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ABSTRACT: The permutation flow shop problem (PFSP) has been applied to many types of prob-
lems. The PFSP is an NP-hard permutation sequencing scheduling problem. A local search with 
simulated annealing scheme involving two phases is proposed in this investigation for solving PFSP. 
First, for lowering computation complexity, a simple insertion local search is applied to generate the 
solution of the PFSP. Second, two non-decreasing cooling temperature driven simulated annealing 
(SA) named steady SA and reheating SA are employed to maintain successive exploration or exploi-
tation in the solution space. The steady SA maintains the same temperature and keeps the same 
search behavior and thereby allows the neighbors of the worse solutions to be explored, consequently 
increasing the chances of finding better solutions, while the reheating SA increases the temperature 
and increases the exploration ability. The most important feature of the proposed method is its simple 
implementation and low computation time complexity. Experimental results are compared with other 
state-of-the-art algorithms and reveal that the proposed simple insertion with steady SA (SI-SSA) 
method is able to efficiently yield the best permutation schedules.  

KEYWORDS: Permutation flow shop problem (PFSP), scheduling, local search, simulated annealing 
(SA), simple insertion with steady simulated annealing (SI-SSA). 

                                                 

 Corresponding author: Ruey-Maw Chen 

E-mail: raymond@mail.ncut.edu.tw 

Tel.: +886 4 2392 4505; fax: +886 4 2391 7426. 

 
1 Introduction 

There are many classes of real-world scheduling problems, such as job-shop scheduling, open-shop 
scheduling, flow shop problem (FSP), task assignment scheduling, real-time scheduling, etc. Gener-
ally, scheduling problems involve the allocation of resources (such as machines or processors) to ex-
ecute a set of activities (such as processes or tasks) satisfying given constraints and optimizing given 
criteria. Processes or tasks usually have time constraints, such as ready time, execution time, prece-
dence, and deadline. Scheduling algorithms must determine a schedule for a set of processes that sat-
isfies the prerequisite constraints; FSP is one of these and is currently the focus of much research 
since it can be used for finding near optimal solutions to many real-world optimization problems. 
FSP can be defined as the problem of assigning a set of independent jobs to run on a set of machines. 
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Each job requires a given fixed, non-negative processing time on every machine. In this study, we fo-
cus on the permutation flow shop problem (PFSP), a special case of FSP, where the processing order 
of jobs always is the same on every machine. That is, all jobs follow the same machine order in the 
shop starting from the first machine and finishing on the last machine. PFSP applications can be 
found in a large number of real world environments, including manufacturing, maintenance, and 
warehousing operations, as well as in healthcare. Flowshop scheduling is common in cyclic schedul-
ing of a no-wait production line, where multiple parts enter and leave the line during a cycle. For ex-
ample, a multi-degree cyclic scheduling of a permutation flowshop with two robots was investigated 
by Che and Chu [1]. MPEG-4 macroblock decoding is an application of a permutation flowshop 
problem for synchronization in a co-processor system while implementing tasks with low turnaround 
time [2]. Maintenance and production are two functions in various industries which act on the same 
resources. In another study [3], a complex joint production and maintenance scheduling problem in 
permutation flowshop was also investigated. The PFSP has been confirmed to be NP-hard (Taillard) 
[4]. Its solution search space comprises n! permutations. Hence, finding the optimal solution to PFSP 
problems with exact algorithms is not feasible in reasonable time. Instead, many approximation algo-
rithms and heuristics have been studied to reveal near optimal solution with less effort, such as the 
slope-index-based heuristic [5], the CDS heuristic [6], the NEH algorithm [7], etc. However, all the-
se schemes require a substantial amount of computational effort to find solutions that usually are far 
from optimal. To efficiently obtain high quality solutions, many metaheuristics have been introduced 
for solving PFSP, in particular genetic algorithms (GA) [8,9,10], simulated annealing (SA) [11], tabu 
search (TS) [12], ant colony optimization (ACO) [13,14], artificial bee colony (ABC) [15], particle 
swarm optimization (PSO) [16-17], etc. Furthermore, metaheuristics are often combined with local 
search, for example GA mutation [18], ACO with pheromone mutation [19], construction phase in 
iterated greedy (IG) heuristic [20], and so forth. Other approaches include linear programming re-
laxation to handle specific job-lists in a bidirectional flow-shop [21] and priority rules embedded in 
the heuristics for solving the sequence dependent setup time flow-shop problem [22]. 
Many of these meta-heuristics provide quite acceptable and close to optimal solutions. However, they 
are often either very complex to implement or suffer from excessive computational complexity. In 
some cases, the complexity of the algorithms means that independent implementations are unlikely to 
capture the intended effectiveness and efficiency. Moreover, other approaches exploit PFSP-specific 
features such that the schemes do not generalize to other flowshop variants. Consequently, in 2007 
Ruiz and Stützle proposed the iterated greedy (IG) [20] to provide a simple iterated greedy local 
search based on the NEHT heuristic [7] to simplify implementation and reduce computational com-
plexity. Still, destruction and construction phases are still needed for each IG iteration. During the 
destruction phase, d randomly chosen jobs are removed from the permutation; d jobs are then insert-
ed back to finish a complete permutation based on the NEHT heuristic during the construction phase. 
However, the complexity of NEHT is still O(n

