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ABSTRACT: The permutation flow shop problem (PFSP) has been applied to many types of prob-
lems. The PFSP is an NP-hard permutation sequencing scheduling problem. A local search with
simulated annealing scheme involving two phases is proposed in this investigation for solving PFSP.
First, for lowering computation complexity, a simple insertion local search is applied to generate the
solution of the PFSP. Second, two non-decreasing cooling temperature driven simulated annealing
(SA) named steady SA and reheating SA are employed to maintain successive exploration or exploi-
tation in the solution space. The steady SA maintains the same temperature and keeps the same
search behavior and thereby allows the neighbors of the worse solutions to be explored, consequently
increasing the chances of finding better solutions, while the reheating SA increases the temperature
and increases the exploration ability. The most important feature of the proposed method is its simple
implementation and low computation time complexity. Experimental results are compared with other
state-of-the-art algorithms and reveal that the proposed simple insertion with steady SA (SI-SSA)
method is able to efficiently yield the best permutation schedules.

KEYWORDS: Permutation flow shop problem (PFSP), scheduling, local search, simulated annealing
(SA), simple insertion with steady simulated annealing (SI-SSA).

1 Introduction

There are many classes of real-world scheduling problems, such as job-shop scheduling, open-shop
scheduling, flow shop problem (FSP), task assignment scheduling, real-time scheduling, etc. Gener-
ally, scheduling problems involve the allocation of resources (such as machines or processors) to ex-
ecute a set of activities (such as processes or tasks) satisfying given constraints and optimizing given
criteria. Processes or tasks usually have time constraints, such as ready time, execution time, prece-
dence, and deadline. Scheduling algorithms must determine a schedule for a set of processes that sat-
isfies the prerequisite constraints; FSP is one of these and is currently the focus of much research
since it can be used for finding near optimal solutions to many real-world optimization problems.
FSP can be defined as the problem of assigning a set of independent jobs to run on a set of machines.
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Each job requires a given fixed, non-negative processing time on every machine. In this study, we fo-
cus on the permutation flow shop problem (PFSP), a special case of FSP, where the processing order
of jobs always is the same on every machine. That is, all jobs follow the same machine order in the
shop starting from the first machine and finishing on the last machine. PFSP applications can be
found in a large number of real world environments, including manufacturing, maintenance, and
warehousing operations, as well as in healthcare. Flowshop scheduling is common in cyclic schedul-
ing of a no-wait production line, where multiple parts enter and leave the line during a cycle. For ex-
ample, a multi-degree cyclic scheduling of a permutation flowshop with two robots was investigated
by Che and Chu [1]. MPEG-4 macroblock decoding is an application of a permutation flowshop
problem for synchronization in a co-processor system while implementing tasks with low turnaround
time [2]. Maintenance and production are two functions in various industries which act on the same
resources. In another study [3], a complex joint production and maintenance scheduling problem in
permutation flowshop was also investigated. The PFSP has been confirmed to be NP-hard (Taillard)
[4]. Its solution search space comprises n! permutations. Hence, finding the optimal solution to PFSP
problems with exact algorithms is not feasible in reasonable time. Instead, many approximation algo-
rithms and heuristics have been studied to reveal near optimal solution with less effort, such as the
slope-index-based heuristic [5], the CDS heuristic [6], the NEH algorithm [7], etc. However, all the-
se schemes require a substantial amount of computational effort to find solutions that usually are far
from optimal. To efficiently obtain high quality solutions, many metaheuristics have been introduced
for solving PFSP, in particular genetic algorithms (GA) [8,9,10], simulated annealing (SA) [11], tabu
search (TS) [12], ant colony optimization (ACO) [13,14], artificial bee colony (ABC) [15], particle
swarm optimization (PSO)-[16-17], etc. Furthermore, metaheuristics are often combined with local
search, for example GA mutation [18], ACO with pheromone mutation [19], construction phase in
iterated greedy (IG) heuristic [20], and so forth. Other approaches include linear programming re-
laxation to handle specific job-lists in a bidirectional flow-shop [21] and priority rules embedded in
the heuristics for solving the sequence dependent setup time flow-shop problem [22].

