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Abstract

We study maximal familiesW of the Hilbert scheme, H(d, g)sc, of smooth connected space curves
whose general curve C lies on a smooth surface S of degree s. We give conditions on C under
which W is a generically smooth component of H(d, g)sc and we determine dimW . If s = 4
and W is an irreducible component of H(d, g)sc, then the Picard number of S is at most 2 and
we explicitly describe, also for s ≥ 5, non-reduced and generically smooth components in the
case Pic(S) is generated by the classes of a line and a smooth plane curve of degree s − 1. For
curves on smooth cubic surfaces the first author finds new classes of non-reduced components of
H(d, g)sc, thus making progress in proving a conjecture for such families.
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1 Introduction and Main Results

In this paper we study the Hilbert scheme of smooth connected space curves, H(d, g)sc, with regard
to dimension and smoothness, with a special emphasis on existence of non-reduced components. The
first example of a non-reduced component was found by Mumford [34]. There are several papers
that consider such problems, see e.g. [2], [4,5,7], [15,16], [20–23,25,26], [29–31,36] and the book [17].
Here we generalize the approach that was used in [20] for curves on cubic surfaces to study families
of curves on smooth surfaces of degree s ≥ 4. In particular we investigate when maximal irreducible
closed subsets W of the Hilbert scheme H(d, g)sc whose general curve C lies on a quartic surface,
form non-reduced, or generically smooth, irreducible components of H(d, g)sc. We find a pattern
similar to what is known for maximal irreducible families of curves on smooth cubic surfaces; if
H1(IC(s)) = 0, IC the sheaf ideal of C, then W turns out to be a generically smooth component of
H(d, g)sc. If, however, H1(IC(s)) 6= 0 and the genus is sufficiently large, thenW is still an irreducible
component, but it is now non-reduced. For s = 4 it suffices to take “g large” as g > G(d, 5), the maxi-
mum genus of curves of degree d not contained in a degree-4 surface (see (13)), or as the better bound

g > min{G(d, 5)− 1,
d2

10
+ 21} and d ≥ 21 , (1)

see Theorem 4.1 and Corollary 4.5 of Section 4.
Let s(C) denote the minimal degree of a surface containing a curve C. If W is an irreducible

closed subset of H(d, g)sc, we define s(W ) := s(C) where C is a general curve of W . As in [20] we
say W is s(W )-maximal if it is maximal with respect to s(W ), i.e. s(V ) > s(W ) for any closed
irreducible subset V properly containing W . We say W is an s(W )-maximal family or subset of
H(d, g)sc in this case. By Remark 2.3 below, if a very general curve of a 4-maximal family W sits
on a smooth quartic surface S and d > 16, then the Picard number of S is at most 2.

Note that an s-maximal family W needs not be an irreducible component of H(d, g)sc, but the
converse holds (with s = s(W )). For instance if W is a 2-maximal family whose general curve
C ⊂ P1 × P1 has bidegree (p, q) , p ≤ q, and degree d = p + q ≥ 6, then W is not an irreducible



component precisely when p ≤ 2, e.g. if p = 1 then g = (p − 1)(q − 1) = 0 and the codimension
of W in H(d, g)sc is 4d − (2d + g + 8) = 2d − 8, (cf. [40]). Indeed, by Remark 2.1, g ≥ 2d − 8 is a
necessary condition for W to be an irreducible component. This condition is sufficient by (6) below.

For a 3-maximal family W , g ≥ g1 := 3d− 18 is necessary (for d > 9) while [20, Cor. 17] shows
that g > g2 := b(d2 − 4)/8c is sufficient for W to be an irreducible component. Indeed g > g2

implies (6) by [20, Cor. 17]. Since the sufficient condition also implies that W is generically smooth,
W ⊂ H(d, g)sc may be a non-reduced component only when g1 ≤ g ≤ g2. For g1 = g2 and d > 10
we have g = 24, d = 14 and the existence of a non-reduced component W with s(W ) = 3 as shown
by Mumford in [34]. The first author generalized this result in [21] and showed the existence of 3-
maximal families of non-reduced components of H(d, b(d2 − 4)/8c)sc for every d ≥ 14, where d = 14
corresponds to Mumford’s example, see [4], [20] and the appendix for further generalizations and a
conjecture.

In this paper we consider closely 4-maximal families W of curves on smooth quartic surfaces
S ⊂ P3. To get interesting classes, we study surfaces S where the Picard group Pic(S) is freely
generated over Z by the classes of two smooth connected curves Γ1 and Γ2 satisfying Γ2

1 = −2,
Γ2

2 = 0, Γ1 ·Γ2 = 3, i.e. with intersection matrix
(−2 3

3 0

)
, and such that H = Γ1 + Γ2 is a hyperplane

section. If C ≡ aΓ1 + bΓ2 are linearly equivalent divisors, we show that a, b ≥ 0 if C is a curve (i.e.
effective divisor). The necessary condition g ≥ 4d − 33 of Remark 2.1 for W to be an irreducible
component implies a > 4 for d > 16 because g = ad− 2a2 + 1. In Section 5 we prove:

Theorem 1.1. Let S ⊂ P3 be a smooth quartic surface with Γ1,Γ2 and H as above, let C ≡ aΓ1+bΓ2

be a smooth connected curve of degree d > 16 and suppose a 6= b. Then C belongs to a unique 4-
maximal family W ⊆ H(d, g)sc. Moreover if S̃ is a quartic surface containing a very general member
of W , then Pic(S̃) is freely generated by the classes of a line and a smooth plane cubic curve, and ev-
ery C ≡ aΓ1 +bΓ2 contained in some surface S as above belongs to W . Furthermore dimW = g+33,

d = a+ 3b , g = 3ab− a2 + 1 and

I) W is a generically smooth, irreducible component of H(d, g)sc provided

4 < a <
3b
2 −1 or (a, b) = (5, 4).

II) W is a non-reduced irreducible component of H(d, g)sc provided

3b

2
− 1 ≤ a ≤ 3b

2
, (a, b) 6= (5, 4) (2)

and (1) holds. Explicitly, this region is given by the three families

a) (8 + 3k, 6 + 2k) b) (10 + 3k, 7 + 2k) c) (15 + 3k, 10 + 2k) for k ≥ 0,

and the dimension of their tangent spaces of H(d, g)sc at (C) is

dimW + h1(IC(4))

where h1(IC(4)) = 1 (resp. h1(IC(4)) = 2, h1(IC(4)) = 4 ) for the family a) (resp. b), c) ).

One may show thatW is non-empty, i.e. that there exist smooth connected curves C ≡ aΓ1+bΓ2

if and only if 0 < a ≤ 3b
2 , or (a, b) ∈ {(1, 0), (0, 1)}. The case a = b corresponds to C being a complete

intersection of S with some other surface (a c.i. in S).

We also consider curves sitting on smooth surfaces containing a line and corresponding s-maximal
families W for every s ≥ 5, and we get similar results as in I) above while we in II) only prove that
W is a component (i.e the non-reducedness is open), cf. Theorem 7.3. For s = 5 we get a little more:
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Theorem 1.2. Let S ⊂ P3 be a smooth quintic surface containing a line Γ1, let Γ2 ≡ H − Γ1, H a
hyperplane section, be a smooth quartic curve and suppose Pic(S) ' ZΓ1 ⊕ZΓ2. Let C ≡ aΓ1 + bΓ2

be a smooth connected curve of degree d > 25 with a 6= b and a, b > 1. Then C belongs to a unique
5-maximal family W ⊆ H(d, g)sc. Moreover if S̃ is a quintic surface containing a very general
member of W , then Pic(S̃) is freely generated by the classes of a line and a smooth plane quartic
curve, and every C ≡ aΓ1 + bΓ2 contained in some surface S as above belongs to W . Furthermore
dimW = −d+ g + 56, where

d = a+ 4b , g = 4ab+
1

2
(a+ 4b− 3a2) + 1 and

I) W is a generically smooth, irreducible component of H(d, g)sc provided 5 < a < 4b
3
− 1.

II) W is a non-reduced irreducible component of H(d, g)sc for (a, b) = (4n, 3n) , n ≥ 3.

To get II) we need a natural map H0(NC)→ H1(IC(s)) to be non-zero, cf. (4) below. Since this
map is surjective for S smooth of degree s = 4, H1(IC(s)) 6= 0 suffices to get II) in Theorem 1.1.

Note that we have 0 < a ≤ 4b
3 for C as above and that quintic surfaces as in Theorem 1.2 exist.

Another main result (Theorem 3.1), related to I) above, is obtained by studying certain maps
that involve the relative Picard scheme. Specializing to s-maximal families satisfying d > s2, we get:

Theorem 1.3. Let s ≥ 1 be an integer and let W ⊆ H(d, g)sc be an s-maximal family such that
d > s2. Let C be a member of W sitting on a smooth surface S of degree s satisfying

H1(IC(s)) = H1(IC(s− 4)) = 0.

Let E be a curve on S, H a hyperplane section and suppose C ≡ eE+fH for some e 6= 0, f ∈ Z. Let
t be the non-negative integer t := h1(NE)− h1(OE(s)) where NE is the normal sheaf of E ⊂ P3. If
E is either arithmetically Cohen-Macaulay, or t = 0 and H1(IE(s)) = H1(IE(s−4)) = 0, then W is
a generically smooth irreducible component of H(d, g)sc (indeed C and eE + fH are unobstructed),
and

dimW = (4− s)d+ g +

(
s+ 3

3

)
− 2 + h0(IE(s− 4)) + t .

As a consequence we get a non-trivial formula for h1(NC). Note that this theorem shows the
unobstructedness of a curve with a multiplicity-e structure on S under some assumptions. The com-
ponents in Theorems 1.1, 1.2 and 7.3 correspond to h0(IE(s−4)) large in Theorem 1.3, cf. Remark 3.4.

Finally the first author consider in the appendix a conjecture about non-reduced components for
maximal families W ⊆ H(d, g)sc of linearly normal curves on a smooth cubic surface S [20, Conj. 4].
In Theorem 8.3 he extends the known range where the conjecture holds. We thank O. A. Laudal
for interesting discussions on that subject. We also thank D. Eklund for a discussion of K3 surfaces
and R. Hartshorne for his comments. Also thanks to the careful referee for very helpful comments.