2
m) which is time consuming for large instances. After 

IG phases, a simulated annealing-like acceptance criterion with a constant temperature based on Os-
man & Potts (1989) is applied. The constant temperature follows the suggestion of Osman & Potts 
[23] and depends on the particular instances in the OR-Library to be solved. 

This study proposes a simple insertion with the steady simulated annealing (SI-SSA) scheme to re-
duce computational complexity and simplify implementation; as such, this method still generalizes to 
other flow-shop variants. SI-SSA includes two steps, a simple insertion local search and SA with a 
novel temperature cooling schedule. The insertion local search is easy to integrate into trajectory me-
ta-heuristics, such as simulated annealing, tabu search, and others. Intrinsically, simulated annealing 
is a memory-less operation. Additionally, the acceptance criterion of the hill climbing in simulated 
annealing is modified by adjusting the temperature schedule to reduce the turbulence of the ac-
ceptance probability for PFSP based on energy deviation instead of energy difference. Furthermore, a 
threshold for excluding undesired solutions is also incorporated. The acceptance criterion is the key 
factor of simulated annealing, which enables it to escape from local minima. As for the cooling in the 
simulated annealing approach, two non-decreasing temperature control mechanisms are employed to 
provide an opportunity for continuous exploration or exploitation; they are named reheating SA and 
steady SA, respectively. The reheating SA increases exploration search ability and the steady SA en-
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hances exploitation search ability. Analysis of the search behavior corresponding to these two cool-
ing schemes is also provided. 

This article is organized as follows: Section 2 introduces the problem definition. Section 3 intro-
duces simulated annealing. Section 4 presents the details of the SI-SSA scheme for solving PFSP. In 
Section 5, the effectiveness and efficiency of SI-SSA is demonstrated and the results are analyzed 
and compared to those of other state-of-the-art schemes. Finally, section 6 makes the conclusions. 

2 Problem definition 

A well-known scheduling problem with a background in industrial manufacture is the flow shop 
problem (FSP) [4]. In this study, the permutation flow shop problem (PFSP), in which the jobs’ se-
quence on every machine is the same, is addressed. The PFSP can be defined as follows: 
 There are n independent jobs (N = {1,...,n}) and m independent machines (M ={1,...,m}) in the 

production system. All n jobs have to be run on m machines in the same order. Assuming that the 
set-up times of all jobs are included in the jobs’ processing time. 

 Each job j (jN) must be processed on m machines, i.e., each job consists of m sub-jobs, oj,k 
(k=1,…, m). Meanwhile, each job j requires different processing times pj,i on different machines i 
(iM). Moreover, any executing job is not preemptive. 

 PFSP requires all jobs to be processed with the same processing order π= {π(1),…, π(n)} from the 
first machine to the last machine. The permutation π presents the solution to the PFSP and π(r) in-
dicates the r

th
 order processing job. 

 Obtaining the minimum makespan is the commonly defined objective of the PFSP. The minimiza-
tion of the makespan is highly affected by the permutation π. 

For example, given 3 jobs, there are 3! possible permutations; the objective is to find the permutation 
π that yields the shortest makespan. 