Many of these meta-heuristics provide quite acceptable and close to optimal solutions. However, they
are often either very complex to implement or suffer from excessive computational complexity. In
some cases, the complexity of the algorithms means that independent implementations are unlikely to
capture the intended effectiveness and efficiency. Moreover, other approaches exploit PFSP-specific
features such that the schemes do not generalize to other flowshop variants. Consequently, in 2007
Ruiz and Stiitzle proposed the iterated greedy (IG) [20] to provide a simple iterated greedy local
search based on the NEHT heuristic [7] to simplify implementation and reduce computational com-
plexity. Still, destruction and construction phases are still needed for each IG iteration. During the
destruction phase, d randomly chosen jobs are removed from the permutation; d jobs are then insert-
ed back to finish a complete permutation based on the NEHT heuristic during the construction phase.
However, the complexity of NEHT is still O(n“m) which is time consuming for large instances. After
IG phases, a simulated annealing-like acceptance criterion with a constant temperature based on Os-
man & Potts (1989) is applied. The constant temperature follows the suggestion of Osman & Potts
[23] and depends on the particular instances in the OR-Library to be solved.

This study proposes a simple insertion with the steady simulated annealing (SI-SSA) scheme to re-
duce computational complexity and simplify implementation; as such, this method still generalizes to
other flow-shop variants. SI-SSA includes two steps, a simple insertion local search and SA with a
novel temperature cooling schedule. The insertion local search is easy to integrate into trajectory me-
ta-heuristics, such as simulated annealing, tabu search, and others. Intrinsically, simulated annealing
is @ memory-less operation. Additionally, the acceptance criterion of the hill climbing in simulated
annealing is modified by adjusting the temperature schedule to reduce the turbulence of the ac-
ceptance probability for PFSP based on energy deviation instead of energy difference. Furthermore, a
threshold for excluding undesired solutions is also incorporated. The acceptance criterion is the key
factor of simulated annealing, which enables it to escape from local minima. As for the cooling in the
simulated annealing approach, two non-decreasing temperature control mechanisms are employed to
provide an opportunity for continuous exploration or exploitation; they are named reheating SA and
steady SA, respectively. The reheating SA increases exploration search ability and the steady SA en-



hances exploitation search ability. Analysis of the search behavior corresponding to these two cool-
ing schemes is also provided.

This article is organized as follows: Section 2 introduces the problem definition. Section 3 intro-
duces simulated annealing. Section 4 presents the details of the SI-SSA scheme for solving PFSP. In
Section 5, the effectiveness and efficiency of SI-SSA is demonstrated and the results are analyzed
and compared to those of other state-of-the-art schemes. Finally, section 6 makes the conclusions.

2 Problem definition

A well-known scheduling problem with a background in industrial manufacture is the flow shop
problem (FSP) [4]. In this study, the permutation flow shop problem (PFSP), in which the jobs’ se-
quence on every machine is the same, is addressed. The PFSP can be defined as follows:

— There are n independent jobs (N = {1,...,n}) and m independent machines (M ={1,...,m}) in the
production system. All n jobs have to be run on m machines in the same order. Assuming that the
set-up times of all jobs are included in the jobs’ processing time.

— Each job j (jeN) must be processed on m machines, i.e., each job consists of m sub-jobs, 0j«
(k=1,..., m). Meanwhile, each job j requires different processing times p;; on different machines i
(ie M). Moreover, any executing job is not preemptive.

— PFSP requires all jobs to be processed with the same processing order z= {z(1),..., z(n)} from the
first machine to the last machine. The permutation z presents the solution to the PFSP and z(r) in-
dicates the r'™ order processing job.

— Obtaining the minimum makespan is the commonly defined objective of the PFSP. The minimiza-
tion of the makespan is highly affected by the permutation 7.

For example, given 3 jobs, there are 3! possible permutations; the objective is to find the permutation

7 that yields the shortest makespan.