1.1 Notations and terminology

In this paper the ground field k is algebraically closed of characteristic zero (and equal to the
complex numbers in the statements where the concept ”very general” is used). A surface S in
P3 is a hypersurface, defined by a single equation. A curve C in P3 (resp. in S) is a pure one-
dimensional subscheme of P := P3 (resp. S) with ideal sheaf IC (resp. IC/S) and normal sheaf
NC = HomOP (IC ,OC) (resp. NC/S = HomOS

(IC/S ,OC)). We denote by d = d(C) (resp. g = g(C))
the degree (resp. arithmetic genus) of C. If F is a coherent OP-Module, we let H i(F) = H i(P,F),
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hi(F) = dimH i(F), χ(F) = Σ(−1)ihi(F) and we often write H i(S,OS(C)) as H i(OS(C)) for a
Cartier divisor C on S. Let

s(C) = min{n |h0(IC(n)) 6= 0} .

We denote by H(d, g) (resp. H(d, g)sc) the Hilbert scheme of (resp. smooth connected) space curves
of Hilbert polynomial χ(OC(t)) = dt + 1 − g [9]. A curve C is called unobstructed if H(d, g) is
smooth at the corresponding point (C). The curve in a small enough open irreducible subset U of
H(d, g) is called a general curve of H(d, g). So any member of U has all the openness properties
which we want to require. A generization C ′ ⊂ P3 of C ⊂ P3 in H(d, g) is the general curve of some
irreducible subset of H(d, g) containing (C). By an irreducible component of H(d, g) we always mean
a non-embedded irreducible component. We denote by H(s) the Hilbert scheme of surfaces of degree
s in P3. A member of a closed irreducible subset V of H(s) or H(d, g)sc is called very general in V
if it is smooth and sits outside a countable union of proper closed subset of V .

2 Background

In this section we first recall some results from [20] needed in this paper. The proofs use the
deformation theory developed by Laudal in [27]; in particular the results rely on [27, Thm. 4.1.14].

2.1 The Hilbert flag scheme

Let D(d, g; s) (resp. D(d, g; s)sc) be the Hilbert-flag scheme parameterizing pairs (C, S) of curves
(resp. smooth connected curves) C contained in surfaces S in P3 with Hilbert polynomials p(t) =
dt + 1 − g and q(t) =

(
t+3

3

)
−
(
t−s+3

3

)
respectively. Then the tangent space, A1 := A1(C ⊂ S), of

D(d, g; s) at (C, S) is given by the Cartesian diagram (i.e. pullback or fibered product);

A1 −→ H0(NS) ' H0(OS(s))
↓ 2 ↓ m

0→ H0(NC/S) → H0(NC) −→ H0(NS |C) ' H0(OC(s))
(3)

where the morphisms are induced by natural (or restriction) maps to normal sheaves.
Suppose S is a smooth surface of degree s. If C is a curve on S, we have NC/S ' ωC ⊗ ω−1

S and
a connecting homomorphism δ : H0(NS |C) → H1(NC/S) ' H0(OC(s − 4))∨ continuing the lower
horizontal sequence in (3). Let α = αC := δ ◦m be the composed map and let A2 := cokerα. Using
(3), cf. [20, (2.7) and Lem. 8] for details, we get dimA1 − dimA2 = (4− s)d+ g +

(
s+3

3

)
− 2 and an

exact sequence

0→ H0(IC/S(s))→ A1 → H0(NC)→ H1(IC(s))→ cokerαC → H1(NC)→ H1(OC(s))→ 0 . (4)

The map A1 → H0(NC) in (3) is the tangent map of the 1st projection,

pr1 : D(d, g; s) −→ H(d, g) , induced by pr1((C1, S1)) = (C1) , (5)

at (C, S). Since we may view D(d, g; s) as a relative Hilbert scheme over H(d, g) (cf. [17, Thm. 24.7]),
it follows that pr1 is a projective morphism by [9]. By [20, Lem.A10] pr1 is smooth at (C, S) under
the assumption

H1(IC(s)) = 0 . (6)

Moreover by [20, (2.6)] A2 = cokerαC contains the obstructions of deforming the pair (C, S), cf. [21,
Thm. 1.2.7] for a detailed version where also the meaning of obstructions is explained.
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Let C be a smooth connected curve. If we suppose d > s2 and s = s(C), then it is easy to see
H0(IC/S(s)) = 0 for some hypersurface S ⊃ C of degree s, and hence, by the semi-continuity of
h0(IC(v)) for v ∈ {s− 1, s}, that the restricted projection, pr1 : D(d, g; s)sc → H(d, g)sc, is injective
in pr−1

1 (U) for some neighborhood U ⊂ H(d, g)sc of (C). An s-maximal (or just maximal) family W
of H(d, g)sc containing (C) is therefore nothing but the image under pr1 of an irreducible component
of D(d, g; s)sc containing (C, S) ( [22, Def. 1.24 and Cor. 1.26]). If we in addition suppose that α is
surjective, then (C, S) belongs to a unique generically smooth component of D(d, g; s)sc and

dimW = h0(NC)− h1(IC(s)) = (4− s)d+ g +

(
s+ 3

3

)
− 2 . (7)

Assuming also (6) it follows that W is a generically smooth irreducible component of H(d, g)sc
( [20, Thm. 10]).

Using the infinitesimal Noether-Lefschetz theorem for s = 4 ( [13, p. 253]) as explained in the
proof of [20, Lem. 13], we immediately get that α is surjective provided S is smooth of degree s ≤ 4,
d > s2 and C ⊂ S is smooth and connected, but (for s = 4 only) not a complete intersection of
S with some other surface. Hence D(d, g; s) is smooth at (C, S) and we get all conclusions above,
assuming (6) for the final one.

Remark 2.1. If W is an irreducible component of H(d, g)sc containing a curve C sitting on a smooth
surface S of degree s := s(W ) with αC surjective and d > s2, then dimW = (4−s)d+g+

(
s+3

3

)
−2 ≥

χ(NC) = 4d, i.e.

g ≥ sd−
(
s+ 3

3

)
+ 2 , (8)

or equivalently, h1(IC(s)) ≤ h1(OC(s)). Moreover if the general curve of W does not satisfy (6), we
get by (7) that the component W is non-reduced (i.e. not generically smooth) and that (8) holds.

2.2 The relative Picard scheme

We also need to consider the Hilbert scheme, H(s) ' P(s+3
3 )−1, of surfaces of degree s in P3 and the

second projection;

pr2 : D(d, g; s) −→ H(s), induced by pr2((C1, S1)) = (S1) .

Moreover let Pic be the relative Picard scheme over the open set in H(s) of smooth surfaces of
degree s, (see [10]). Then there is a projection p2 : Pic→ H(s), forgetting the invertible sheaf, and
a rational map,

π : D(d, g; s) −−→ Pic, induced by π((C1, S1)) = (OS1(C1), S1) (9)

which is defined (and denoted πU ) on the open subscheme U ⊂ D(d, g; s) given by pairs (C1, S1)
where C1 is Cartier on a smooth S1. Obviously, if we restrict to U we have p2 ◦ π = pr2. If
H1(S,OS(C)) ' H1(P3, IC(s − 4))∨ = 0 then π is smooth at (C, S) by [10, Rem. 4.5]. Indeed,
H1(S,L) = 0, L := OS(C), implies a surjective map A1 → TPic,L between the tangent spaces of
D(d, g; s) at (C, S) and Pic at (L) and an injection cokerαC → cokerαL on their obstruction spaces
(mapping obstructions onto obstructions), fitting into the following commutative diagram of exact
horizontal sequences

0→ H0(NC/S) −→ A1 −→ H0(NS)
αC−−→ H1(NC/S)

↓ ↓ ‖ ↓
0→ H1(OS) = 0 −→ TPic,L −→ H0(NS)

αL−−→ H2(OS) .

(10)
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Here αL is the composition of αC with the connecting homomorphism H1(NC/S)→ H2(OS) induced
from the exact sequence 0 → OS → OS(C) → NC/S → 0, cf. [6, Thm. 1], [25, Sect. 4] and [24] for
some details and compare with [17, Ex. 10.6] and [8]. Indeed, using [8, Thm. 1] and its proof we get
the following version of the infinitesimal Noether-Lefschetz theorem (due to Green and Voisin);

dim imαL ≥ s− 3 , (11)

making the surjectivity of αC for s = 4 mentioned above a special case. In our applications, however,
we consider divisors where a basis for Pic(S) is given, allowing us to compute dim cokerαC explicitly.

Lemma 2.2. Let S ⊂ P3 be a smooth surface of degree s, H a hyperplane section, and let E and C
be curves on S satisfying C ≡ eE + fH for some e 6= 0, f ∈ Z. Let d = d(C), g = g(C) and suppose

H1(IE(s− 4)) = H1(IC(s− 4)) = 0 .

(i) Then D(d, g; s) is smooth at (C, S) if and only if D(d(E), g(E); s) is smooth at (E,S), and

dim D(d(C), g(C); s)− h1(OC(s− 4)) = dim D(d(E), g(E); s)− h1(OE(s− 4)) ,

noting that dim |C| = h0(OS(C))− 1 = h1(OC(s− 4)) and dim |E| = h1(OE(s− 4)). Moreover

dim cokerαC + h0(IC/S(s− 4)) = dim cokerαE + h0(IE/S(s− 4))

(ii) If H1(IE(s)) = 0 and H(d(E), g(E))sc 3 (E) is a smooth irreducible scheme, then D(d, g; s)
is smooth at (C, S) and every (C ′, S′) ∈ D(d, g; s) satisfying C ′ ≡ eE′ + fH ′ for some (E′, S′) ∈
D(d(E), g(E); s)sc, H ′ a hyperplane section of a smooth surface S′ ⊂ P3, belongs to the unique
irreducible component of D(d, g; s) containing (C, S).

Proof. (i) If D(d(E), g(E); s) is smooth at (E,S), it follows that Pic is smooth at (OS(E), S) by [10,
Rem. 4.5] and H1(IE(s − 4)) = 0. Then Pic is smooth at (OS(C), S) because the local rings
OPic,(OS(C),S) and OPic,(OS(E),S) are isomorphic, at least up to completion. Indeed, by [6, Prop. 2
and Constr. 2], αOS(C) = e · αOS(E) and then (10) shows that the morphism between the local
deformation functors of Pic at (OS(E), S) and Pic at (OS(C), S) (induced byOS(E) 7→ OS(E)⊗e(f))
is an isomorphism. Hence D(d, g; s) is smooth at (C, S) by H1(IC(s − 4)) = 0, and conversely if
D(d, g; s) is smooth at (C, S) we get that D(d(E), g(E); s) is smooth at (E,S) by the same argument.

Moreover since the fiber of π in (9) over (OS(C), S) is the complete linear system |C| on S and
since smooth morphisms have surjective tangent maps, we also get the dimension formulas, using
duality.