3 The Simulated Annealing Algorithm 

The well-known simulated annealing (SA) trajectory meta-heuristic was first introduced by Kirk-
patrick et al. [24]. An important characteristic of SA is to provide the capability of escaping from lo-
cal optima. Restated, allowing a neighborhood moving step with a worse solution quality was 
designed. Movements to worse neighborhoods offer a mechanism of diversification search through 
hill climbing. However, the worse movement in SA is determined by an acceptance criterion which is 
relevant to a probability called acceptance probability. A key component in SA is its cooling schedul-
ing, which controls the acceptance probability. Typically, the temperature decreases over time, and 
thus the acceptance probability decreases over time. Restated, higher acceptance probability in the 
early stage and lower acceptance probability in the latter stage have been implemented in SA. The ra-
tionale of this design is to provide the diversification search ability at the beginning and to give in-
tensification search ability in later stages. 

The conventional SA iterates until a termination condition is met. At iteration t, four steps are 
conducted: 
 Neighborhood search: a candidate solution St’ from the neighborhoods of St is generated. There are 

many local search schemes suggested to generate the candidate solution St’. 
 Energy evaluation: the energy related to the solution St’ is evaluated; wherein E(St’) is denoted as 

an energy function, and the variance of energy ΔE is also obtained. 
 Acceptance criterion: the acceptance criterion is applied; if the variance of energy ΔE is less than 

zero, the St would be replaced by St’. Otherwise, St’ with worse quality can be accepted with an 
acceptance probability P. The acceptance probability P(St,St’,Tt) is defined in Equation (1) below. 

  
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Here Tt is the cooling temperature of the t
th

 iteration; it and the acceptance probability decrease 
over time A worse solution is accepted when a randomly generated probability r is smaller than 
the determined acceptance probability (r<P). 

 Cooling strategies: the temperature decrement rule follows an exponential cooling scheme  with 
cooling rate  as listed in Equation (2): 

 
1   , [0,1]t tT T       (2) 

4 Simple insertion with steady simulated annealing (SI-SSA) 

This section outlines the details of the proposed SI-SSA approach. The procedures of SI-SSA are 
provided first. Then, all steps in the procedures are presented and described in the following para-
graphs. 

4.1 The simple insertion with steady simulated annealing algorithm (SI-SSA) 

The pseudo-code of the proposed simple insertion with steady simulated annealing (SI-SSA) for 
PFSP is summarized below in Figure 1. 

4.2 Insertion local search 

Many local search strategies for PFSP have been studied and combined with metaheuristics, especial-
ly for trajectory metaheuristics. The local search is one way to implement the neighborhood search 
and the suggested insertion local search is easy to implement. Suppose an existing job processing or-
der is denoted by the permutation π. The insertion operation removes the job at the i

th
 position in π 

and then inserts it in the j
th

 position, where i≠j, and i, j are randomly generated [25]. 
Once a permutation π is obtained as a PFSP solution, in the case of i<j, the π={π(1),…, π(i-1), π(i), 
π(i+1),…, π(j-1), π(j), π(j+1),…, π(n)} is the permutation before insertion local search is applied, the 
new permutation π’={π(1),…, π(i-1), π(i+1),…, π(j-1), π(j), π(i), π(j+1),…, π(n)} can be obtained af-
ter applying insertion. And in the case of i>j, the permutation before insertion is π={π(1),…, π(j-1), 
π(j), π(j+1),…, π(i-1), π(i), π(i+1),…, π(n)}; after insertion, the new permutation is π’={π(1),…, π(j-
1), π(i), π(j), π(j+1),…, π(i-1), π(i+1),…, π(n)}. Figure 2 shows an example of a permutation π before 
insertion local search is applied and two permutations π’ after insertion local search is performed 
from π. The operation of this simple insertion local search is listed in step 1.1 of Figure 1. The inser-
tion operation schematic diagram is shown as follows in Figure 2.  