3 The Simulated Annealing Algorithm

The well-known simulated annealing (SA) trajectory meta-heuristic was first introduced by Kirk-
patrick et al. [24]. An important characteristic of SA is to provide the capability of escaping from lo-
cal optima. Restated, allowing a neighborhood moving step with a worse solution quality was
designed. Movements to worse neighborhoods offer a mechanism of diversification search through
hill climbing. However, the worse movement in SA is determined by an acceptance criterion which is
relevant to a probability called acceptance probability. A key component in SA is its cooling schedul-
ing, which controls the acceptance probability. Typically, the temperature decreases over time, and
thus the acceptance probability decreases over time. Restated, higher acceptance probability in the
early stage and lower acceptance probability in the latter stage have been implemented in SA. The ra-
tionale of this design is to provide the diversification search ability at the beginning and to give in-
tensification search ability in later stages.
The conventional SA iterates until a termination condition is met. At iteration t, four steps are

conducted:

— Neighborhood search: a candidate solution S;” from the neighborhoods of S; is generated. There are
many local search schemes suggested to generate the candidate solution S;’.

— Energy evaluation: the energy related to the solution S;’ is evaluated; wherein E(S;’) is denoted as
an energy function, and the variance of energy AE is also obtained.

— Acceptance criterion: the acceptance criterion is applied; if the variance of energy AE is less than
zero, the S; would be replaced by S;’. Otherwise, S;” with worse quality can be accepted with an
acceptance probability P. The acceptance probability P(S;,S;’, T1) is defined in Equation (1) below.

_E(8)-E(S)

P(SI ,Sl |,-I-t ) — ede/Tl =g T (1)



Here T is the cooling temperature of the t" iteration; it and the acceptance probability decrease
over time A worse solution is accepted when a randomly generated probability r is smaller than
the determined acceptance probability (r<P).

— Cooling strategies: the temperature decrement rule follows an exponential cooling scheme with
cooling rate « as listed in Equation (2):

T.=Tixa ,ael0]] (2)

4 Simple insertion with steady simulated annealing (SI-SSA)

This section outlines the details of the proposed SI-SSA approach. The procedures of SI-SSA are
provided first. Then, all steps in the procedures are presented and described in the following para-
graphs.

4.1 The simple insertion with steady simulated annealing algorithm (SI-SSA)

The pseudo-code of the proposed simple insertion with steady simulated annealing (SI-SSA) for
PFSP is summarized below in Figure 1.

4.2 Insertion local search

Many local search strategies for PFSP have been studied and combined with metaheuristics, especial-
ly for trajectory metaheuristics. The local search is one way to implement the neighborhood search
and the suggested insertion local search is easy to implement. Suppose an existing job processmg or-
der is denoted by the permutatlon . The insertion operation removes the job at the i position in ©
and then inserts it in the ] position, where i#j, and i, j are randomly generated [25].

Once a permutation =« is obtained as a PFSP solutlon in the case of i<j, the n=={n(1),..., n(i-1), n(i),
n(i+1),..., n(j-1), =(j), n(j+1),..., m(n)} is the permutation before insertion local search is applied, the
new permutation 7’={n(1),..., n(i-1), n(i+1),..., n(j-1), =(j), =(i), n(j+1),..., =(n)} can be obtained af-
ter applying insertion. And in the case of i>j, the permutation before insertion is n={n(1),..., n(j-1),
n(j), n(j+1),..., n(i-1), (i), n(i+1),..., =(n)}; after insertion, the new permutation is ©’={m(1),..., n(j-
1), n(i), =(j), n(j+1),..., n(i-1), n(i+1),..., =(n)}. Figure 2 shows an example of a permutation « before
insertion local search is applied and two permutations =’ after insertion local search is performed
from m. The operation of this simple insertion local search is listed in step 1.1 of Figure 1. The inser-
tion operation schematic diagram is shown as follows in Figure 2.

4.3 Non-decreasing temperature control

In several modified adaptive simulated annealing strategies, the temperature is not always decreasing,
but controlled by certain schemes, such as in [19] which uses a constant temperature. Some studies
also employ reheating such as Azizi and Zolfaghari [26] in which the temperature was not associated
with the iteration. In this study, two non-decreasing temperature controlling schemes for stage t+1 are
applied; the first temperature control scheme applied in SA is a heating temperature control defined
in Equation (3). This scheme is called reheating SA herein as indicated in the right part of the step
1.5 in the Figure 1.