Finally to determine dim cokerαC , we use (10). Since H1(IC(s− 4)) = 0 the map H1(NC/S) '
H0(OC(s− 4))∨ → H2(OS) ' H0(OS(s− 4))∨ is injective with cokernel H0(IC/S(s− 4))∨, whence

0 −→ cokerαC −→ cokerαOS(C) −→ H0(IC/S(s− 4))∨ −→ 0

is exact. Since H1(IE(s − 4)) = 0 there is a corresponding exact sequence replacing C by E, and
the middle term in these sequences are isomorphic because αOS(C) = e · αOS(E). This implies the
final dimension formula of (i).

(ii) By the assumption H1(IE(s)) = 0, D(d(E), g(E); s) is smooth at (E,S), cf. (6), whence
D(d, g; s) is smooth at (C, S) by (i). Moreover D(d(E), g(E); s)sc is also irreducible since one knows
that pr1 : D(d(E), g(E); s)sc → H(d(E), g(E))sc is irreducible by [22, Thm. 1.16]). It follows that the
image U ′ of π′ : D(d(E), g(E); s)sc −→ Pic defined as in (9) is irreducible and since the morphism

η : U ′ → Pic induced by (OS1(E1), S1) 7→ (OS1(E1)⊗(e)(f), S1)
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is smooth (in fact an isomorphism) onto its image U ′′ ⊂ Pic by the argument for their local de-
formation functors used in the proof of (i), we get that U ′′ is irreducible. Finally using that the
fiber π−1

U ((OS1(C1), S1)) of the morphism in (9) is given by the complete linear system |C1| which
is irreducible, we get that π−1

U (U ′′) is irreducible (cf. [18, Prop. 1.8]). Since (C ′, S′) ∈ π−1
U (U ′′) we

are done.

Remark 2.3. Using [19, Cor. 4, p. 222], or [3, Prop. 3.4], and, say, the smoothness of π restricted
to the set U ∩D(d, g; 4)sc accompanying (9), we get that a closed irreducible subset W of H(d, g)sc,
d > 16, whose very general member C sits on a smooth quartic surface S with Picard number ρ, will
satisfy dimW ≤ g + 35− ρ. Hence if W ⊂ H(d, g)sc is 4-maximal (e.g. an irreducible component),
then ρ = 2 (or ρ = 1 in the c.i. case).

One should compare Remark 2.3 with the following result which is a special case [28, Cor. II 3.8]
of a theorem of A. Lopez, see [28, Thm. II 3.1] for a proof.

Lemma 2.4. Let E ⊂ P3 be a smooth irreducible curve, let n ≥ 4 be an integer and suppose the
degree of every minimal generator of the homogeneous ideal of E is at most n − 1. Let S be a
very general smooth surface of degree n containing E and let H be a hyperplane section. Then
Pic(S) ' Z⊕ Z and we may take {OS(H),OS(E)} as a Z-basis for Pic(S).

Finally we will need the following lemma to prove our theorems.

Lemma 2.5. Let S be a smooth projective surface containing a smooth rational curve Γ and let D
be a divisor such that c = −D · Γ > 0 and D − Γ−K 6= 0 is effective, K the canonical divisor.

• If H1(S,OS(D − Γ)) 6= 0, then H1(S,OS(D)) 6= 0.

• If c > 1, then H1(S,OS(D)) 6= 0. In fact, dimH0(S,OS(D)) ≥ c− 1.

• If c = 1 and H1(S,OS(D − Γ)) = 0, then H1(S,OS(D)) = 0.

Proof. Taking cohomology of the exact sequence

0→ OS(D − Γ)→ OS(D)→ OΓ(−c)→ 0,

and using duality and the fact that Γ ' P1, we get

h1(OS(D)) = h1(OS(D − Γ)) + h1(OP1(−c)) = h1(OS(D − Γ)) + c− 1

and the result follows.

2.3 On the maximum genus of space curves

Finally we recall the definition of G(d, s); the maximum genus of smooth connected space curves of
degree d not contained in a surface of degree s− 1, cf. [14]. By definition,

G(d, s) = max{ g(C) | (C) ∈ H(d, g)sc and H0(IC(s− 1)) = 0 } (12)

In the case where d > s(s− 1), Gruson and Peskine showed in [14] that

G(d, s) = 1 +
d

2

(
d

s
+ s− 4

)
− r(s− r)(s− 1)

2s
where d+ r ≡ 0 mod s for 0 ≤ r < s, (13)
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and that g(C) = G(d, s) if and only if C is directly linked to a plane curve of degree r by a c.i. of type
(s, f), f := (d + r)/s. Note that this description of a curve C of H(d,G(d, s))sc makes it possible
to use Theorem 3.1 below to find dimV where V ⊂ H(d,G(d, s))sc is the irreducible component
containing (C). Indeed, we may assume a general member of V is contained in a smooth surface of
degree s because the inequality r < s allows us to start with a smooth plane curve E of degree r
contained in a smooth surface of degree s and then make a linkage via a c.i. of type (s, f) to get
a curve C ′ which, by [22, Ex. 3.13], belongs to V . Since C ′ ≡ fH − E, H a hyperplane section,
Theorem 3.1 applies and we get dimV from (14).

3 A criterion of unobstructedness

We will now prove a theorem which via Remark 3.2 implies Theorem 1.3. Note that Theorem 3.1
immediately gives us a formula for h1(NC) because C is unobstructed, whence h1(NC) = dimW−4d.

Theorem 3.1. LetW ′ be an irreducible component of D(d, g; s)sc and letW := pr1(W ′) ⊆ H(d, g)sc.
Let (C, S) be a member of W ′ such that S is smooth of degree s and suppose that

H1(IC(s)) = H1(IC(s− 4)) = 0 .

Let E be a curve on S, H a hyperplane section and suppose C ≡ eE + fH for some e, f ∈ Z. Let
u := h0(IC/S(s)) + h0(IC/S(s− 4)) and let t be the non-negative number t := h1(NE)− h1(OE(s)).
If E is arithmetically Cohen-Macaulay (ACM), or more generally if E is unobstructed and satisfies
H1(IE(s)) = H1(IE(s− 4)) = 0, then W is a generically smooth irreducible component of H(d, g)sc
(indeed C and eE + fH are unobstructed) of dimension

(4− s)d+ g +

(
s+ 3

3

)
− 2− u+ h0(IE/S(s− 4)) + t (14)

if e 6= 0 ; if e = 0 then replace h0(IE/S(s− 4)) + t by
(
s−1

3

)
in (14).

Remark 3.2. Let (C, S) and W be as in Theorem 3.1 and suppose d > s2. Then s = s(C)
and W is an s-maximal family of H(d, g)sc (see paragraph after (6)), in which case h0(IC/S(s))
and h0(IC/S(s − 4)) vanish. Moreover if E ⊂ S is a curve satisfying h1(NE) = h1(OE(s)) and
H1(IE(s)) = 0, then the obstruction group cokerαE = 0 by (4), whence E is unobstructed by (6).
Noting that h0(IE/S(s− 4)) = h0(IE(s− 4)) we get Theorem 1.3 from Theorem 3.1.

Remark 3.3. If E is ACM then H1(IE(v)) = 0 for any v and E is unobstructed by [5].

Proof. Firstly we suppose e 6= 0. Note that E is unobstructed by Remark 3.3 and assumption. Hence
using H1(IE(s)) = 0 and the text accompanying (6) it follows that D(d(E), g(E); s) is smooth at
(E,S). By Lemma 2.2 (i), D(d, g; s) is smooth at (C, S) and at (C ′, S), C ′ := eE + fH. Then the
smoothness of pr1, due to H1(IC(s)) ' H1(IC′(s)) = 0 shows that H(d, g)sc is smooth at (C) and
(C ′) and that W is a generically smooth irreducible component of H(d, g)sc.

To find dimW ′ = dimA1 and hence dimW = dimW ′ − h0(IC/S(s)), we need to determine
dim cokerαC . For this we use Lemma 2.2 (i) to relate dim cokerαC in terms of dim cokerαE . Then
using (4), we get dim cokerαE = t ≥ 0 and hence we obtain the dimension ofW ′ from the dimension
formula accompanying (4).

Finally we suppose e = 0. Then C is a c.i. and it is well known that H(d, g)sc is smooth
at (C) and (C ′). By the smoothness of pr1, we get that W is a generically smooth irreducible
component of H(d, g)sc. Moreover H1(NC) ' H1(OC(s))⊕H1(OC(f)) and using (4), we see that
cokerαC ' H1(OC(f)) and we conclude the proof by H1(OC(f)) ' H0(OC(s− 4))∨.
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Remark 3.4. (i) If H1(NE) = 0, e.g. H1(OE(1)) = 0 and E reduced, then E is unobstructed and
t = 0 in Theorem 3.1. Observe, however, that in many cases where the unobstructedness of E is
known, there is also a dimension formula of h1(NE), making the number t of Theorem 3.1 explicit,
see e.g. [26, Thm. 1.1] for a formula covering both the ACM and Buchsbaum diameter-1 case.

(ii) Assuming h0(IE/S(s − 4)) = 0 and t = 0 in Theorem 3.1 we get generically smooth irre-
ducible components of H(d, g)sc equipped with a dimension (“expected dimension” if h0(IC/S(s)) = 0,
i.e. u = 0 according to [25]) which in [24] was considered to be “the good general components” in
H(d, g)sc in a certain range of the d, g-plane. These components correspond, at least infinitesimally,
to general components in the Noether-Lefschetz locus, see [1] and its references for a discussion of this
locus, while the components in our main Theorems 1.1, 1.2 and 7.3 have large h0(IE/S(s− 4)) and
correspond to components in the Noether-Lefschetz locus of the smallest codimension, see [6, 8,41].

4 Irreducible components of H(d, g)sc

In the background section we noticed that the assumption H1(IC(s)) = 0 for s = 4 implies that
4-maximal subsets form generically smooth irreducible components of H(d, g)sc. We are now looking
for a converse, i.e. that H1(IC(s)) 6= 0 for s ≤ 4 implies that s-maximal subsets form non-reduced
components of H(d, g)sc. If s = 3 this is essentially a conjecture that the first author partially prove
in the appendix. In this section we will see that some ideas of [20] generalize to cover cases where
s > 3 as well. Indeed, we will show the following result which, together with (13), will be used for
proving some results of this paper.

Theorem 4.1. Let W ⊆ H(d, g)sc be a 4-maximal family whose general member C is contained in
a smooth surface S ⊂ P3 of degree 4, and suppose that C is not a complete intersection of S and
some other surface. If h1(IC(1)) ≤ d− 25 and

d ≥ 31 and g > 21 +
d2

10
,

then W is an irreducible component of H(d, g)sc. Moreover W is non-reduced if and only if

H1(IC(4)) 6= 0 .