4.3 Non-decreasing temperature control 

In several modified adaptive simulated annealing strategies, the temperature is not always decreasing, 
but controlled by certain schemes, such as in [19] which uses a constant temperature. Some studies 
also employ reheating such as Azizi and Zolfaghari [26] in which the temperature was not associated 
with the iteration. In this study, two non-decreasing temperature controlling schemes for stage t+1 are 
applied; the first temperature control scheme applied in SA is a heating temperature control defined 
in Equation (3). This scheme is called reheating SA herein as indicated in the right part of the step 
1.5 in the Figure 1. 
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The rationale of this control is inspired by [26]. In [26], a reheating mechanism was proposed, but the 
temperature control was not associated with the iteration. This simple reheating mechanism associat-
ed with iteration to increase the search ability may be preferable for the following reasons. The ac-
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ceptance probability is increased due to heating and thus the exploration area is expanded, i.e., ex-
panding the search pace. Notably, too wide a search range resembles a random walk; therefore, a 
small  value is suggested for preventing a fully random search. Restated, movement toward too 
worse a solution is prohibited. The other temperature controlling scheme used in SA is a named 
steady temperature control (see Equation (4) below) and called steady SA in this work as indicated in 
the left part of the step 1.5 in the Figure 1. 

 
1

't t t
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T ,otherwise

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 (4) 

The intent of this design is that once a candidate solution is not accepted (going uphill), that is, St < 
St’, then the temperature is maintained and hence the P is kept at a higher value. Restated, subsequent 
exploration ability is preserved for finding a lower makespan solution from high makespan solution 
neighbors. Otherwise, the temperature is decreased accordingly for further exploitation. These two 
non-decreasing temperature control mechanisms focus on facilitating enough exploration ability 
during the solution search.  The acceptance probability used in this study is based on relative energy 
change rel_E={E(St’)-E(St)}/E(St) (Chen & Hsieh) [27] as indicated in Equation (5). 

   _
' trel ΔE /T

t t tP S ,S ,T e


  (5) 

5 Experimental results 

To evaluate the effectiveness of the proposed simple insertion simulated annealing algorithm; the fol-
lowing simulation instances from the Taillard benchmark [28] were tested. Taillard generated a set of 
FSP scheduling problems with different combinations of jobs (n) and machines (m), n{20, 50, 100, 
200, 500} and m{5, 10, 20}, and there are 10 instances for each problem size. The processing time 
of each job is distributed uniformly in the interval [1, 99]. This test suite is available from 
http://mistic.heig-vd.ch/taillard/ and http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop2.txt. 
Before comparing the performance of the proposed SI-SSA with other schemes, the efficiency of the 
proposed non-decreasing temperature control mechanisms (steady SA and reheating SA) were first 
evaluated. The comparison criterion is computed as the relative percentage deviation (RPD) as fol-
lows. 

 100%sol sol

sol

Min Best
RPD

Best


   (6) 

where Minsol represents the shortest makespan of the best solution obtained from the best trial of a 
specific algorithm and Bestsol is the makespan of the optimal solution or known upper bound provid-
ed by Taillard’s instances. To be more objective, the average relative percentage deviation (ARPD) is 
applied as defined in (Ruiz & Stützle 2007) [20]. 

 
1

( 100%)
T

sol sol
i

i sol

Min Best
ARPD T

Best


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where sol
i

Min  is the makespan of a solution given by any of the T repetitions of the compared al-
gorithms. The parameter settings of this simulation are: T0=1,  =0.99 and =0.001. There are two 
comparison bases commonly used, namely the Taillard  benchmark upper bound data published in 
2004 and 2006. The efficiency comparison between the proposed steady and reheating SAs with the 
conventional SA is based on both benchmark data as displayed in Tables 1 and 2. Experiments were 
on the basis of 100000 solutions generated. Five test runs (T=5) were conducted to calculate ARPD 
for fair comparison as defined in [20]. 

