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Abstract—Query-by-Humming involves retrieving music with a melody that matches the 

hummed query. An improved Query-by-Humming system for extracting pitch contour 

information based on a fuzzy inference model is introduced. In addition, an improved 

content-based music repeating pattern extraction model is introduced. Our bar-indexing 

method can extract the melody, identify repeating patterns and handle polyphonic MIDI files. 

To verify the effectiveness of the system, 15 volunteers recorded queries that were fed as 

input to the system and the Longest Common Subsequence (LCS) was used to identify the 

most related top N matches. The system achieves 70% accuracy among the top 5 items 

retrieved. 

Keywords: fuzzy inference system, content-based music information retrieval, 

query-by-humming, repeating pattern, pitch contour. 
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1. INTRODUCTION 

The Internet is commonly used to search for information such as text, images, video, and 

music. The capacity of storage devices is growing, and so is the amount of information stored. 

Multimedia files have become commonplace due to enhanced bandwidth and fast 

transmission networks. Traditional record shops are replaced with Internet-based 

pay-per-download and streaming services. The objective of Music Information Retrieval 

(MIR) is to quickly and correctly find the right contents from a music database. Several 

music file-formats are commonly used, including MIDI, MP3, Wave, and Voice. MIDI 

(Musical Instrument Data Interface) is a popular format as it contains semantic music 

information and not the actual audio. Moreover, MIDI files require less storage space than 

audio data, they are faster to process and therefore result in faster and more accurate query 

results. 

Monophonic melodies are more common than polyphonic melodies in music information 

retrieval systems since most people are only able to sing, hum and whistle monophonically. 

Furthermore, humans perceive and remember monophonic melodies even though they hear 

polyphonic music. Therefore, the first task is to extract the main monophonic melody from a 

polyphonic melody to simplify the query matching.  

Previous studies have explored several innovative query models, including 

Query-by-Humming [1-7], Query-by-Tapping [8], Query-by-Example [9], Query-by-Tags 

[10], and Query-by-Descriptions [11]. Query-by-Humming in particular has received much 

attention. This is probably because humming is a simple, intuitive and direct way for 

individuals to express music. However, it is more difficult to retrieve music based on 

humming compared to other approaches. 

Several approaches translate hummed melodies into MIDI [12] as it simplifies comparison. 

Several music matching methods have been studied such as Bayesian classifiers [13], hidden 
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Markov models [14, 15], string matching [16, 17], dynamic programming [18, 19], dynamic 

time warping (DTW) [20, 21], and tree based searching [22, 23]. However, most of the 

previous approaches are computationally expensive. Previous research has used repeating 

patterns as a search index, since a repeating pattern is usually the prominent and recognizable 

part of a music piece. In such systems, when a user hums a repeating pattern as a query, the 

query-by-humming system uses this repeating pattern as the search index when searching the 

music database.  

This study explores an improved music retrieval method based on humming. First, a 

method for extracting the perceivable main melody of a complete polyphonic musical piece is 

described. The output from several existing main melody extraction algorithms are used as 

input to the system and the one with the highest average pitch is selected. The melodies are 

coded using more symbols than previous methods and hence more of the musical information 

is preserved. In addition, fuzzy inference is employed to make the method more robust to the 

errors that are introduced when the recorded humming audio is converted into semantic 

music data. The objective of the method is to achieve more accurate retrieval results with less 

computational effort compared to previous approaches.  

The remainder of this paper is organized as follows. Section 2 introduces definitions and 

notations used throughout the paper and previous research is reviewed. Section 3 presents the 

details of our approach. Section 4 documents the test results. Finally, Section 5 concludes the 

paper and indicates areas of further study. 

2. RELATED WORK 

Uitdenbogerd and Zobel [24, 25] explored four melody extraction algorithms. Fig. 1 shows 

results obtained using the four methods. Fig. 1a shows the original polyphonic music piece 

spread across the G-clef and the F-clef. Their first algorithm, Skyline [26], combines all the 

notes of a MIDI file into single MIDI channel by taking the note with the highest pitch (see 
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Fig. 1b). Fig. 1c shows the perceivable melody extracted by an algorithm that only includes 

the notes with the highest pitch in the G-clef. Fig 1d shows the results of an algorithm that 

considers the notes with the highest pitch in the F-clef only. Finally, the results in Fig. 1e are 

generated by an algorithm that only includes the lowest pitch of the F-clef, namely the bass 

line. 