Remark 4.2. Let C be a curve contained in a smooth quartic surface S. Using IC = ker(OP → OC)
and the exact sequence

0→ OP3(−4)→ IC → IC/S → 0 ,

we get
H1(IC(4)) ' H1(IC/S(4)) and H1(OC(4)) ' H2(IC(4)) ' H2(IC/S(4)) .

Moreover since IC/S ' OS(−C), we have by duality H i(IC/S(4))∨ ' H2−i(OS(C − 4H)), H a
hyperplane section. So to explicitly find non-reduced components given by Theorem 4.1, one should
look for curves C on S such that H i(OS(C − 4H)) 6= 0, for i = 0, 1 i.e. such that the linear system
|C − 4H| contains fixed components, or C − 4H is composed with a pencil (cf. [39]).

To prove the theorem we will need

Proposition 4.3. Let F be an integral surface in P3 of degree s ≥ 4, let S → F be a desingular-
ization and let C ⊂ F be a smooth connected curve of degree d and genus g such that Sing(F ) ∩ C
is a finite set. If NC/S is the normal sheaf of C ↪→ S (i.e. of the proper transform of C ↪→ F ) and
Hilb(F )sc is the Hilbert scheme of smooth connected curves on F , then

dim(C) Hilb(F )sc ≤ dim H0(NC/S) ≤ max { d
2

s
− g + 1,

d2

2s
+ 1 } .

9



Proof. The first inequality is [20, Lemma 22]. In [20, Lemma 23] we use Hodge’s index theorem
to show that degNC/S = C2 ≤ d2/s. Therefore H1(NC/S) = 0 implies h0(NC/S) = χ(NC/S) =
d2/s+ 1− g by Riemann-Roch while if H1(NC/S) 6= 0 then Clifford’s theorem gives dim |NC/S | ≤
1
2 degNC/S ≤ d2/2s, i.e. h0(NC/S) ≤ d2/2s+ 1.

In the proposition below we extend [20, Prop. 20], which should have assumed “Sing(F ) ∩ C
finite" or d > (s(C)− 1)2, from s = 4 to s ≥ 4.

Proposition 4.4. Let V be an irreducible component of H(d, g)sc whose general curve C sits on
some integral surface F of degree s ≥ 4. If d > s2, then

dim V ≤
(
s+ 3

3

)
− 1 + max { d

2

s
− g , d

2

2s
, (4− s)d+ g − 1 + h0(OC(s− 4)) } .

Proof. Let W be any irreducible component of D(d, g; s)sc containing (C,F ). Since the 2nd projec-
tion, pr2 : D(d, g; s)sc → H(s) has the Hilbert scheme Hilb(F )sc as its fiber over (F ), it follows
that

dimW ≤ dim pr2(W ) + dim(C) Hilb(F )sc (15)

where pr2(W ) is the scheme theoretic image of pr2 restricted to W . Indeed endowing W with its
reduced induced scheme structure, we may look upon the induced map pr′2 : W → pr2(W ) as a
morphism between integral schemes whose fiber over (F ) is at least contained in Hilb(F )sc. We get
(15) by the fact that the dimension of every component in a fiber of pr′2 over (F ) is not smaller than
the relative dimension of pr′2, cf. [16, Ch. II, Ex. 3.22].

Suppose F is smooth. Then dim pr2(W ) ≤ dim(F ) H(s) =
(
s+3

3

)
−1. Moreover, NC/F ' ωC⊗ω−1

F

leads to χ(NC/F ) = χ(ωC(4− s)) = (4− s)d+ g − 1 and

dim(C) Hilb(F )sc ≤ h0(NC/F ) = (4− s)d+ g − 1 + h0(OC(s− 4)) .

Suppose F is not smooth, but integral, then pr2 is at least non-dominating, whence dim pr2(W ) ≤(
s+3

3

)
− 2. To use Proposition 4.3 to bound dim(C) Hilb(F )sc, we must show that Sing(F ) ∩ C is a

finite set. Indeed if this set is not finite, then the smooth connected curve C is contained in Sing(F )
which implies d ≤ (s−1)2 because there is a c.i. of type (s−1, s−1) containing C (chosen among the
partial derivatives of the form defining F ). This contradicts an assumption of Proposition 4.4 while
the other assumptions imply the existence of an irreducible component W 3 (C,F ) of D(d, g; s)sc
which dominates V under the first projection pr1 given in (5). Since d > s2 then dimV = dimW
and we can use (15) and the upper bounds of dim(C) Hilb(F )sc to get Proposition 4.4.

Proof (of Theorem 4.1). To see that W is an irreducible component, we suppose there exists a com-
ponent V of H(d, g)sc satisfying W ⊂ V and dimW < dimV . Then s := s(V ) ≥ 5 by the definition
of a 4-maximal family. Moreover s = 5 since the case s ≥ 6 can be excluded. Indeed using (12)
and (13) we get g > G(d, 6) from 21 + d2/10 > 1 + d2/12 + d and the assumptions of the theorem.
To get a contradiction we will use Proposition 4.4 for s = 5, and (7) that implies dimW = g + 33.
Indeed αC is surjective by the infinitesimal Noether-Lefschetz theorem and by assumption, see the
paragraph before Remark 2.1, and we get (7). Let C ′ be the general curve of V . Then s(C ′) = 5
and C ′ is a smooth connected curve. It follows that a surface F ′ containing C ′ of the least possible
degree, namely 5, is integral. We get

g + 33 < 55 + max { bd
2

5
c − g , bd

2

10
c , −d+ g − 1 + 4 + h1(IC′(1)) } .

10



Suppose the maximum to the right is obtained by bd2/5c − g. Then since g + 33 < 55 + d2/5 − g
is equivalent to g < 11 + d2/10, we get a contradiction to the displayed assumption of the theorem.
Similarly, g + 33 < 55 + bd2/10c will lead to a contradiction. Finally if we suppose

g + 33 < 55− d+ g − 1 + 4 + h1(IC′(1)) ,

i.e. h1(IC′(1)) > d − 25 and we use that h1(IC′(1)) ≤ h1(IC(1)) by semi-continuity, we get
h1(IC(1)) > d − 25 which again is a contradiction to the assumptions. Thus we have proved
that W is an irreducible component of H(d, g)sc.

Then using (7), i.e. dimW +h1(IC(4)) = h0(NC), it is straightforward to get the final statement
of the theorem, and we are done.

Corollary 4.5. With notations and assumptions as in the first sentence in Theorem 4.1, suppose
in addition

g > min{G(d, 5)− 1,
d2

10
+ 21} and d ≥ 21 .

ThenW is an irreducible component of H(d, g)sc, andW is non-reduced if and only if H1(IC(4)) 6= 0.

Proof. One checks that the minimum value in the corollary is equal to G(d, 5)−1 (resp. 21 +d2/10)
for 21 ≤ d ≤ 44 (resp. d ≥ 45). Moreover, h1(IC(1)) = h0(OC(1))−4 ≤ max{d−g, d2}−3 for a non-
plane curve by Clifford’s theorem and Riemann-Roch. Hence if d ≥ 45, we get h1(IC(1)) ≤ d − 25
and we conclude by Theorem 4.1.

If 21 ≤ d ≤ 44 we suppose there is an irreducible component V of H(d, g)sc satisfyingW ⊂ V and
dimW < dimV . We may suppose either g > G(d, 5) or g = G(d, 5). In the first case we get s(V ) = 4
which contradicts the 4-maximality ofW . In the remaining case, using (13) and the arguments after
(13), we may assume the general curve C ′ of V is linked to a smooth plane curve E of degree r < 5
by a c.i. of type (5, (d+ r)/5) where the quintic surface S in the c.i. is smooth. Hence we can apply
Theorem 3.1 (replacing W in Theorem 3.1 by V ) with s = 5 and e = −1 (and e = 0 when r = 0)
to compute dimV . Since NE ' OE(1) ⊕OE(r), whence H1(NE) ' H1(OE(1)) we easily compute
h0(IE/S(1)) + t in Theorem 3.1 to be 4− χ(OE(1)) ≤ 2. We get dimV ≤ 56− d+ g − h0(IC′/S(5))
(resp. dimV ≤ 58 − d + g for r = 0) by Theorem 3.1. In particular we have dimV ≤ 58 − d + g
for d ≥ 25 which contradicts g + 33 = dimW < dimV . For 21 ≤ d ≤ 24 we have by (13) at
least two quintic surfaces in the c.i. Y linking C ′ to E. Thus h0(IC′/S(5)) ≥ 1. In the case
d = 21 we get h0(IC′/S(5)) = 2 because ωE ' IC′/Y (6) imply h0(IC′/Y (5)) = h0(OE) = 1. Hence
dimV ≤ 56 − d + g − h0(IC/S(5)) implies dimV ≤ g + 33, and we have a contradiction. Finally
using the left equality of (7) we easily get the statement on non-reducedness of the corollary, and
we are done.

Remark 4.6. Let C be a general curve of a 3-maximal family W . The analogue of Theorem 4.1 for
s(C) = 3 states that W is an irreducible component of H(d, g)sc provided

g > 7 + (d− 2)2/8 and d ≥ 27

as one may easily deduce from the proof of [20, Theorem 5], paying a little extra attention to the case
(d, g) = (30, 106). To show that W is a non-reduced irreducible component, the above result turned
out to be quite useful in [20]. This result, together with Theorem 4.1 for s(C) = 4, improve upon
what we may show by only using (13) by k+d/2, k a constant, cf. Corollary 4.5. This improvement
is not necessary for Theorem 1.1 of this paper because the curves in II) satisfy g > G(d, 5)− 1. We
need, however, Theorem 4.1 in the appendix, and we hope it, or a refined version, applies to other
classes of components where s(C) = 4, as it did for s(C) = 3.
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5 Components of H(d, g)sc for s = 4

In this section we prove Theorem 1.1 stated in the introduction. Let us start by considering the
existence of the quartic surfaces that we need in the sequel, together with determining the smooth
connected curves contained in the surfaces.

5.1 Quartic surfaces containing a line

Our main example comes from studying curves on smooth quartic surfaces containing a line. Such
quartic surfaces appeared in the work of Mori [32], who showed the following result: If there exists
a smooth quartic surface S0 containing a nonsingular curve Γ0 of degree d and genus g, then there
also exists a smooth quartic surface S containing a smooth curve Γ of the same degree and genus,
such that Pic(S) ' ZΓ⊕ ZH, where H is the hyperplane section. (See also [17, p. 138]).

The following result describes the main properties of curves on such quartics (see also [38, Section
3.1]).