According to the simulation results, the suggested SI-SSA with steady SA yielded the smallest 
RPDs (0.531% and 0.836%) compared to the other two temperature controlling schemes. Restated, 
the performance of the proposed SI-SSA with steady SA is better than the other two SAs. Moreover, 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop2.txt
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the makespan and temperature evolution of these three SAs (conventional SA, reheating SA and 
steady SA) are displayed in Figure 3; the tests were conducted on tai20_20_1 (20/20 case instance 1) 
with 100,000 iterations, Figure 3 only shows temperature changes for the first 35,500 iterations. 
The conventional SA temperature quickly drops to 0, and therefore the acceptance probability of es-
caping from the local optimal for searching the neighborhoods is zero, that is, it quickly becomes un-
able to search the neighborhood to find better solutions. Although the reheating SA does not quickly 
cool; the temperature increases which cause the acceptance probability of escaping from local mini-
mum remain high, and this does bias the search behavior toward a wider range. On the other hand, 
the steady SA maintains the same temperature, keeping the same search behavior and allowing the 
exploration of the neighbors with worse solutions, and therefore increases the possibility of finding 
better solutions. Figure 3 displays the simulation results on Tai_20_20_1 (20/20 case, instance 1),  
Figure 3(a)-1 shows that the conventional SA algorithm is trapped on local optimal 
(makespan=2349) since acceptance probability is almost zero all the time due to the temperature 
quickly dropping to zero; Figure 3(b)-1 indicates that the reheating SA algorithm randomly walks 
about the solution space due to its high acceptance probability owing to the increased temperature, 
hence it is unable to find good solutions (makespan=2370). Nevertheless, Figure 3(c)-1 demonstrates 
that the steady SA algorithm provides an adequate exploration search ability in the neighborhood 
since the acceptance probability is maintained so as to have high opportunity to obtain the best solu-
tion (makespan=2318). 
Therefore, the corresponding search behavior of the temperature changing process is compliant with 
the scheduling results of Tables 1 and 2.  

To compare with the top state-of-the-art algorithms listed in [20] (Ruiz & Stützle), the termination 
condition was based on computation time. The comparison was made using Taillard’s 2004 bench-
mark. Each problem instance was repeated for five independent trials (T=5) rather than using the best 
trial; the average of the five trials was chosen and all the 10 instances for every problem case (n/m; n 
jobs/m machines) were calculated. The termination condition (on the basis of computation time) in 
[20] was “n×(m/2)×60”, and the algorithm was running on an Athlon XP 1600+ (1400 MHz) system. 
The proposed scheme was running on a core i7 (3.4 GHz) PC. Therefore, the computation time of 
this work was “n×(m/2)×60×(1.4/3.4)”. The simulation results are listed in Table 3. The SI-SSA has 
the smallest average ARPD 0.27%, it ranks 1

st
 compared to the other algorithms. Moreover, the test 

on the latest upper bound in Taillard’s 2006 benchmark was also conducted and the simulation re-
sults are displayed in Table 4. The yielded ARPDs by the SI-SSA are less than 1.19 % (50/20 case in 
Table 3) and 1.74% (50/20 case in Table 4) for Taillard 2004 and 2006 benchmark upper bounds, re-
spectively. Simulation results indicate that the performance of the proposed SI-SSA is excellent and 
competitive on the basis of its generated solution quality.  

Since the upper bound changes over time, the percentage increases of the makespan above the 
minimal lower bound (Incr_lb%) are also provided in addition to the average deviation (ARPD). As 
displayed in Table 5, the average Incr_lb% is only 4.98%. Furthermore, the stability of the proposed 
scheme was also inspected. The ARPD intervals (ARPD=Max ARPD - Min ARPD) are shown in 
Table 5.  The maximum ARPD interval is 0.57%. Hence, the SI-SSA scheme is considered stable. 

6 Conclusions 

A strategy named simple insertion simulated annealing with steady SA (SI-SSA) is suggested.  In 
SISA, a simple insertion local search is applied to generate the solution of the PFSP to lower compu-
tation complexity. Meanwhile, two non-decreasing cooling temperature driven simulated annealing 
(SA) named steady SA and reheating SA are employed to maintain successive exploration or exploi-
tation in the solution space to increase the chance of finding better solutions. The advantages of the 
proposed SI-SSA algorithm can be summarized as follows. 
 This scheme is easy to implement since only a simple insertion local search is applied. Simple in-

sertion local search used for constructing PFSP solutions reduces the time-complexity to O(n) and 
only one parameter ( ) is required for simulated annealing. 
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 The steady SA maintains a constant temperature, keeping the same search behavior and thus al-
lows the exploration of the neighbors with worse solutions, thereby increasing the chances of find-
ing better solutions so as to escape from local minima. 