 

Fig. 1. (a) Original music, (b)-(e) the monophonic melodies extracted using the four 

algorithms [24]. 

The Skyline algorithm was later improved by including note durations to obtain better 

recognition results [27]. This is achieved using a time overlap parameter. Another variation of 

this algorithm splits the process into three steps: (1) remove unwanted channels, (2) select the 

channel with the largest volume, and (3) keep the highest note when several notes are played 

simultaneously [28]. 

Methods for extracting the main melody from multiple MIDI channels of polyphonic 

music pieces either break up all notes from their original positions and then regenerate the 

main melody, or they identify the MIDI channel holding the main melody. However, these 

approaches may not fully capture the perceived melody. First, the result may be different 



5 
 

from the original melody when the notes are broken up. Second, composers may distribute 

the main melody across different channels.  

Fig. 2. Illustrates how the main melody spans multiple MIDI channels in an arrangement of 

“Symphony No. 40 first Movement” by Wolfgang Amadeus Mozart. The main melody is 

indicated by using highlighted gray boxes. The five first bars of the melody start on channel 4, 

then move to channel 1 for six bars, and finally return to channel 4. Such channel changes 

occur frequently as composers often assign different instruments to the main melody and 

each MIDI channel can be assigned a different instrument. A bar is a segment of time 

corresponding to a specific number of beats and the boundaries of the bar are indicated by 

vertical bar lines (see Fig. 2). 

ch 1

ch 2

ch 3

ch 5

ch 4

 

ch 1

ch 2

ch 3
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ch 4

 

ch 1

ch 2

ch 3

ch 5

ch 4

 

Fig. 2. The main melody across multiple MIDI channels. 

Shih et al. [29] indexed music using a dictionary to find repeating patterns based on the 
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classic work of Lempel and Ziv. Each bar is indexed and an adaptive dictionary method is 

used for identifying repeating patterns. Tseng [30] used a pitch profile encoding for queries 

and an n-node indexing method for approximate matching in sub-linear time. Experiments 

showed that the pitch profile encoding and a 3-node indexing were able to overcome the key 

mismatch problem and the random errors caused by pitch error, note deletion and node 

insertion. Chang et al. [31] believed melody contours could cover most of the repeating 

patterns in the melody string. Jonah et al. [32] used hidden Markov models (HMMs) to 

represent music. In their work, the query was treated as an observation sequence and a piece 

is considered to be similar to the query if its HMM has a high likelihood of generating the 

query. The top pieces were returned to the user in rank-order. Hsu et al. [33] developed a data 

structure called correlative matrix to extract repeating patterns and a string-join operation and 

a random projection tree to find repeating patterns. Medina et al. [34] used a self-similarity 

matrix to extract the themes of music and Barlow and Morgenstern’s Dictionary of Musical 

Themes to verify the correctness of the themes.  

Most studies translated each note from the music database to form indices. If a 

composition has many notes such as semiquavers or demisemiquavers, more computational 

effort is needed. Thus, the goal of our approach is to balance the size of the sampling time 

windows of the melody to achieve a meaningful and effective index. 

Various indexing units have been used including notes, bars and phrases. The purpose of 

the index is to maintain the integrity of the original music. This study considers the bar and 

pitch interval of music compositions as index elements. The bars are the natural larger units 

of music, and each melody is constructed from bars. 

Ghias et al. [35] processed MIDI files by replacing each note with a symbol representing 

its pitch relative to the previous note. In this way, three pitch directions were defined, namely 

up (U), down (D) and level (S), and each pitch is assigned one of three symbols, (U, D, S). 
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Several researchers have improved upon these, including Typke et al.’s Parsons Code [36]. 

They also used the pitch contour from humming and represented them with strings of U, D, 

and R (repeat) symbols. McNab et al. [37] combined a rhythm feature with the pitch contour. 