Proposition 5.1. There exists a smooth quartic surface S ⊂ P3 with H ≡ Γ1 + Γ2 and Pic(S) '
ZΓ1 ⊕ ZΓ2 where Γ1,Γ2 are smooth curves of genus 0 and 1 respectively, and intersection matrix
given by (

Γ2
1 Γ1 · Γ2

Γ1 · Γ2 Γ2
2

)
=

(
−2 3
3 0

)
.

Furthermore, for any such surface S with H,Γ1,Γ2 as above the following hold:

i) Any effective divisor class can be written as aΓ1 + bΓ2 for non-negative integers a, b ≥ 0.

ii) A divisor class aΓ1 + bΓ2 is nef if and only if 3b ≥ 2a ≥ 0.

iii) If D ≡ aΓ1 + bΓ2 is a divisor with 3b ≥ 2a > 0, then the general element in |D| is a smooth
irreducible curve. Conversely, the classes of the irreducible divisors correspond to classes aΓ1 +
bΓ2 with 3b ≥ 2a > 0 or (a, b) = (1, 0), (0, 1).

Proof. Smooth quartic surfaces S0 containing a line {x0 = x1 = 0} are defined by a homogeneous
polynomial of the form F = x0p+ x1q = 0 where p, q ∈ k[x0, x1, x2, x3] are cubic forms. By Mori’s
result above there exists a smooth quartic surface S such that Pic(S) is generated by the classes
of a smooth rational curve Γ1 and the hyperplane section H. By the adjunction formula, we have
Γ2

1 = −2. In fact the diophantine equation (xH + yΓ1)2 = 4x2 + 2xy− 2y2 = 2(2x− y)(x+ y) = −2
has the only solutions (0,±1), showing that Γ1 is the unique (−2)-curve on S. The class H−Γ1 has
self-intersection 0 and is thus effective. It is in fact represented by the smooth elliptic curve given
by {x0 = q = 0}.

To prove i) we claim that every effective divisor is linearly equivalent to a non-negative integral
linear combination of Γ1 and Γ2. Indeed, let D be any effective divisor class and write D = aΓ1 +bΓ2

for integers a, b. We may assume that D · Γ1 ≥ 0 (otherwise Γ1 is a fixed component of the linear
system |D| and we can instead consider D − Γ1). Then we have 0 ≤ D · Γ1 = 3b − 2a and
0 ≤ D · Γ2 = 3a implying that a, b ≥ 0. Dually we have also shown that the nef cone is determined
by the inequalities a ≥ 0 and 3b ≥ 2a, giving i) and ii).

iii): If C is an irreducible curve with C 6= Γ1,Γ2, then C is nef and C · Γ2 > 0 (by the Hodge
index theorem). So C ≡ aΓ1 + bΓ2 with 3b − 2a ≥ 0 and a > 0. Conversely, if these conditions
are satisfied, the divisor D = aΓ1 + bΓ2 is base-point free [39, Corollary 3.2] and hence by Bertini’s
theorem the general element in |D| is smooth and irreducible.
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For the existence of such a K3 surface one could also use a result of Nikulin [37] which states
that for any even lattice of signature (1, ρ − 1) with ρ ≤ 10, there exists a smooth projective K3
surface with this intersection form. Using this, and the embedding criteria of Saint-Donat [39], one
can show that any surface with intersection matrix as above embeds as a smooth quartic surface.

To prove Theorem 1.1 it is necessary to determine when H1(S,OS(D)) 6= 0. If D = aΓ1 + bΓ2

is effective, then by the proposition above, we must have a, b ≥ 0. If a = 0 then h1(S,OS(D)) =
h1(S,OS(bΓ2)) = max{b − 1, 0}. We will assume a > 0. If now c := −D · Γ1 = 2a − 3b ≤ 0, then
D is nef and D2 = a(3b − 2a) + 3ab > 0 and so h1(S,OS(D)) = 0. If c = 1, then a > 1 (due to
1 = 2a− 3b) and D − Γ1 is nef with (D − Γ1)2 > 0 and so H1(OS(D − Γ1)) = 0 and consequently
H1(S,OS(D)) = 0 by Lemma 2.5. The same lemma implies H1(S,OS(D)) 6= 0 for D 6= Γ1 and
c > 1. Hence we obtain

Proposition 5.2. Let S be a smooth quartic surface with Pic(S) ' ZΓ1⊕ZΓ2 and Γ1,Γ2 and H as
above and suppose D = aΓ1 + bΓ2 is an effective divisor class with a > 0. Then for D 6= Γ1,

H1(S,OS(D)) 6= 0 if and only if 2a > 3b+ 1. (16)

Moreover H1(S,OS(Γ1)) = 0 and if a = 0, then h1(S,OS(D)) = max{b− 1, 0}.

Proof of Theorem 1.1. We get d = a+ 3b, g = 3ab− a2 + 1 from from d = C ·H, g = 1 +C2/2 and
since C /∈ |nH| for every n ∈ Z by assumption, it follows that C is not a c.i. in S. By [20, Thm.
10 and Lem. 13], see Section 2.1 of this paper, the Hilbert-flag scheme D(d, g; s) for s = 4 is smooth
at (C, S) of dimension dimA1 = g + 33. Hence (C, S) belongs to a unique irreducible component
of D(d, g; 4)sc whose image under the 1st projection, pr1 : D(d, g; 4)sc → H(d, g)sc, is the 4-maximal
subset W of the theorem because the assumption d > 16 implies s(W ) = 4.

By Lemma 2.2 we have the properties ofW stated in Theorem 1.1 provided we can take a Z-basis
of Pic(S̃) as in the theorem. Since we may assume that S̃ is very general by using the projections
pri, i = 1, 2 and the very general assumption concerning W , this is straightforward by Lemma 2.4.
Indeed there is a hyperplane section H̃ of S̃ containing Ẽ such that Γ := H̃ − Ẽ is a smooth curve
of degree 3 ( [39]) and instead of the basis {OS(Ẽ),OS(H̃)} given by Lemma 2.4, we may take the
classes of {Ẽ,Γ} as a Z-basis of Pic(S̃).

For the rest of the proof we use (16), (1) as in Corollary 4.5, and Theorem 1.3.
I) By Theorem 1.3 it suffices to show that H1(S,OS(C − 4H)) = 0 because h1(IC(4)) =

h1(OS(C − 4H)). But this is immediate from (16) since the inequality 4 < a < 3b
2 − 1 implies

a− 4 > 0 and 2(a− 4) ≤ 3(b− 4) + 1, and the case (a, b) = (5, 4) corresponds to C − 4H = Γ1.
II) By Corollary 4.5 it suffices to show that H1(S,OS(C − 4H)) 6= 0 for the classes in (2) of

Theorem 1.1. Also this is immediate from (16), since (2) and d > 16 imply 2(a− 4) > 3(b− 4) + 1,
a− 4 > 0 and (a− 4, b− 4) 6= (1, 0). The lattice points in this region satisfying (1) are then found
by inspection.

For the statement on the dimension of the tangent space of H(d, g)sc at (C), we know that this
dimension is equal to g + 33 + h1(IC(4)) by (7). We claim that h1(IC(4)) = 1 (resp. h1(IC(4)) = 2,
h1(IC(4)) = 4) for the family a) (resp. b), c)). To see it we use the short exact sequence in the proof
of Lemma 2.5 for Γ := Γ1 and D := C − 4H (and then to D := C − 4H − Γ1 for the class b)).
Taking cohomology and counting dimensions, we get the claim.

Remark 5.3. Note that if D := C − 4H = aΓ1 + bΓ2 is effective and h1(S,OS(D)) > 0, then either
Γ1 is a fixed component of |D| or D is composed with a pencil, in which case C = 4Γ1 + rΓ2 for
r ≥ 6. In the latter case, it is easy to verify that C does not satisfy the constraints (1), hence does
not lead to non-reduced components by the theory we have so far.
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5.2 Other quartic surfaces

The surface appearing in Theorem 1.1 is an example of a quartic surface for which we can use the
theory of this paper to describe the smoothness properties of the components of the Hilbert scheme.
In fact, by the result of Mori quoted above, it is clear that there should exist many such examples,
but finding ones with irreducible curves satisfying the bound (1) seems more difficult. Nevertheless,
let us finish our study of curves on a smooth quartic by giving the main details of one more class.

Consider a homogeneous quartic form of the form F = x0p+q1q2 where q1, q2 are quadrics defining
the plane conics and p is a cubic. For q1, q2 general, F defines a smooth quartic surface S0 ⊂ P3,
where the hyperplane section splits into two plane conics ({x0 = q1 = 0} and ({x0 = q2 = 0}). Then
by Mori’s theorem, for q1, q2 very general, one obtains a smooth quartic surface with the intersection
matrix (Γi · Γj) =

(−2 4
4 −2

)
. (Again we choose the basis {OS(Γ1),OS(Γ2)} for Pic(S) rather than

{OS(H),OS(Γ1)}.) As before, one can show that Γ1,Γ2 define smooth irreducible (−2)-curves which
generate the semigroup of effective divisors.

Proposition 5.4. There exists a smooth quartic surface S with Pic(S) ' ZΓ1 ⊕ ZΓ2 and Γ1,Γ2,
H ≡ Γ1 + Γ2 as above.

i) Any effective divisor class can be written as aΓ1 + bΓ2 for non-negative integers a, b ≥ 0.

ii) A divisor class aΓ1 + bΓ2 is nef if and only if b
2 ≤ a ≤ 2b.

iii) If D ≡ aΓ1 + bΓ2 is a divisor with a, b > 0, then H1(S,OS(D)) = 0 if and only if D is nef.

iv) If D ≡ aΓ1 + bΓ2 is a divisor with 0 < b
2 ≤ a ≤ 2b, then the general element in |D| is a

smooth irreducible curve. Conversely, the classes of the irreducible curves correspond to classes
aΓ1 + bΓ2 satisfying a, b > 0 and b

2 ≤ a ≤ 2b or (a, b) = (1, 0), (0, 1).

Proof. The first part of the proposition and i) follow as in the proof of Proposition 5.1. If D =
aΓ1 + bΓ2 is nef and non-zero, then intersecting with Γ1 and Γ2 gives the above inequality for ii).
In iii), if D is nef and 6≡ 0, we have D2 = 8ab− 2a2 − 2b2 = 2a(2b− a) + 2b(2a− b) > 0 and so by
the Kawamata-Viehweg vanishing theorem, H1(S,OS(D)) = 0. Conversely, if D is not nef, then we
can without loss of generality assume d = −D.Γ1 > 0. But d must be an even number, hence d > 1
and so H1(S,OS(D)) 6= 0 by Lemma 2.5.

