimized

in Linux, causing fewer vm exits and interacting

more efficiently with the host driver.

D. Concluding remarks

While many other projects are related,

IncludeOS is different: where systems such as

Mirage and OSv aims to provide a platform for

a high-level language-runtimes, which impose

significant resource penalties in themselves,

IncludeOS aims to represent absolute minimality.

As shown in Fig.2, ”Hello World” in Java,

without an operating system require more than 3

times the memory of IncludeOS with operating
system. Where systems such as Docker and

Rumkernels depend heavily on the hypervisor

kernel, IncludeOS will run on any virtualization

platform, depending only on x86 virtualization.

While IncludeOS is still in its infancy we be-

lieve the results so far to be very promising. The

small memory footprint will in itself allow more

VM’s to share a single server, and have significant

impact on the cost of migration, which in turn can

make much studied server consolidation schemes

more feasible in practice. As an added benefit, the

simplistic design of IncludeOS can also give an

overall reduction in CPU usage.

E. Future work

A near-future use case for IncludeOS will

be running high-performance web-applications,

written in an asynchronous programming style

similar to Node.js, but in a maximally efficient

and minimal-overhead C++ language framework.

These services will have no host kernel dependen-

cies, running directly on top of virtual hardware,

in any IaaS cloud.

Further goals include full IPv6 capabilities, file

systems, 64-bit and multi-core support. All these

will however be optional features; with IncludeOS

you shouldn’t pay for what you don’t use.

IncludeOS is open source software and avail-

able from www.includeos.org.

REFERENCES

[1] (2010) Make it green: Cloud computing and its
contribution to climate change. Green Peace. [Online].
Available: http://www.greenpeace.org/international/en/
publications/reports/make-it-green-cloud-computing/

[2] Y. W. Gary Cook, David Pomerantz and T. Dowdall,
“Clicking green: How companies are creating
the green internet,” Tech. Rep., 2014. [On-
line]. Available: http://www.greenpeace.org/international/
en/publications/reports/make-it-green-cloud-computing/

[3] A. Bratterud and H. Haugerud, “Maximizing hypervisor
scalability using minimal virtual machines,” in IEEE
CloudCom 2013, 2013, pp. 218–223.

[4] D. R. Engler, M. F. Kaashoek, and J. O’Toole,
Jr., “Exokernel: An operating system architecture for
application-level resource management,” in Proceedings
of the Fifteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’95. New York, NY, USA:
ACM, 1995, pp. 251–266. [Online]. Available: http:
//doi.acm.org/10.1145/224056.224076

[5] A. Madhavapeddy and D. J. Scott, “Unikernels: Rise of
the virtual library operating system,” Queue, vol. 11,
no. 11, pp. 30:30–30:44, Dec. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2557963.2566628

[6] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El,
D. Marti, and V. Zolotarov, “Osv—optimizing the
operating system for virtual machines,” in 2014
USENIX Annual Technical Conference (USENIX ATC
14). Philadelphia, PA: USENIX Association, Jun. 2014,
pp. 61–72. [Online]. Available: https://www.usenix.org/
conference/atc14/technical-sessions/presentation/kivity

[7] A. Kantee et al., Flexible operating system internals: The
design and implementation of the anykernel and rump
kernels. Aalto University, 2012. [Online]. Available:
http://urn.fi/URN:ISBN:978-952-60-4917-5

[8] D. Merkel, “Docker: Lightweight linux containers for
consistent development and deployment,” Linux J.,
vol. 2014, no. 239, Mar. 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2600239.2600241

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The click modular router,” ACM Trans.
Comput. Syst., vol. 18, no. 3, pp. 263–297, Aug. 2000.
[Online]. Available: http://doi.acm.org/10.1145/354871.
354874

[10] B. Stroustrup, The C++ Programming Language (4th.
edition). Addison-Wesley, 2013.

[11] P. Pedriana, “EASTL - Electronic Arts Standard
Template library,” Open Standards, Tech. Rep., Apr.
2007. [Online]. Available: http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2007/n2271.html

[12] R. Russell, M. S. Tsirkin, C. Huck, and P. Moll,
“Virtual I/O Device (VIRTIO) Version 1.0,” OASIS
Standard, OASIS Committee Specification 02, January
2015. [Online]. Available: http://docs.oasis-open.org/
virtio/virtio/v1.0/virtio-v1.0.html

[13] J. D. McCalpin, “Memory bandwidth and machine bal-
ance in current high performance computers,” IEEE
Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 19–25, Dec. 1995.

257