Li et al. [6], Sonoda et al. [38], and Mo et al. [39] considered duration using L (longer), R 

(repeat), and S (same) to represent changes. These studies are mostly based on Ghias's 

method using U, D, and S symbols. Although this approach is simple, it suffers from the 

drawback that different melodies may result in the same sequences. For example, the pitch 

contours of the two different strings “g5, e5, e5, f5, d5, d5” and ”g5, c5, c5, a5, f5, f5” are 

identical, that is “D, S, U, D, S”. In this study we overcome this problem by including seven 

symbols. 

3. IMPROVED MUSIC RETRIEVAL 

The approach described in this work first translates the original polyphonic music 

recording to a monophonic melody, and then uses a four phase algorithm to extract the main 

melody. Next, repeating patterns are extracted for each MIDI file and transformed to pitch 

contours. These pitch contours are stored in the pitch contour database. The hummed queries 

are fuzzified to make the approach more robust to acoustic audio processing errors. Finally, 

we compare the user’s pitch contour with the entries in the pitch contour database using the 

LCS algorithm. Each of these phases is described in the following sections. 

 

3.1 Main Melody Extraction  

Four phases are used to identify the melody, namely the removal of the percussion channel, 

channel-based pitch extraction, average pitch computation, and main melody salience. 

3.1.1 Percussion Channel Removal 

Ghias et al. suggested that the percussion channel never contributes to a melody and should 

be discarded during melody selection [26, 36]. Consequently, the elimination of the 
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percussion channel enhances the accuracy of the search and reduces the computational load. 

Therefore, we removed the percussion channel. 

3.1.2 Channel-based Pitch Extraction 

In the Skyline algorithm, all notes of a musical composition are collected into a single 

channel. From these notes, the highest pitch line is determined and used to define the main 

melody. In order to preserve the original melody, the note durations are not modified. 

3.1.3 Average Pitch 

To determine the channel containing the main melody, the average pitch of each channel is 

calculated and the channel with highest average pitch is defined as the melody channel with 

the highest pitch. This study targets folk songs and most melodies in this genre may appear in 

the highest pitch melody channel. Note that this assumption may not hold for other music 

genres such as jazz, soul or funk where the bass lines often convey the perceived melody of a 

music piece. 

Assume that M is a MIDI file with channels C such that M = { C1 ,C2 , …, Ci } where 1≤ i ≤ 

16. Each channel, Ci, contains j bars. Mathematically, the bars of a channel can be expressed 

as Ci = { Bi,1, Bi,2, …, Bi,j}. The average pitch of Bi,j being Pi,j is also defined and then the 

average pitch of each channel (Pi) can be calculated: 

,

1  .

j

i k

k
i

P

P
j




                               (1) 

After calculating the average pitch within each of the 16 channels, these values are sorted 

to determine the channel having the highest pitch, labeled as the highest pitch melody 

channel. 

3.1.4 Main melody salience  

A function that determines the location of the main melody within a bar is referred to as the 

main melody salience. First, we use the main melody salience function to calculate the 
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difference between two adjacent bars in the same channel to detect whether the main melody 

has moved to another channel or not. Second, we use the main melody salience function to 

compare bars in different channels to determine to which channel the melody may have 

moved. For this, we consider pairs of bars, and sequentially check each pair from the first to 

the last bar. Next, we defined a threshold parameter that provides a decision cutoff for 

assigning the melody into a particular channel. Thus, if the main melody salience difference of 

an adjacent pair of bars is less than the threshold, the main melody may be moved to the other 

channels. In practice, the threshold was set to the values between 0.10 and 0.15 in our 

implementation. The main melody salience MMSi,j of Bi,j is formally defined as follows:  
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(2) 

where Pi,j is introduced in the previous subsection and Di,j is the duration average of notes. 

Table I shows the contrast between note names and the defined values. The constant variable 

w is a weight. For the pitch and duration, pitch is considered more influential. In our 

experiment, w was set to 0.5 to reduce the influence of duration. 

TABLE I 

THE CONTRAST BETWEEN NOTES AND DEFINED VALUES 

Note 
Defined 

value 
Note 

Defined 

value 

 1  1.5 

 
2 

 
3   

 
4 

 
6 

 
8  12 

 
16  24 

 
32 

 
48 

All rest 

notes 
0   

 

When the main melody departs from the highest pitch melody channel, Eq. (3) can be used 

to determine its main melody salience at the same bar of the other channels, and the channel 

with the highest main melody salience is defined as the next location of the main melody. 
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where n represents the number of channels. Next, Eq. (4) is used to detect whether the main 

melody returns to the highest pitch melody or not. 