Note that Proposition 5.4 (iii) allows us to see exactly when h1(IC(4)) = h1(S,OS(C−4H)) = 0,
and we get at least:

Proposition 5.5. Let S ⊂ P3 be a smooth quartic surface with Γ1,Γ2 as above, let C ≡ aΓ1 + bΓ2

be a smooth connected curve and suppose a 6= b and d > 16. Then C belongs to a unique 4-maximal
family W ⊆ H(d, g)sc. Moreover if S̃ is a quartic surface containing a very general member of W ,
then Pic(S̃) is freely generated by the classes of two rational conics, and every C ≡ aΓ1 + bΓ2 con-
tained in some surface S as above belongs to W . Furthermore dimW = g + 33,

d = 2a+ 2b , g = 4ab− a2 − b2 + 1 and

W is a generically smooth, irreducible component of H(d, g)sc provided b
2
+ 2 ≤ a ≤ 2b− 4.

Proof. The proof of the properties of the maximal familyW follows as in the first part of Theorem 1.1.
The remaining part follows from Theorem 1.3 and Proposition 5.4 since H1(S,OS(C − 4H)) = 0 if
and only if C − 4H is nef if and only if b+4

2 ≤ a ≤ 2(b− 2).
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Remark 5.6. (i) We may by symmetry restrict the range of Proposition 5.5 to a > b. Then there
are 4 families in the range 2b − 4 < a ≤ 2b which satisfy H1(IC(4)) 6= 0. They are of the form
(5 + 2k, 4 + k) (6 + 2k, 4 + k) (7 + 2k, 4 + k) (8 + 2k, 4 + k), k ≥ 1. Unfortunately, (1) does not hold
for any of these classes, so we can not conclude that they correspond to non-reduced components by
the results we have so far. We expect, however, that they are non-reduced components.

(ii) We are informed by H. Nasu that he, using methods appearing in [33,35,36] is able to show
that the family (5 + 2k, 4 + k) corresponds to non-reduced components of H(d, g)sc, and that these
methods also apply to show the non-reducedness of family a) of Theorem 1.1, cf. Remark 7.4.

6 Components of H(d, g)sc for s = 5

Let S be a very general smooth surface of degree 5 in P3 defined by an equation x0P + x1Q, where
P,Q are very general homogeneous degree-4 polynomials. Let Γ1 = {x0 = x1 = 0} (a line) and
Γ2 = {x0 = Q = 0} (a plane quartic). The hyperplane section H ∈ |OP3(1)|S | satisfies H ≡ K ≡
Γ1 + Γ2 and H2 = 5 where K is the canonical divisor, and we may suppose Pic(S) ' ZΓ1 ⊕ ZΓ2

by Lemma 2.4. Then Γ1 · H = 1, H2 = 5 and the adjunction formula imply that the intersection
matrix is (Γi · Γj) =

(−3 4
4 0

)
.

Let C ⊂ S be a smooth, connected curve of degree d and genus g with C ≡ aΓ1 + bΓ2. We have
d = C ·H, g = 1 + (C2 + C ·K)/2, and we deduce

d = a+ 4b and g = 1 + 4ab+
1

2
(a+ 4b− 3a2) .

As in the case of quartic surfaces, we easily deduce the following result:

Lemma 6.1. Any effective divisor on S is linearly equivalent to aΓ1 + bΓ2 where a, b ≥ 0. Every
nef divisor is linearly equivalent to aΓ1 + bΓ2 where 4b ≥ 3a ≥ 0.

It will be of interest to study the divisor 4Γ1 + 3Γ2, which is on the boundary of the nef cone.

Lemma 6.2. Let S be a quintic surface with Γ1,Γ2 as above. Then the divisor D = 4Γ1 + 3Γ2 is
base-point free. Moreover, for each m ≥ 1, |mD| contains a smooth irreducible curve.

Proof. Choose global sections x and y1, y2 as bases ofH0(S,OS(Γ1)) andH0(S,OS(Γ2)) respectively.
Note that as Γ2 is base-point free, so is the linear system V = 〈y3

1, y
2
1y2, y1y

2
2, y

3
2〉 ⊆ H0(S,OS(3Γ2)).

Note that x4 · V = 〈x4y3
1, x

4y2
1y2, x

4y1y
2
2, x

4y3
2〉 ⊆ H0(S,OS(D)), so if D has a base-point, it is

necessarily contained in Γ1. But a general divisor M ∈ |D| does not intersect Γ1: In particular this
is true for the curve M = {P = Q = 0}, for P,Q general. The last part now follows from Bertini’s
theorem since mD is not composed with a pencil.

Lemma 6.3. Let C be a general element of the linear system |aΓ1 + bΓ2|, where 4b ≥ 3a and a > 1.
Then C is a smooth irreducible curve with H i(S,OS(C)) = 0 for i > 0.

Proof. Since the inequality 4b ≥ 3a ≥ 0 describes exactly the nef cone of S, i.e., C · Γi ≥ 0 for
i = 1, 2, it follows that C is a nef divisor. Assume first that C is ample, i.e., that 4b > 3a > 0, then
C −K = C − Γ1 − Γ2 is nef, and big by a > 1 which implies b > 1, and so by Kawamata-Viehweg,
H i(S,OS(C)) = H i(S,OS(K + (C −K))) = 0 for i > 0. Moreover, in this case, Bertini’s theorem
gives that the general element is smooth and irreducible, since |C| is base-point free.

It remains to consider the case C ≡ 4mΓ1 + 3mΓ2. It was shown above that C is smooth and
irreducible. Let D ∈ |4Γ1 + 3Γ2| be a general smooth element. Then we get H1(S,OS(D)) = 0 by
the exact sequence

0→ OS(3Γ1 + 3Γ2)→ OS(D)→ OΓ1 → 0 .
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Moreover, there is also an exact sequence

0→ OS((m− 1)D)→ OS(mD)→ OS(mD)|D → 0 .

By induction on m, H1(S,OS((m − 1)D)) = 0. Also, a computation gives that OS(mD)|D has
degree > 2g(D) − 2 on D for m ≥ 2, so H1(D,OS(mD)|D) = 0. Hence H i(S,OS(mD)) = 0 for
i > 0.

Proof of Theorem 1.2. If E := Γ1, we get H1(IE(v)) = 0 for any v, whence D(1, 0; 5) is smooth at
(E,S) by (6). Then Lemma 2.2 and (4) imply that the Hilbert-flag scheme D(d, g; 5)sc is smooth
of dimension dimA1 = dim cokerαC − d+ g + 54 at (C, S) because H1(IC(1)) ' H1(OS(C))∨ = 0
by Lemma 6.3, since C is smooth and irreducible. Hence (C, S) belongs to a unique irreducible
component of D(d, g; 5)sc whose image under the 1st projection, pr1 : D(d, g; 5)sc → H(d, g)sc, is a
5-maximal subset W because the assumption d > 25 implies s(W ) = 5. This W is the one given
in the theorem. Thanks to Lemma 2.2 we get the properties of W stated in Theorem 1.2. Also
dim cokerαC = 2 is easily found using Lemma 2.2, and we get dimW = −d+ g + 56.

Now to get I) it suffices by (6) to show H1(IC(5)) = 0. Since H1(IC(5))∨ ' H1(OS(C + K −
5H)) = H1(OS(C−4H)) this group vanishes by Lemma 6.3: Indeed C−4H ≡ (a−4)Γ1 +(b−4)Γ2

satisfies 4(b− 4) ≥ 3(a− 4) and a− 4 > 1 by the assumption 5 < a < 4b
3 − 1 of I).

To get II) we will show g − G(d, 6) > 0 where G(d, 6) = 1 + d + d2/12 − 5r(6 − r)/12 and
0 ≤ r < 6 are given by (13). Since g = 1 + 8n + 24n2 and d = 16n it is straightforward to get
g−(1+d+d2/12) = 8n(n−3)/3, whence g−G(d, 6) > 0 for n > 3 and g = G(d, 6) for n = 3. Then we
can use exactly the arguments in the 2nd paragraph of the proof of Corollary 4.5 to see that W is an
irreducible component of H(d, g)sc, i.e. we only need to show that dimW ≥ dimV for the irreducible
component V of H(d, g)sc containing a curve C ′ of maximum genus: g = G(d, 6) = 241 where d = 48.
By (13) the curve C ′ is a c.i. of type (6, 8), whence with dualizing sheaf ωC′ ' OC′(10). Then we
conclude by dimV = 4d+ h1(OC′(6)) + h1(OC′(8)) = 237 and dimW = −d+ g + 56 = 249.

This component is non-reduced if we can show dimW < h0(NC) for C general. Since dimW =
dimA1, H0(IC/S(5)) = 0 and dim cokerαC = 2 it suffices by (4) to prove h1(IC(5)) ≥ 3. This
follows from the exact sequence in the proof of Lemma 2.5, because Γ1 ' P1.

7 Components of H(d, g)sc for s ≥ 5

Let, as in the case of quintic surfaces, S be a very general smooth surface of degree s ≥ 5 in P3 defined
by an equation x0P + x1Q, where P,Q are very general homogeneous polynomials of degree s− 1.
Let Γ1 = {x0 = x1 = 0} and Γ2 = {x0 = Q = 0}. The hyperplane section satisfies H ≡ Γ1 + Γ2,
H2 = s and we may suppose Pic(S) ' ZΓ⊕ ZH by Lemma 2.4. If C ≡ aΓ1 + bΓ2 then d = C ·H,
K = (s−4)H and the adjunction formula imply that the intersection matrix is (Γi ·Γj) =

(
2−s s−1
s−1 0

)
,

and that

d = a+ (s− 1)b and g = 1 + (s− 1)ab+
1

2
((s− 4)a+ (s− 4)(s− 1)b− (s− 2)a2) . (17)

The first two lemmas of Section 6 generalize easily and we get

Lemma 7.1. Any effective divisor on S is linearly equivalent to aΓ1 + bΓ2 where a, b ≥ 0. Every
nef divisor is linearly equivalent to aΓ1 + bΓ2 where (s− 1)b ≥ (s− 2)a ≥ 0.

Lemma 7.2. Let S be a smooth surface of degree s with Γ1,Γ2 as above. Then the divisor D =
(s−1)Γ1 +(s−2)Γ2 is base-point free and |mD| contains a smooth irreducible curve for each m ≥ 1.
Moreover if C ≡ aΓ1 + bΓ2 is any divisor satisfying C ·Γ1 > 0 and a > 1 then |C| contains a smooth
irreducible curve.
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Indeed, for the final sentence we remark that C−H is nef, hence base-point free since it is a linear
combination of base-point free divisors, Γ2, H, (s− 1)Γ1 + (s− 2)Γ2, with non-negative coefficients.