 The SI-SSA scheme outperforms many complex meta-heuristics, the averaged ARPD is only 
0.27%, ranking it 1

st
 as shown in Table 1.  

 The maximum ARPDs are less than 1.19% and 1.74% (for the 50/20 case) on the basis of Tail-
lard’s 2004 and the latest 2006 upper bounds as shown in Tables 1 and 2.  

 The maximum RPD interval (RPD) is only 0.57% as indicated in Table 3, indicating that SI-SSA 
is a stable algorithm for solving PFSP class problems. Meanwhile, the average Incr_lb% is only 
4.98%. 
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Figure captions 

Figure 1. The pseudo-code of the proposed simple insertion with steady simulated annealing (SI-
SSA) 
Figure 2. Insertion operations for the cases of: (a) i<j and (b) i>j 

Figure 3. Makespan and SA temperature evolutions for the cases of: (a) conventional SA; (b) reheat-

ing SA; and (c) steady SA 

Table captions 

Table 1. Comparison between steady SA, reheating SA and conventional SA–ARPD (Taillard 2004) 

Table 2. Comparison between steady SA, reheating SA and conventional SA-ARPD (Taillard 2006) 
Table 3. Comparison of different algorithms in [20] on the basis of Taillard 2004 upper bound data-
ARPD(%) 
Table 4. Simulation results on the basis of Taillard 2006 upper bound data-ARPD(%) 

Table 5. RPD(%) interval and Incr_lb on the basis of Taillard 2006 data 
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Figures 

1. Loop 

1.1.  Simple insertion local search determines the neighbor of St as St’ at iteration t. 

1.2. Calculate the energy E(St’) of St’ 

1.3. Calculate ΔE = E(St’)- E(St), rel_ΔE = ΔE /E(St) 

1.4. if ΔE   0  

   then St :=St’ , 

else if a random variable p,     _ /
| 0,1trel E T

p e p U
 

   then St :=St’ 

1.5. steady temperature or  reheating temperature 

   controlling scheme   controlling scheme 

   if St = St’       if St = St’ 
    

1t tT T           
1t tT T     

   else         else 
    

1t tT T          
1 (1 )t tT T     

1.6. t:=t+1 

2. Until the End condition is satisfied, return St 

Figure 1. The pseudo-code of the proposed simple insertion with steady simulated annealing (SI-SSA) 
 

 

 
(a) 

 
(b) 

Figure 2. Insertion operations for the cases of: (a) i<j and (b) i>j. 
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(a) SA 

 

 
(b) reheating SA 
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 (c) steady SA 

Figure 3. Makespan and SA temperature evolutions for the cases of: (a) conventional SA; (b) reheating SA; and (c) steady 

SA. 

Tables 

Table 1. Comparison between steady SA, reheating SA and conventional SA –ARPD (Taillard 2004) 

n/m SA reheating SA steady SA 

20/5 0.095 0.202 0.089 

20/10 0.601 0.459 0.247 

20/20 0.548 0.660 0.159 

50/5 0.038 0.021 0.025 

50/10 0.432 1.853 0.376 

50/20 1.511 4.411 1.453 

100/5 -0.016 -0.011 -0.014 

100/10 0.433 0.479 0.414 

100/20 1.110 2.069 1.041 

200/10 0.296 0.370 0.349 

200/20 1.138 2.785 1.122 

500/20 1.029 1.531 1.108 

Average 0.601 1.236 0.531 

 
 
 

Table 2. Comparison between steady SA, reheating SA and conventional SA-ARPD (Taillard 2006) 

n/m SA reheating SA steady SA 
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20/5 0.144 0.251 0.138 

20/10 0.608 0.467 0.255 

20/20 0.553 0.664 0.164 

50/5 0.038 0.021 0.025 

50/10 0.914 2.343 0.858 

50/20 2.088 5.004 2.030 

100/5 0.030 0.034 0.032 

100/10 0.479 0.525 0.460 

100/20 2.147 3.115 2.077 

200/10 0.321 0.395 0.374 

200/20 2.192 3.856 2.176 

500/20 1.362 1.865 1.441 

Average 0.906 1.545 0.836 

 

 

 

 

 

 

 

 

 