1, 1, , ,

,

1, , 1, , 1 , 1, ,

1
 .

2

j j i j i j

i j

j i j j i j j i j j i j

P D P D
MMS w w

P P D D P P D D

    
                  

 
(4) 

If MMSi,j is less than 0 the main melody returns to the first channel (highest pitch melody); 

otherwise, it remains in the current channel Ci. 

Finally, the main melody is extracted from the MIDI file, and it is combined with the main 

channel (highest pitch melody) and a part of other channels. This algorithm is illustrated 

below. 

 

1. Let C1 := MM (highest pitch melody) 

2. Let i = 1 

3. For each E1,i such that i < B 

3.1 If (|E1,i - E1,(i+1)| > T) then 

    3.1.1 Let Cj = Max{E1,(i+1), E2,(i+1), …, E15,(i+1)} := MM 

    3.1.2 If ( Cj <> C1) then 

            Let k = i + 2 

            For each Ej,k such that k < B 

             If (Ej,k < E1,k) then 

4. Let C1 := MM, i = k – 1, and break loop 

 

There are only 15 channels since the percussion channel is removed, and P1>P2>…>P15, 

such that C1, C2, …, C15 is sorted. C1 is the highest pitch melody. The number of bars, main 

melody, and threshold are presented as B, MM, and T, respectively. 

Fig. 3 illustrates the process. The staff in Fig. 3(a) represents a piece from a MIDI file and 

after channel-based pitch extraction process it becomes the staff in Fig. 3(b). Next, the main 
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melody salience values are calculated and compared to determine the main melody 

represented by the staff in Fig. 3(c). Finally, the main melody is generated and shown as the 

staff in Fig. 3(d), that is, a monophonic melody. 

Note that this method is not designed to handle complex musical structures such as musical 

counterpoints, which are commonly found in many Baroque pieces. When retrieving a 

particular piece of music one would expect the user to hum a continuous and recognizable 

part of the melody and not to hum the counterpoints. 

 

Fig. 3. Main melody extraction. 

3.2 Extracting Repeating Patterns  

The process of extracting of repeating patterns consists of indexing, extracting, and 

pruning. 

3.2.1 Indexing 

The pitch of the first and last notes from each bar are retained, and the pitch interval 

variation is obtained by subtracting the lowest pitch from the highest pitch in each bar. Each 

bar can then be represented simply by three elements, i.e., the first pitch, the last pitch and the 

pitch interval. The pitch interval is represented by the MIDI pitch value (from 0 to 127). For 

example, the four bars in Fig. 4 can be represented using {g5, e5, 3}, {f5, d5, 5}, {c5, f5, 5}, 

and {g5, g5, 0}, respectively.  
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Fig. 4. MIDI file example. 

3.2.2 Extracting 

The repeating pattern search algorithm is illustrated next: 

 

  1. Let S be a sequence of bar index set of length n 

  2. Let i = 0, and k = 0 

  3. For each Si such that i < n 

    3.1 If i ≤ k, let j = k + 1 

    3.2 For each Sj such that j < n 

          If Si = Sj then 

put Si to the pre-repeating list 

set the value of j to k 

and break loop 

 

Step 3 sequentially compares adjacent index sets from the first to the last pitch. To reduce 

the number of comparisons, the variable k is used to locate the last repeating pattern found. 

When the repeating pattern is found, k contains the position, and in the next iteration, only 

position i+1 with k+1, not i+1 with i+2 will be compared. In this case, the number of 

comparison can be reduced to (k+1)-(i+1)-1. By inspecting our music database, consisting of 

mostly Western and Chinese folk songs, we found that the duplicate pieces have a regular 
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pattern. Therefore, we can skip several search steps, starting directly after the location of the 

repeated section. As an illustration of how the algorithm proceeds, Fig. 5 shows different 

iterations of the algorithm. In the first iteration, the first and sixth bars are the same, indicated 

by “A”. In the second iteration we compare the second and seventh bars and find the same 

“B”. In the third iteration we compare the third and eighth bars with “C” and “F”. In the 

fourth iteration we therefore compare the fourth and eighth bars since “C” is different from 