T , S.=5'
Ta=i; L Cot 3
X1+ /) otherwise

The rationale of this control is inspired by [26]. In [26], a reheating mechanism was proposed, but the
temperature control was not associated with the iteration. This simple reheating mechanism associat-
ed with iteration to increase the search ability may be preferable for the following reasons. The ac-



ceptance probability is increased due to heating and thus the exploration area is expanded, i.e., ex-
panding the search pace. Notably, too wide a search range resembles a random walk; therefore, a
small g value is suggested for preventing a fully random search. Restated, movement toward too
worse a solution is prohibited. The other temperature controlling scheme used in SA is a named
steady temperature control (see Equation (4) below) and called steady SA in this work as indicated in
the left part of the step 1.5 in the Figure 1.

Txa , S =S5"'
L @
. ,otherwise

The intent of this design is that once a candidate solution is not accepted (going uphill), that is, S; <
S¢’, then the temperature is maintained and hence the P is kept at a higher value. Restated, subsequent
exploration ability is preserved for finding a lower makespan solution from high makespan solution
neighbors. Otherwise, the temperature is decreased accordingly for further exploitation. These two
non-decreasing temperature control mechanisms focus on facilitating enough exploration ability
during the solution search. The acceptance probability used in this study is based on relative energy
change rel_AE={E(S;’)-E(S)}/E(S;) (Chen & Hsieh) [27] as indicated in Equation (5).

P(St ,St I,-I—t ) — e*feLAE/T‘ (5)

5 Experimental results

To evaluate the effectiveness of the proposed simple insertion simulated annealing algorithm; the fol-
lowing simulation instances from the Taillard benchmark [28] were tested. Taillard generated a set of
FSP scheduling problems with different combinations of jobs (n) and machines (m), ne{20, 50, 100,
200, 500} and me{5, 10, 20}, and there are 10 instances for each problem size. The processing time
of each job is distributed uniformly in the interval [1, 99]. This test suite is available from
http://mistic.heig-vd.ch/taillard/ and http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/flowshop?2.txt.
Before comparing the performance of the proposed SI-SSA with other schemes, the efficiency of the
proposed non-decreasing temperature control mechanisms (steady SA and reheating SA) were first
evaluated. The comparison criterion is computed as the relative percentage deviation (RPD) as fol-
lows.

_ Min,, —Best

RPD 2 100% (6)

sol

where Ming, represents the shortest makespan of the best solution obtained from the best trial of a
specific algorithm and Bests is the makespan of the optimal solution or known upper bound provid-
ed by Taillard’s instances. To be more objective, the average relative percentage deviation (ARPD) is
applied as defined in (Ruiz & Stitzle 2007) [20].

Best

where Min,, is the makespan of a solution given by any of the T repetitions of the compared al-
gorithms. The parameter settings of this simulation are: To=1, «=0.99 and £=0.001. There are two
comparison bases commonly used, namely the Taillard benchmark upper bound data published in
2004 and 2006. The efficiency comparison between the proposed steady and reheating SAs with the
conventional SA is based on both benchmark data as displayed in Tables 1 and 2. Experiments were
on the basis of 100000 solutions generated. Five test runs (T=5) were conducted to calculate ARPD
for fair comparison as defined in [20].

T Ming, —Best,
ARPD = 3 (—— 7 100%) /T (7
i=1 sol

According to the simulation results, the suggested SI-SSA with steady SA vyielded the smallest
RPDs (0.531% and 0.836%) compared to the other two temperature controlling schemes. Restated,
the performance of the proposed SI-SSA with steady SA is better than the other two SAs. Moreover,
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the makespan and temperature evolution of these three SAs (conventional SA, reheating SA and
steady SA) are displayed in Figure 3; the tests were conducted on tai20_20_1 (20/20 case instance 1)
with 100,000 iterations, Figure 3 only shows temperature changes for the first 35,500 iterations.

The conventional SA temperature quickly drops to 0, and therefore the acceptance probability of es-
caping from the local optimal for searching the neighborhoods is zero, that is, it quickly becomes un-
able to search the neighborhood to find better solutions. Although the reheating SA does not quickly
cool; the temperature increases which cause the acceptance probability of escaping from local mini-
mum remain high, and this does bias the search behavior toward a wider range. On the other hand,
the steady SA maintains the same temperature, keeping the same search behavior and allowing the
exploration of the neighbors with worse solutions, and therefore increases the possibility of finding
better solutions. Figure 3 displays the simulation results on Tai_20 20 1 (20/20 case, instance 1),
Figure 3(a)-1 shows that the conventional SA algorithm is trapped on local optimal
(makespan=2349) since acceptance probability is almost zero all the time due to the temperature
quickly dropping to zero; Figure 3(b)-1 indicates that the reheating SA algorithm randomly walks
about the solution space due to its high acceptance probability owing to the increased temperature,
hence it is unable to find good solutions (makespan=2370). Nevertheless, Figure 3(c)-1 demonstrates
that the steady SA algorithm provides an adequate exploration search ability in the neighborhood
since the acceptance probability is maintained so as to have high opportunity to obtain the best solu-
tion (makespan=2318).