Even though it seems that we do not get a result similar to Lemma 6.3 in full generality, we can
at least use the first paragraph of its proof to get

H i(S,OS(C)) = 0 for i > 0 provided a > s− 4 and (s− 1)b ≥ (s− 2)a+ s− 4 (18)

because the assumptions on a, b imply that C −K is nef and big. From this, we are led to

Theorem 7.3. Let S ⊂ P3 be a smooth degree-s surface containing a line Γ1, let Γ2 ≡ H − Γ1 be a
smooth curve and suppose Pic(S) ' ZΓ1⊕ZΓ2 and s ≥ 5. Let C ≡ aΓ1 + bΓ2 be a smooth connected
curve of degree d > s2 with a 6= b.

(i) Suppose a > s− 4 and (s− 1)b ≥ (s− 2)a+ s− 4. Then C belongs to a unique s-maximal family
W ⊆ H(d, g)sc. Moreover if S̃ is a degree-s surface containing a very general member of W , then
Pic(S̃) is freely generated by the classes of a line and a smooth plane degree-(s− 1) curve, and every
C ≡ aΓ1 + bΓ2 contained in some surface S as above belongs to W . Furthermore

dimW = (4− s)d+ g +

(
s+ 3

3

)
+

(
s− 1

3

)
− s+ 1 with d, g as in (17),

and if (a, b) 6= (2s− 2, 2s− 4) for s = 5, 6, then W is an irreducible component of H(d, g)sc.

(ii) Suppose s < a <
(s−1)(b−1)

s−2 . Then all conclusions of (i) hold and W is a generically smooth
irreducible component of H(d, g)sc.

Proof. The proof follows the proof of the first part and I) of Theorem 1.2 except for W being an
irreducible component in (i). Let us go through the main points.

The assumptions on a, b in (i) imply that H1(OS(C)) = 0 by the Kawamata-Viehweg vanishing
theorem (18). Moreover, if we replace (a, b) in (i) by (a− 4, b− 4), we get exactly the assumptions
of (ii), leading also to H1(OS(C − 4H)) = 0. Given the first vanishing, we now use Lemma 2.2 to
get the stated properties of W in (i). We also get

dim cokerαC = h0(IE/S(s− 4) = h0(OP3(s− 4))− h0(OE(s− 4)) .

Indeed since E is a line we have cokerαE = 0 by (4). It follows that dimW = dimA1(C ⊂ S) is
given by the formula accompanying (4) recalling A2 ' cokerαC , i.e. dimW is as stated. Finally
having both vanishings, we also get (ii) using the smoothness of pr1 at (C, S), cf. (6).

It remains to prove that W is an irreducible component also when H1(OS(C− 4H)) 6= 0, e.g. to
show that g > G(d, s+1), and in the case g = G(d, s+1) to show dimV ≤ dimW for the component
V ⊂ H(d,G(d, s+ 1))sc of curves of maximum genus mentioned in subsection 2.3. Noticing that

g −G(d, s+ 1) =
d

2

(
2a− 1− d

s+ 1

)
− a2s

2
+ ε (19)

by (13) and (17) where ε = r(s+1−r)s
2(s+1) and r is given by d+ r ≡ 0 mod (s+ 1) for 0 ≤ r ≤ s, we

first consider curves on the boundary (s− 1)b = (s− 2)a, i.e. where C ≡ n(s− 1)Γ1 + n(s− 2)Γ2.
Inserting a = n(s− 1), d = n(s− 1)2 and a2 = nd into (19) and denoting ε(C) := ε we get

g −G(d, s+ 1) =
d

2(s+ 1)
(n(s− 3)− (s+ 1)) + ε(C) .
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It follows easily that g ≥ G(d, s + 1) except in the cases s = 5, 6 and (a, b) = (2s − 2, 2s − 4), and
moreover that g = G(d, s+ 1) only for (s, n) ∈ {(7, 2), (5, 3)}. The case (s, n) = (5, 3) yields d = 48
and g = 241, cf. proof of Theorem 1.2. We get dimV = 237 < dimW . The case (s, n) = (7, 2)
is similar. Indeed let V be the component of H(d, g)sc containing a curve C ′ of maximum genus
G(d, 6) = 469 where d = 72. By (13) C ′ is a c.i. of type (8, 9) with dualizing sheaf ωC′ ' OC′(13).
We get dimV = 4d + h1(OC′(8)) + h1(OC′(9)) = 379, while dimW = −3d + g + 134 = 387 by
Theorem 7.3, i.e. W is an irreducible component.

Finally, it suffices to show g(D) > G(d(D), s + 1) for D ∈ |C + kH|, k > 0 and C on the
mentioned boundary. Using d(D) = d + ks and (19), or directly g(D) = g + kd + sk(s − 4 + k)/2,
we prove that

g(D)−G(d(D), s+ 1)− [g −G(d, s+ 1)] =
k(2d+ sk)

2(s+ 1)
− sk

2
+ ε(D)− ε(C) . (20)

To compute ε(D) − ε(C), we remark that ε(C) does not change using the number ρ satisfying
d ≡ ρ mod (s + 1) for 0 < ρ ≤ s + 1 instead of r in ε(C) because r = s + 1 − ρ. Since
d(D) = d+ ks ≡ ρ− k mod (s+ 1), we have (where the inequality is an equality if ρ− k > 0)

ε(D)− ε(C) ≥ [(ρ− k)(s+ 1− ρ+ k)s− ρ(s+ 1− ρ)s]/(2s+ 2) = −k(s+ 1− 2ρ+ k)s/(2s+ 2).

Combining with (20) we get

k(2d+ sk)

2(s+ 1)
− sk

2
+ ε(D)− ε(C) =

k

s+ 1
(d− s(s+ 1) + ρs) > 0

because d > s2 and ρ ≥ 1. This shows g(D) > G(d(D), s + 1) for (s, n) /∈ {(5, 2), (6, 2)}. In
the cases (s, n) ∈ {(5, 2), (6, 2)}, a direct computation show (d − s(s + 1) + ρs)/(s + 1) = 2 and
g − G(d, s + 1) = −2 (resp. −1) for s = 5 (resp. 6). Hence g(D) > G(d(D), s + 1) except in the
case (s, n, k) = (5, 2, 1) where we have g(D) = G(d(D), 6) = 150 and d(D) = 37, D = C +H. Since
dimW = −d(D) + g(D) + 56 = 169 by Theorem 7.3 while Theorem 1.3 with s = 6 (replacing W in
Theorem 1.3 by V ) implies dimV = −2d(D) + g(D) + 82 + 4 + 3 = 165 < dimW , W is also now an
irreducible component and we are done.

Remark 7.4. The components W of Theorem 7.3 may be non-reduced components of H(d, g)sc in
a range close to the boundary of the nef cone even though we only succeed to prove it for s = 5
and (a, b) = (4n, 3n), n ≥ 3 (Theorem 1.2). If we had been able to compute h0(NC) for a general
curve C of W , we could conclude that all components satisfying dimW < h0(NC) were non-reduced.
Another promising approach to deal with this problem is to compute the cup-product of an element
of H0(NC) and show that it is non-zero, as Mukai and Nasu do in [33, 35, 36] by using the role of
effective divisors with negative self-intersection in linear systems corresponding to |C − 4H|.

8 Appendix on non-reduced components of H(d, g)sc for s = 3

by Jan O. Kleppe

In this section we look at progress to the conjecture below. Note that a maximal family W is
closed and irreducible by our definition, and that dimW = d+ g + 18 always holds provided d > 9.

Conjecture 8.1. Let W be a 3-maximal family of smooth connected, linearly normal space curves
of degree d > 9 and genus g, whose general member C is contained in a smooth cubic surface. Then
W is a non-reduced irreducible component of H(d, g)sc if and only if

d ≥ 14, 3d− 18 ≤ g ≤ (d2 − 4)/8 and H1(IC(3)) 6= 0 .
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This conjecture, originating in [21], is here presented by modifications proposed by Ellia [4] (see
also [2] by Dolcetti, Pareshi), because they found counterexamples which heavily depended on the
fact the general curves were not linearly normal (i.e. the curves satisfied H1(IC(1)) 6= 0).

The conjecture is known to be true in many cases. Indeed Mumford’s well known example ( [34])
of a non-reduced component is in the range of Conjecture 8.1 (minimal with respect to both degree
and genus). Also the main result by the author in [20] shows that the conjecture holds provided
g > 7 + (d − 2)2/8, d ≥ 18, and Ellia makes further progresses in [4] which we comment on later.
Recently Nasu proves (and reproves) a part of the conjecture by showing that the cup-product

H0(NC)×H0(NC)→ H1(NC)

is nonzero if h1(IC(3)) = 1 ( [36]). In this section we will see that the methods of [20] and a nice
result of Ellia in [4] imply that we can greatly enlarge the range where Conjecture 8.1 holds.

Now recall that a smooth cubic surface S is obtained by blowing up P2 in six general points
(see [16] and [15]). Taking the linear equivalence classes of the inverse image of a line in P2 and −Ei
(minus the exceptional divisors), i = 1, .., 6, as a basis for Pic(S), we can associate a curve C on S
and its corresponding invertible sheaf OS(C) with a 7-tuple of integers (δ,m1, ..,m6) satisfying

δ ≥ m1 ≥ .. ≥ m6 and δ ≥ m1 +m2 +m3 . (21)

The degree and the (arithmetic) genus of the curve are given by

d = 3 δ −
6∑
i=1

mi , g =

(
δ − 1

2

)
−

6∑
i=1

(
mi

2

)
.

In terms of a 7-tuple (δ,m1, ..,m6) satisfying (21) one may use Kodaira vanishing theorem and a
further analysis (see [20, Lem. 16 and Cor. 17]) to verify the following facts for a curve C;

(A) If m6 ≥ 3 and (δ,m1, ..,m6) 6= (λ + 9, λ + 3, 3, ..3) for any λ ≥ 2, then H1(IC(3)) = 0. In
particular if a curve on a smooth cubic satisfies g > (d2 − 4)/8, then

H1(IC(3)) = 0 .

(B) If m6 ≥ 1 and (δ,m1, ..,m6) 6= (λ + 3, λ + 1, 1, ..1) for any λ ≥ 2, then H1(IC(1)) = 0.
Moreover, in the range d ≥ 14 and g ≥ 3d− 18, we have

H1(IC(3)) 6= 0 and H1(IC(1)) = 0 if and only if 1 ≤ m6 ≤ 2 .