“F”, and so on. In this phase, all repeating patterns found are put into a pre-repeating list, and 

each pattern is separated by the symbol “,”. Duplicate patterns may exist in the pre-repeating 

list and a pruning algorithm is used to generate the final repeating patterns. For example, 

imagine that there are two repeating patterns “{g5, e5, 3}, {f5, d5, 5}” and “{g5, e5, 3}, {f5, 

d5, 5}, {a5, g5, 7}” (see Fig. 4), then the pre-repeating list is “{g5, e5, 3}, {f5, d5, 5}, {g5, e5, 

3}, {f5, d5, 5}, {a5, g5, 7}”. 

 

A B C D E A B F G H

1

2

3

 

Fig. 5. Repeating pattern extraction. 

 

3.2.3 Pruning  

The algorithm for pruning the pre-repeating list is illustrated next: 

 

  1. Let P be a string set sequence of pre-repeating list that includes m patterns and each 

pattern is separated by “,” 

  2. Add a character “.” to the end of P 

  3. Let i = 0 

  4. For each Pi such that i < m, let j = 0 
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4.1 For each Pj such that j < m 

   4.1.1 If the first character of P is “.” then 

                      break and 

return final repeating pattern 

                   Else 

                        4.1.1.1 If Pi   Pj then 

                              delete Pi from P 

                        Else 

                              move Pi to the end of P 

         4.1.1.2 update string P 

In Step 2 of the algorithm, the character “.” is added to the end of the pre-repeating list. 

When the pruning algorithm finds the end point in step 4.1.1, it indicates the completion of 

the pruning process. If pattern A is included within pattern B, then pattern A is pruned, and 

only pattern B is retained as given in step 4.1.1.1 above. The final step in this phase involves 

updating the pre-repeating list. For example, let pre-repeating pattern P contains P1, P2, P3, 

and P4 (see Fig. 6). Since P2 comprises P1 then P1 is removed; and P2 is the same as P4 and 

P2 is then also removed. After the pruning process, the final repeating pattern is the set that 

contains P3 and P4. In Fig. 4, two patterns “{g5, e5, 3}, {f5, d5, 5}” and “{g5, e5, 3}, {f5, d5, 

5}, {a5, g5, 7}” were obtained from the pre-repeating list after the repeating pattern 

extraction phase. Because the latter pattern consists of the former pattern, the former pattern 

is pruned and only the repeating pattern “{g5, e5, 3}, {f5, d5, 5}, {a5, g5, 7}” is retained. 
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Fig. 6. Pruning. 

 

3.3 Query-by-Humming 

Based on the recommendations presented in Zhu et al. [40], we used Akoff Music 

Composer version 3.0 as a tool for transforming WAV to MIDI. 

3.3.1 Pitch Contour 

After translating WAV to MIDI, the pitch interval is analyzed. Pairs of neighboring pitch 

intervals are divided into seven symbols as shown in Table II.  

TABLE II 

PITCH CONTOUR 

Symbol MIDI Pitch Interval 

H > 12 

R 7 ~ 12 

U 1 ~ 6 

S 0 

D -1 ~ -6 

B -7 ~ -12 

L < -12 

 

3.3.2 Fuzzy Inference System (FIS) 

We used a Fuzzy Inference System (FIS) to transform time intervals of pitch queries into 

symbolic representations [43-46]. Such a soft method is effective since the input humming 

queries may contain slight pitch errors, resulting in erroneous notes when translated to MIDI.  

By using a fuzzy inference, soft membership functions provide more robust classification of 

these input pitch contour errors introduced in the audio to MIDI transformation. Seven 

Gaussian membership functions are defined for the input query variable in this study (see 
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Table II). The seven terms are labeled mf1to mf7 and correspond to the output membership 

functions L, B, D, S, U, R, and H, respectively. Seven fuzzy rules are defined accordingly.  

3.3.3 Longest Common Subsequence  

Longest Common Subsequences (LCS) are used for similarity measurements of music pitch 

contours because of the temporal characteristics of music. Given two string sequences X(1, 2, 

..., m) and Y(1, 2, ..., n) of length m and n, respectively. Xi represents a subsequence of X(1, 2, 

..., i) or the prefix of the sequence X of length i and xi represents ith element of the 

subsequence. The LCS of X and Y is described in the following expressions: 

1 1

1 1

                                                           if 0 or 0

( , ) ( ( , ), )                               if  .