Therefore, the corresponding search behavior of the temperature changing process is compliant with
the scheduling results of Tables 1 and 2.

To compare with the top state-of-the-art algorithms listed in [20] (Ruiz & Stitzle), the termination
condition was based on computation time. The comparison was made using Taillard’s 2004 bench-
mark. Each problem instance was repeated for five independent trials (T=5) rather than using the best
trial; the average of the five trials was chosen and all the 10 instances for every problem case (n/m; n
jobs/m machines) were calculated. The termination condition (on the basis of computation time) in
[20] was “nx(m/2)x60”, and the algorithm was running on an Athlon XP 1600+ (1400 MHz) system.
The proposed scheme was running on a core i7 (3.4 GHz) PC. Therefore, the computation time of
this work was “nx(m/2)x60x(1.4/3.4)”. The simulation results are listed in Table 3. The SI-SSA has
the smallest average ARPD 0.27%, it ranks 1% compared to the other algorithms. Moreover, the test
on the latest upper bound in Taillard’s 2006 benchmark was also conducted and the simulation re-
sults are displayed in Table 4. The yielded ARPDs by the SI-SSA are less than 1.19 % (50/20 case in
Table 3) and 1.74% (50/20 case in Table 4) for Taillard 2004 and 2006 benchmark upper bounds, re-
spectively. Simulation results indicate that the performance of the proposed SI-SSA is excellent and
competitive on the basis of its generated solution quality.

Since the upper bound changes over time, the percentage increases of the makespan above the
minimal lower bound (Incr_Ib%) are also provided in addition to the average deviation (ARPD). As
displayed in Table 5, the average Incr_Ib% is only 4.98%. Furthermore, the stability of the proposed
scheme was also inspected. The ARPD intervals (AARPD=Max ARPD - Min ARPD) are shown in
Table 5. The maximum ARPD interval is 0.57%. Hence, the SI-SSA scheme is considered stable.

6 Conclusions

A strategy named simple insertion simulated annealing with steady SA (SI-SSA) is suggested. In
SISA, a simple insertion local search is applied to generate the solution of the PFSP to lower compu-
tation complexity. Meanwhile, two non-decreasing cooling temperature driven simulated annealing
(SA) named steady SA and reheating SA are employed to maintain successive exploration or exploi-
tation in the solution space to increase the chance of finding better solutions. The advantages of the
proposed SI-SSA algorithm can be summarized as follows.

— This scheme is easy to implement since only a simple insertion local search is applied. Simple in-
sertion local search used for constructing PFSP solutions reduces the time-complexity to O(n) and
only one parameter () is required for simulated annealing.



— The steady SA maintains a constant temperature, keeping the same search behavior and thus al-
lows the exploration of the neighbors with worse solutions, thereby increasing the chances of find-
ing better solutions so as to escape from local minima.

— The SI-SSA scheme outperforms many complex meta-heuristics, the averaged ARPD is only
0.27%, ranking it 1% as shown in Table 1.

— The maximum ARPDs are less than 1.19% and 1.74% (for the 50/20 case) on the basis of Tail-
lard’s 2004 and the latest 2006 upper bounds as shown in Tables 1 and 2.

— The maximum RPD interval (ARPD) is only 0.57% as indicated in Table 3, indicating that SI-SSA
is a stable algorithm for solving PFSP class problems. Meanwhile, the average Incr_Ib% is only
4.98%.

Acknowledgements

This work was partly supported by the Ministry of Science and Technology, Taiwan, under Contract
MOST 103-2221-E-167-009.

Conflict of interests

The authors declare that this manuscript has no any conflict of interests with other people or institu-
tions.