Table 3. Comparison of different algorithms in [20] on the basis of Taillard 2004 upper bound data-ARPD(%). 

n / m 
This 

work 

IG_ 

RSLS 

HGA_ 

RMA 

IG_ 

RS 
PACO 

M_M 

MAS 
SEASA* ILS 

GA_ 

RMA 

GA_ 

REEV 

GA_ 

AA 

SA_ 

OP 

GA_ 

MIT 
NEHT 

GA_ 

CHEN 
SPRIT 

20/5 0.09 0.04 0.04 0.04 0.21 0.04 0.24 0.49 0.26 0.62 0.94 1.09 0.8 3.35 4.15 4.33 

20/10 0.18 0.06 0.13 0.25 0.37 0.15 0.88 0.59 0.73 2.04 1.54 2.63 2.14 5.02 5.18 6.07 

20/20 0.17 0.03 0.09 0.21 0.24 0.06 0.87 0.36 0.43 1.32 1.43 2.38 1.75 3.73 4.26 4.44 

50/5 0.02 0.00 0.02 0.04 0.01 0.03 0.19 0.2 0.07 0.21 0.36 0.52 0.3 0.84 2.03 2.19 

50/10 0.13 0.56 0.72 1.06 0.85 1.4 0.76 1.48 1.71 2.06 3.72 3.51 3.55 5.12 6.54 6.04 

50/20 1.19 0.94 1.28 1.82 1.59 2.18 2.19 2.2 2.74 3.56 4.69 4.52 5.09 6.26 7.74 7.63 

100/5 0.00 0.01 0.02 0.05 0.03 0.04 0.09 0.18 0.07 0.17 0.32 0.3 0.27 0.46 1.35 1.06 

100/10 0.15 0.2 0.29 0.39 0.27 0.47 0.65 0.68 0.62 0.85 1.72 1.48 1.63 2.13 3.8 3.01 

100/20 0.34 1.3 1.66 2.04 2.09 2.59 1.52 2.55 2.75 3.41 4.91 4.63 4.87 5.23 8.15 6.74 

200/10 0.14 0.12 0.2 0.34 0.27 0.23 0.66 0.56 0.43 0.55 1.27 1.01 1.14 1.43 2.76 2.07 

200/20 0.36 1.26 1.48 1.99 1.92 2.26 1.43 2.24 2.31 2.84 4.21 3.81 4.18 4.41 7.24 4.97 

500/20 0.47 0.78 0.96 1.13 1.09 1.15 1.81 1.25 1.4 1.66 2.23 2.52 3.34 2.24 4.72 12.58 

Average 0.27 0.44 0.574 0.78 0.75 0.88 0.94 1.06 1.13 1.61 2.28 2.37 2.42 3.35 4.83 5.09 

*  SEASA (Chen et al. 2014) 

Table 4. Simulation results on the basis of Taillard 2006 upper bound data-ARPD(%) 

n / m 20/5 20/10 20/20 50/5 50/10 50/20 100/5 100/10 100/20 200/10 200/20 500/20 Avg 

ARPD 0.13 0.18 0.16 0.02 0.59 1.74 0.02 0.21 1.38 0.16 1.41 0.81 0.57 

 

Table 5. RPD(%) interval and Incr_lb on the basis of Taillard 2006 data 

m/m 
Min 

RPD 
ARPD 

Max 

RPD 
RPD Incr_lb% 
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20/5 0.08  0.13  0.14  0.06  2.56  

20/10 0.05  0.18  0.37  0.32  9.58  

20/20 0.08  0.16  0.27  0.20  20.76  

50/5 0.00  0.02  0.04  0.04  0.83  

50/10 0.50  0.59  0.67  0.17  2.76  

50/20 1.44  1.74  2.01  0.57  10.79  

100/5 0.02  0.02  0.03  0.00  1.10  

100/10 0.12  0.21  0.33  0.21  1.01  

100/20 1.22  1.38  1.56  0.34  5.34  

200/10 0.08  0.16  0.24  0.16  0.83  

200/20 1.27  1.41  1.50  0.24  3.00  

500/20 0.75  0.81  0.87  0.12  1.23  

Average 0.47  0.57  0.67  0.20  4.98  
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