Max( ( , ), ( , ))       if 

i j i j i i j

i j i j i j

i j

LCS X Y LCS X Y x x y

LCS X Y LCS X Y x y

 

 

  


 




 

(5) 

Function LCSLen(X[1, …, m], Y[1, …, n]) 

         Initialize C[m][n] to zero 

         for i = 0 to m 

            C[i][0] = 0 

         for j = 0 to n 

            C[0][j] = 0 

         for i = 1 to m 

            for j = 1 to n 

                if X[i] = Y[j] 

                      C[i][j] = C[i-1][j-1] + 1 

else 

                      C[i][j] = Max(C[i][j-1], C[i-1][j]) 

        Return C[m][n] 

For example, the two pitch contours “U, S, S, D, R, D, R, B” and “U, S, D, R, B” yields an 

LCS length of 4 as shown in Fig. 7. Thus, LCS length is used for sorting entries and selecting 
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the top ten as candidate sets when queries are compared with entries in the database. 

UU SS SS DD RR DD RR BB

UU DD SS RR BB

UU DD RR BB

 

Fig. 7. LCS example. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

Experiments were conducted to investigate the effectiveness of our approach and the results 

are compared with other Query-by-Humming systems. However, it is challenging to compare 

different Query-by-Humming systems, as the retrieval performance is affected by the audio 

format used, music styles, recording conditions, database compositions and retrieval methods. 

The focus is therefore on previous studies with similar experiments to ours. 

4.1 Experimental Setup 

The database of 527 polyphonic MIDI files were collected from the Internet, mostly 

consisting of Chinese and western folk songs. The duration of the MIDI songs varied from 

approximately two to five minutes and the number of bars varied from 32 to 116. The total 

playback time of all the MIDI files was 31 hours and 45 minutes, and the total number of bars 

was 34,585. On average, each composition contained 66 bars, and the average duration was 

3.6 minutes. The pitch contours associated with the repeating patterns for each music piece 

were stored in the database as indices. 

A total of 15 volunteers were recruited including 9 females and 6 males who had never 

undertaken any professional music training. The musical abilities of the volunteers were not 

tested and no training was provided before recording the queries. A total of 60 hummed 

queries were recorded ranging in duration from 5 to 15 seconds. The queries were translated 

to MIDI using Akoff Music Composer and the FIS was used to transform the MIDI data into 
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pitch contours. After transforming the queries to pitch contours, the length of the pitch 

contour strings ranged from 20 to 34 symbols. The FIS was implemented in MATLAB.  

4.2 Repeating Pattern Extraction 

Repeating patterns were extracted for all the compositions in the database and for each 

query. Fig. 8 plots the repeating pattern extraction processing times as a function of the 

number of bars. The execution times ranged from 0.4 seconds with 32 bars to 1.7 seconds 

with 116 bars. The mean execution time was 0.94 seconds. Note that these results are 

achieved without optimizations. Related studies did not report execution times and 

comparisons to these studies could therefore not be made. 
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Fig. 8. Processing time as a function of number of bars. 

Furthermore, the effect of the repeating patterns was evaluated using a hit rate measure. 

This hit rate is defined as the portion of retrievals that correctly matches the query. The hit 

rates achieved with and without repeating patterns are compared in Fig. 9. The length of the 

pitch contours representing the raw unprocessed queries ranged from 20 and 34 symbols. 

Comparatively, the length of the simplified pitch contours (repeating patterns) ranged from as 

little as 10 symbols to 32 symbols. Fig. 9 shows that the hit rate is larger for the simplified 
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queries as the best results occur for queries comprising 10 to 15 symbols with a hit rate of 

66.7% for 10 symbol pitch contours. Even when users hum a melody repeatedly, or hum a 

lengthy melody, suitable key-indices are found without relying on full queries. 

 

Fig. 9. Hit rates before and after extracting the repeating patterns. 