References

[1]. Che, A. and Chu, C. “Multi-degree cyclic scheduling of two robots in a no-wait flowshop”, IEEE Transactions on
Automation Science and Engineering, 2(2), pp. 173 — 183 (2005).

[2]. Boutellier, J., Bhattacharyya, S.S. and Silven, O. “Low-Overhead Run-Time Scheduling for Fine-Grained Accelera-
tion of Signal Processing Systems”, 2007 IEEE Workshop on Signal Processing Systems, Shanghai, China, pp.
457 — 462 (2007).

[3]. Benbouzid-Sitayeb, F., Varnier, C. and Zerhouni, N. “Proposition of New Genetic Operator for Solving Joint Pro-
duction and Maintenance Scheduling: Application to the Flow Shop Problem”, 2006 International Conference on
Service Systems and Service Management, 1, Troyes, France, pp. 607 — 613 (2006).

[4]. Taillard, E. “Some efficient heuristic methods for the flow shop sequencing problem”, European Journal of Opera-
tional Research, 47, pp. 65-74 (1990).

[5]. Palmer, D.S. “Sequencing jobs through a multistage process in the minimum total time: A quick method of obtain-
ing a near-optimum”, Operational Research Quarterly, 16, pp. 101-107 (1965).

[6]. Campbell, H.G., Dudek, R.A. and Smith, M.L. “A heuristic algorithm for the n-job, m-machine sequencing prob-
lem”, Management Science, 16, pp. B630-B637 (1970).

[7]. Nawaz, M., Enscore, E.E. and Ham, 1. “A heuristic algorithm for the m-machine, n-job flowshop sequencing prob-
lem”, OMEGA, International Journal of Management Science, 11, pp. 91-95 (1983).

[8]. Tseng, L.Y. and Lin, Y.T. “A genetic local search algorithm for minimizing total flowtime in the permutation flow-
shop scheduling problem”, Int. J. Production Economics, 127, pp. 121-128 (2010).

[9]. Xu, X., Xu, Z.H. and Gu, X.S. “An asynchronous genetic local search algorithm for the permutation flowshop
scheduling problem with total flowtime minimization”, Expert Systems with Applications, 38, pp. 7970-7979 (2011).

[10]. Chen, S.H., Chang, P.C., Cheng, T.C.E. and Zhang, Q.F. “A Self-guided Genetic Algorithm for permutation flow-
shop scheduling problems”, Computers & Operations Research, 39, pp. 1450-1457 (2012).

[11]. Javadian, N., Mozdgir, A., Kouhi, E.G., Qajar, D. and Shiragai, M.E. “Solving assembly flowshop scheduling prob-
lem with parallel machines using Variable Neighborhood Search”, International Conference on Computers & In-
dustrial Engineering, CIE 2009, Troyes, France, pp. 102-107 (2009).

[12]. Liu, S., Cui, J.H. and Li, Y. “Heuristic-Tabu Algorithm for Hybrid Flowshop Scheduling with Limited Waiting
Time”, International Symposium on Computational Intelligence and Design, ISCID '08, 2, Wuhan, China, pp. 233-
237 (2008).

[13]. Ahmadizar, F. “A new ant colony algorithm for makespan minimization in permutation flow shops” Computers and
Industrial Engineering, 63(2), pp. 355-361 (2012).



[14]

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].
[24].
[25].
[26].
[27].

[28].