Remark 8.2. i) The explicit size of the interval where H1
∗ (IC) := ⊕vH1(IC(v)) is non-vanishing

(and a proof of it) was originally found by Peskine and Gruson (see [21, Prop. 3.1.3]).
ii) The case m6 = 0 is treated by Dolcetti and Pareshi in [2]. In this case they found a range

in the (d, g)-plane where the maximal subsets W were contained in a non-reduced component of
dimension > d+ g + 18, see also [4, Rem. VI.6].

Using (A) and the fact that H1(IC(3)) = 0 implies unobstructedness and dimW = d + g + 18
(for d > 9), one may easily see that the conditions of Conjecture 8.1 are necessary forW to be a non-
reduced component. The conjecture therefore really deals with the converse, and we may suppose
m6 = 1 or 2 by (B). For both values the main theorem of this section shows that the conjecture is
true under weak assumptions, thus generalizing the main results of [4] and [20] to:
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Theorem 8.3. Let W be a 3-maximal family of smooth connected space curves, whose general mem-
ber sits on a smooth cubic surface S and corresponds to the 7-tuple (δ,m1, ..,m6), δ ≥ m1 ≥ .. ≥ m6

and δ ≥ m1 +m2 +m3, of Pic(S). Then

i) W is a generically smooth, irreducible component of H(d, g)sc provided

m6 ≥ 3 and (δ,m1, ..,m6) 6= (λ+ 9, λ+ 3, 3, ..3) for any λ ≥ 2,

ii) W is a non-reduced irreducible component of H(d, g)sc provided;

a) m6 = 2, m5 ≥ 4, d ≥ 21 and (δ,m1, ..,m6) 6= (λ+ 12, λ+ 4, 4, .., 4, 2) for any λ ≥ 2, or

b) m6 = 1, m5 ≥ 6, d ≥ 35 and (δ,m1, ..,m6) 6= (λ+ 18, λ+ 6, 6, .., 6, 1) for any λ ≥ 2, or

c) m6 = 1,m5 = 5,m4 ≥ 7, d ≥ 35 and (δ,m1, ..,m6) 6= (λ+ 21, λ+ 7, 7, .., 7, 5, 1) for λ ≥ 2.

In the exceptional case (λ+9, λ+3, 3, .., 3) of i) we have H1(OC(3)) = 0; whenceW is contained
in a unique generically smooth irreducible component V of H(d, g)sc and dimV −dimW = h1(IC(3))
(cf. [20, Thm. 1]). For m6 = 2 in ii) Nasu’s result in [36] gives a better range, see Remark 8.6 ii).

To prove Theorem 8.3, we will need the following two results:

Proposition 8.4. (Ellia) Let d and g be integers such that d ≥ 21 and g ≥ 3d− 18, let W be as in
Theorem 8.3 and suppose the general curve C of W satisfies H1(IC(1)) = 0. If C ′ is a generization
of C in H(d, g)sc satisfying H0(IC′(3)) = 0, then H0(IC′(4)) = 0.

Proof. See [4, Prop. VI.2].

We remark that Ellia uses this key proposition to prove the conjecture provided d ≥ 21 and
g > G(d, 5), cf. (12). His result is in most cases clearly better than the result in [20] which requires
g > 7 + (d − 2)2/8, d ≥ 18, because G(d, 5) = d2/10 + d/2 + ε, ε a correction term. There are,
however, many cases where Theorem 8.3 implies the conjecture while Ellia’s result does not.

Lemma 8.5. Let C be a curve sitting on a smooth cubic surface S, whose corresponding invertible
sheaf is given by (δ,m1, ..,m6), δ ≥ m1 ≥ .. ≥ m6 and δ ≥ m1 + m2 + m3. If v is a non-negative
integer such that m3 ≥ v, and (δ,m1, ..,m6) 6= (λ+ 3v, λ+ v, v, v,m4,m5,m6) for any λ ≥ 2, then

h0(IC (v))− h1(IC (v)) ≥
(
v

3

)
−
∑
mi<v

(
v + 1−mi

2

)
where the sum is taken among those i ∈ {4, 5, 6} satisfying mi < v.

Proof. Let bi := max{0,mi− v} and notice that the invertible sheaf L, given by (δ− 3v, b1, .., b6), is
generated by global sections because b6 ≥ 0 and δ − 3v ≥ b1 + b2 + b3 (cf. [15, Sect. 2]). Moreover
(δ−3v, b1, .., b6) 6= (λ, λ, 0, .., 0) for λ ≥ 2 by assumption; whenceH0(L) contains a smooth connected
curve D (take D = 0 in the special case (δ − 3v, b1, .., b6) = (λ, λ, 0, .., 0) with λ = 0).

Let ni := −min{0,mi − v} for i ∈ {4, 5, 6}, let F :=
∑
niEi and observe that D := D+F is an

effective divisor (or zero) of the linear system |C − vH| corresponding to (δ− 3v,m1− v, ..,m6− v).
By e.g. the algorithm of [11, Rem. 2.7], for finding the Zariski decomposition, it is clear that F is
the fixed component of |D|. Now, as in Lem. 2.5 and Cor. 2.6 of [36], taking global sections of the
sequence 0→ IC/S(v) ' OS(−C + vH)→ OS → OD → 0, we get

h1(IC(v)) = h1(IC/S(v)) = h0(OD)− 1 = h0(OD) + h0(OF )− 1 = h0(OF )

for D 6= 0 because D ·F = 0 (h1(IC(v)) = h0(OF )− 1 for D = 0). The lines Ei are skew and we get
h0(OF ) =

∑
h0(OniEi) =

∑(
ni+1

2

)
. Finally h0(IC(v)) = h0(IC/S(v)) +

(
v
3

)
≥
(
v
3

)
(equality holds,

but we don’t need it) and we are done.
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Proof of Theorem 8.3. i) is a special case of [20, Thm. 1] since m3 ≥ 3 easily implies d > 9 or that
the general curve C is a c.i. of type (or bidegree) (3, 3).

ii) By (7) we get
dimW + h1(IC(3)) = h0(NC) . (22)

Since h1(IC(3)) 6= 0, it suffices to prove thatW is an irreducible component of H(d, g)sc because if it
is, then dimW < h0(NC) implies that the general curve C ofW is obstructed, i.e. W is non-reduced.

a) To get a contradiction, supposeW is not a component. SinceW is a maximal family of curves
on a cubic surface, there exists a generization C ′ of C satisfying h0(IC′(3)) = 0. By semi-continuity,
h1(OC′(4)) ≤ h1(OC(4)). Combining with χ(IC′(4)) = χ(IC(4)), it follows that h0(IC′(4)) −
h1(IC′(4)) ≥ h0(IC(4))− h1(IC(4)). However, by Lemma 8.5, we have h0(IC(4))− h1(IC(4)) ≥ 1,
hence h0(IC′(4)) ≥ 1. Since the curve is linearly normal by (B), this inequality contradicts the
conclusion of Proposition 8.4.

b) Again it suffices to prove that W is an irreducible component of H(d, g)sc. To get a contra-
diction we suppose there is a generization C ′ of C satisfying h0(IC′(3)) = 0. By semi-continuity of
h1(OC(v)) and Lemma 8.5, we get

h0(IC′(v))− h1(IC′(v)) ≥ h0(IC(v))− h1(IC(v)) ≥ (v3)− (v2) for 1 ≤ v ≤ 6 .

Hence h0(IC′(6))− h1(IC′(6)) ≥ 5. Since s(C ′) ≥ 5 by Proposition 8.4 and (B), C ′ is contained in
a c.i. of bidegree (5,6) or (6,6). Hence d ≤ 36 and we have a contradiction except when d = 35 or
36. In the case d = 36, C ′ is a c.i. satisfying h0(IC′(6)) ≥ 5, and if d = 35, we can link C ′ to a line
D satisfying h1(OD(2)) 6= 0 (because h0(IC′(6)) > 2), i.e. we get a contradiction in both cases, and
we are done.

c) The proof is similar to b), remarking only that we now have h0(IC′(6)) ≥ 4 and h0(IC′(7)) ≥ 11
by Lemma 8.5, i.e. C ′ is contained in a c.i. of bidegree (5,7) or (6,6), and since the case where C ′ is
a c.i. of bidegree (5,7) can not occur (the dimension of an irreducible component of H(d, g)sc whose
general curve is a c.i. of type (5, 7) is much smaller than d+ g + 18) we conclude as in b).

Remark 8.6. i) Theorem 8.3 (without c) of ii)) was lectured at a workshop organized by the "Space
Curves group" of Europroj, at the Emile Borel Center, Paris in May 1995, and may be known to some
experts in the field (cf. [17, p. 95]), but it has not been published. The appendix in the preprint [23]
covers the important results of the talk, and much of the material is included here. Note that we in
Lemma 19 of [23] should replace equality by inequality, exactly as we now do in the displayed formula
of Lemma 8.5 (we see from its proof that equality almost always holds, except when D = 0). This
correction does no harm to the arguments of Theorem 8.3 since it is precisely the inequality we need
in its proof. In the proof of Lemma 8.5 we follow closely corresponding results in [36] which is based
on making the fixed component of |C − vH| explicit. Lemma 8.5 for v = 4 imply Lemma 18 of [20].

ii) The case a) of Theorem 8.3 ii) is fully generalized in [36]. Indeed Nasu shows that the cup-
product (primary obstruction) of the general curve of any maximal family W satisfying m6 = 2 and
m5 ≥ 3 is non-vanishing. We think his approach may be adequate for proving the whole conjecture.

Finally using Proposition 4.4 for s = 5 and closely following the proof of Theorem 4.1 (replacing
dimW = g+ 33 by dimW = d+g+ 18 in the argument and noticing that a generization C ′ satisfies
s(C ′) ≥ 5 by Ellia’s Proposition 8.4), we immediately get the following result.

Proposition 8.7. Let W be a 3-maximal family of smooth connected space curves, whose general
member is linearly normal and sits on a smooth cubic surface. If

g > max { d
2

10
− d

2
+ 18, G(d, 6) } , d ≥ 31 , (23)
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then W is an irreducible component of H(d, g)sc. Moreover, W is non-reduced if and only if
H1(IC(3)) 6= 0. In particular Conjecture 8.1 holds in the range (23).

Note that we in (23) have G(d, 6) ≥ d2

10 −
d
2 + 18 if and only if d ≤ 74. We can weaken the

assumption g > G(d, 6) by using Proposition 4.4 also for s = 6 and 7. Indeed for any t such that
6 ≤ t ≤ 8 we can conclude as in Proposition 8.7 provided g > max { d210−

d
2 +18, G(d, t) } , d > t(t−1) .

Since G(d, 8) ≤ d2

10 −
d
2 + 18 for d ≥ 58, we obtain all conclusions of Proposition 8.7 in the range

g >
d2

10
− d

2
+ 18, d ≥ 58 . (24)
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