 

4.3 Fuzzy Inference System 

Fig. 10 demonstrates the effects of FIS compared to the results acquired without FIS. The 

horizontal axis represents the top N and the vertical axis represents the retrieval rate. The 

retrieval rates achieved with FIS are 5 to 19 percentage points higher than the retrieval rates 

achieved with previous methods. On average FIS achieves 10 percentage points above those 

of the other methods. That is, the observations obtained with FIS (the stippled line) are on 

average 10% points higher than those of previous methods (the solid line). In just one case 

the FIS improvement was only 5 percentage points.  

 

Fig. 10. Results with and without FIS. 

 

4.4 Performance Comparisons 
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Finally, our method is compared with three similar Query-by-Humming systems, Guo et al. 

2008 [41], Li et al. 2010 [6], and Jeon and Ma 2011 [42]. Unfortunately, there are no standard 

benchmark databases for query-by-humming research available and the systems described in 

the previous studies are not generally available. We were therefore forced to design our own 

test suite. The benefits of the studies selected for comparison is that they all used complete 

and polyphonic compositions. Note that all the compared methods are based on different test 

suites and there are therefore several sources of potential errors that could bias the results 

such as different music styles, quality of humming and the quality of the humming itself. The 

comparisons are valid because all the compared observations are made using the same unit of 

measure. Moreover, the mean performances of the approaches are compared, thus 

counterbalancing potential biases of individual music pieces. 

The results are presented in Fig. 11 where the horizontal axis represents the mean 

percentage of top N retrieval and the vertical axis compares top 1, top 3, top 5, and top 10 

because of the limitations of the data reported in the previous studies. Fig. 11 reveals that our 

system has the best performance, yielding 48.3% at top 1 while the other systems achieve 

47.1%, 41.2%, and 38%, respectively. The results of Guo et al. are the most similar to ours. 

Finally, our system achieves 76.7% at top 10, while all the other systems achieve below 70%. 

 

Fig. 11. Four Query-by-Humming systems contrasted. 

Yet, there are unresolved issues such as errors introduced during the complex audio to 
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MIDI conversion. Moreover, problems occurred during the extraction of the repeating 

patterns. First, the ending bar of a composition might be incomplete. This mistake may occur 

when the system indexes each bar of source MIDI file. Second, the composition contained 

many grace notes that appeared exactly at the first or the last note of a bar. When the melody 

repeated again with these grace notes, our algorithm might misrecognize them as two 

different patterns. Third, if the grace notes or variations occurred in the highest or lowest 

note, it would generate different bar indices, and our algorithm might misrecognize them as 

two different patterns. Finally, errors may occur during the audio recording, for instance the 

background noise or the user humming with an incorrect pitch. 

5. CONCLUSIONS AND FUTURE WORK 

This study introduces an improved content-based music retrieval method that employs a 

bar-indexing method that reduces the processing time and provides an effective strategy to 

deal with MIDI files. In addition, the bar-indexing approach is robust to small variation in 

melody when extracting repeating patterns.  

An improved pitch interval coding is introduced using seven symbols. We use a fuzzy 

inference system to transform time intervals of pitch queries into symbolic representations, 

since input humming queries may contain slight pitch errors, resulting in erroneous notes 

when translated to MIDI. By using a fuzzy inference, soft membership functions provide 

more robust classification of these input pitch contour errors. LCS is applied as approximate 

matching algorithm to locate the top N retrieval results. Experimental evaluation 

demonstrates that the FIS improves retrieval accuracy.  

In summary, the advantages of our method are as follows: (1) The method can be applied 

to complete and polyphonic music, which is useful for the automatic establishment of music 

databases. (2) The use of repeating patterns as a search index requires less database storage 

space, require less computation and yield better retrieval accuracy. The repeating pattern of 
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each music composition is easy to remember and thus suitable as a query. (3) The FIS adds 

fault tolerance and improves to retrieval accuracy. 

Future work involves increasing the size of the database including other types of music to 

test system scalability and robustness of the method to other genres of music, improving the 

audio to MIDI conversion process with improved acoustical analysis algorithms utilizing 

recent advances in digital signal processing research, and improving the general retrieval 

accuracy by for instance introducing score-informed constraints and extending the model to 

include timbre in addition to temporal and chromatic information. Another possibility is to 

explore whether more musically inclined participants achieve higher retrieval accuracies than 

less musically inclined participants. 
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