Fig

. Chen, R.M,, Lo, S.T., Wu, C.L. and Lin, T.H. “An effective ant colony optimization-based algorithm for flow shop
scheduling”, 2008 IEEE Conference on Soft Computing in Industrial Applications, SMCia '08, Muroran, Japan, pp.
101-106 (2008).
Tasgetiren, M.F., Pan, Q.K., Suganthan, P.N. and Chen, H.L. “A discrete artificial bee colony algorithm for the total
flowtime minimization in permutation flow shops™, Information Sciences, 181, pp. 3459-3475 (2011).
Tang, L. and Wang, X. “An Improved Particle Swarm Optimization Algorithm for the Hybrid Flowshop Scheduling
to Minimize Total Weighted Completion Time in Process Industry”, IEEE Transactions on Control Systems Tech-
nology, 18(6), pp. 1-12 (2009).
Wang, X. and Tang, L. “A discrete particle swarm optimization algorithm with self-adaptive diversity control for
the permutation flowshop problem with blocking”, Applied Soft Computing, 12, pp. 652-662 (2012).
Murata, T., Ishibuchi, H. and Gen, M. “Neighborhood structures for genetic local search algorithms”, International
Conference on Knowledge-Based Intelligent Electronic Systems, KES '98, 2, Adelaide, South Australia, pp. 256-
263 (1998).
Song, X.M., Wang, K. and Xiao, Y. “An Improved Ant Colony Optimization and Its Applications in Flow-Shop
Problems”, International Conference on Computational Intelligence and Software Engineering, CiSE 2009, Wu-
han, China, pp. 1-4 (2009).
Ruiz, R. and Stitzle, T. “A simple and effective iterated greedy algorithm for the permutation flowshop scheduling
problem”, European Journal of Operational Research, 177, pp. 2033-2049 (2007).
Zhao, Z.Y J., Lau, H.C. and Ge, S.S. “Integrated Resource Allocation and Scheduling in a Bidirectional Flowshop
With Multimachine and COS Constraints”, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applica-
tions and Reviews, 39(2), pp. 190-200 (2009).
Dong, X., Huang, H.K. and Chen, P. “Study on heuristics for the permutation flowshop with sequence dependent
setup times”, IEEE International Conference on Information Reuse & Integration, IRI '09, Las Vegas, Nevada,
USA, pp. 417-421 (2009).
Osman, I. and Potts, C. “Simulated annealing for permutation flow-shop scheduling”, OMEGA, International Jour-
nal of Management Science, 17(6), pp. 551-557 (1989).
Kirkpatrick, S., Gelatt C.D. and Vecchi, M.P. “Optimization by Simulated Annealing”, Science, 220 (4598), pp.
671 — 680 (1983).

Stiitzle, T. “An ant approach to the flow shop problem”,. The Sixth European Congress on Intelligent Techniques
and Soft Computing (EUFIT’98), 3, Verlag Mainz, Aachen, Germany, pp. 1560-1564 (1998).
Azizi, N. and Zolfaghari, S. “Adaptive temperature control for simulated annealing: a comparative study”, Comput-
ers & Operations Research, 31, pp. 2439-2451 (2004).
Chen, R.M. and Hsieh F.R. “An Exchange Local Search Heuristic Based Scheme for Permutation Flow Shop Prob-
lems”, Applied Mathematics & Information Sciences, 8, pp. 209-215 (2014).
Taillard, E. “Benchmarks for basic scheduling problems”, European Journal of Operational Research, 64, pp. 278-
285 (1993).

ure captions

Figure 1. The pseudo-code of the proposed simple insertion with steady simulated annealing (SI-
SSA)

Figure 2. Insertion operations for the cases of: (a) i<j and (b) i>]
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Table 1. Comparison between steady SA, reheating SA and conventional SA-ARPD (Taillard 2004)
Table 2. Comparison between steady SA, reheating SA and conventional SA-ARPD (Taillard 2006)
Table 3. Comparison of different algorithms in [20] on the basis of Taillard 2004 upper bound data-
ARPD(%)

Table 4. Simulation results on the basis of Taillard 2006 upper bound data-ARPD(%)

Table 5. RPD(%) interval and Incr_Ib on the basis of Taillard 2006 data
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1. Loop
1.1. Simple insertion local search determines the neighbor of S; as S;” at iteration t.
1.2.  Calculate the energy E(S;’) of Sy’
1.3. Calculate AE = E(S,)- E(Sy), rel_AE = AE /E(Sy)
14. ifAE < 0
then S; :=S;”,

else if a random variable p, p<e™-*T|pecyU (0,1) then S; :=S;
1.5. steady temperature or  reheating temperature
controlling scheme controlling scheme
ifS, =S/ ifS; =S¢
TleTtXa Tt+1:Tt><a
else else
Tt+1:Tt T1+1:T1(1+ﬂ)
1.6. t=t+l

2. Until the End condition is satisfied, return S;

Figure 1. The pseudo-code of the proposed simple insertion with steady simulated annealing (SI-SSA)

(b)

Figure 2. Insertion operations for the cases of: (a) i<j and (b) i>j.
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Figure 3. Makespan and SA temperature evolutions for the cases of: (a) conventional SA; (b) reheating SA; and (c) steady
SA.

Tables

Table 1. Comparison between steady SA, reheating SA and conventional SA —~ARPD (Taillard 2004)

n/m SA reheating SA steady SA
20/5 0.095 0.202 0.089
20/10 0.601 0.459 0.247
20/20 0.548 0.660 0.159
50/5 0.038 0.021 0.025
50/10 0.432 1.853 0.376
50/20 1511 4.411 1.453
100/5 -0.016 -0.011 -0.014
100/10 0.433 0.479 0.414
100/20 1.110 2.069 1.041
200/10 0.296 0.370 0.349
200/20 1.138 2.785 1.122
500/20 1.029 1.531 1.108
Average 0.601 1.236 0.531

Table 2. Comparison between steady SA, reheating SA and conventional SA-ARPD (Taillard 2006)
n/m SA reheating SA steady SA
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20/5
20/10
20/20
50/5
50/10
50/20
100/5
100/10
100/20
200/10
200/20
500/20

Average

0.144
0.608
0.553
0.038
0.914
2.088
0.030
0.479
2.147
0.321
2.192
1.362
0.906

0.251
0.467
0.664
0.021
2.343
5.004
0.034
0.525
3.115
0.395
3.856
1.865
1.545

0.138
0.255
0.164
0.025
0.858
2.030
0.032
0.460
2.077
0.374
2.176
1.441
0.836

Table 3. Comparison of different algorithms in [20] on the basis of Taillard 2004 upper bound data-ARPD(%).

UM ok pois wwn ms P was SASA WS pin mery an or wr T coew ST
20/5 009 004 004 004 021 004 024 049 026 062 094 109 08 335 415 433
20/0 018 006 013 025 037 015 088 059 073 204 154 263 214 502 518  6.07
2020 017 003 009 021 024 006 087 036 043 132 143 238 175 373 426 444
50/5 002 000 002 004 001 0.03 0.19 02 007 021 036 052 03 08 203 219
50/10 013 056 072 106 085 14 076 148 171 206 372 351 355 512 654  6.04
50/20 119 094 128 18 159 218 2.19 22 274 356 469 452 509 626 774 763
100/5 000 001 002 005 003 004 009 018 007 017 032 03 027 046 135 106
100/20 015 02 029 039 027 047 0.65 068 062 085 172 148 163 213 38 3.01
100/20 034 13 166 204 209 259 152 255 275 341 491 463 487 523 815  6.74
200/10 014 012 02 034 027 0.23 0.66 056 043 055 127 101 114 143 276 207
200120 036 126 148 199 192 226 143 224 231 284 421 38l 418 441 724 497
500120 047 078 096 113 109 115 181 125 14 166 223 252 334 224 472 1258
Average 027 044 0574 078 075 088 094 106 113 161 228 237 242 335 483 509
* SEASA(Chen et al. 2014)

Table 4. Simulation results on the basis of Taillard 2006 upper bound data-ARPD(%)

n/m 20/5  20/10  20/20  50/5 50/10  50/20  100/5  100/10 100/20  200/10  200/20  500/20  Avg

ARPD 0.13 0.18 0.16 0.02 059 1.74 0.02 0.21 1.38 0.16 141 0.81 0.57

Table 5. RPD(%) interval and Incr_Ib on the basis of Taillard 2006 data

Min Max
m/m RPD ARPD RPD ARPD

Incr_Ib%
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20/5 0.08 0.13 0.14 0.06 2.56

20/10 0.05 0.18 0.37 0.32 9.58
20/20 0.08 0.16 0.27 0.20 20.76
50/5 0.00 0.02 0.04 0.04 0.83
50/10 0.50 0.59 0.67 0.17 2.76
50/20 1.44 1.74 2.01 0.57 10.79
100/5 0.02 0.02 0.03 0.00 1.10
100/10 0.12 0.21 0.33 0.21 1.01
100/20 1.22 1.38 1.56 0.34 5.34
200/10 0.08 0.16 0.24 0.16 0.83
200/20 1.27 141 1.50 0.24 3.00
500/20 0.75 0.81 0.87 0.12 1.23
Average 0.47 0.57 0.67 0.20 4,98
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