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The sunlight intensity-based global positioning system (SGPS) is able to geolocate outdoor objects by means of the sunlight
intensity detection. This paper presents the integration of SGPS into a sensor network in order to improve the overall accuracy
using evolutionary algorithms. Another contribution of the paper is to theoretically solve both global and relative positioning of
the sensors composing the network within the same framework without satellite-based GPS technology. Results show that this
approach is promising and has potential to be improved further.

1. Introduction

Nowadays global positioning is taken for granted and even
more since the arrival of smart phones. However, the unique
acceptable solution so far is the global positioning system
(GPS) based on satellites [1]. Although it demonstrates a
good accuracy, the main drawbacks of this system are often
ignored. First, it is government-dependent so there is not any
guarantee that it will always be publicly available.

Second, GPS are vulnerable to solar storms. As amatter of
fact, the US Government reported that the solar storm which
occurred in early March 2012 affected satellites communica-
tions “http://www.gps.gov/news/2012/03/solarstorm/ (Sep.,
2013).” Although the solar activity of the following years is
not expected to be that intensive, this still represents a serious
threat for the GPS. In fact, the US Department of Homeland
Security has carried out a study of the risks to US critical
infrastructure from global positioning system disruptions
“http://www.gps.gov/news/2013/06/2013-06-NRE-public-
summary.pdf (Sep., 2013).” This serves as enough motivation
to investigate satellite-independent global positioning sys-
tems.

Many different, satellite-independent approaches have
been proposed: measuring sunlight intensity, irradiance,
temperature, or magnetic field (see next section for a detailed
state of the art). The accuracy of these systems is often hun-
dreds of kilometers. Although none of them are yet a real sub-
stitute to satellite-basedGPS,many applications could benefit
from sunlight-based positioning methods: weather monitor-
ing, ocean tides and wildlife tracking, and extraplanetary
location. For example, current environmental research uses
GPS-basedwireless sensor networks tomeasure temperature,
light, pollution, oceans temperature, tides, and so forth.How-
ever, the GPS limits the battery life so it is necessary to change
the batteries every few days. This is especially challenging
and expensive in wildlife and marine environments. The use
of sunlight-based systems in sensor networks (or standalone
intelligent sensors) would allow the system to run for months
(or even years) without battery replacement.

In this paper, we focus on the sunlight-intensity based
global positioning system (SGPS) presented in [2, 3]. SGPS is
a novel global positioning system based on sunlight intensity
detection able to provide the earth coordinates of an static
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Figure 1: SGPS flowchart.

object, without any GPS-based component by measuring the
sunlight intensity of one day, with the only input of the date.
Themain advantage of SGPS (andmost of the sunlight-based
systems) is its low power consumption. It can run for months
of years with a set of regular batteries. Or even small solar
cells could be used as both power source and light intensity
sensor. On the other hand, these systems suffer from a low
positioning accuracy, limiting their practical uses.

Therefore, the research exposed in this paper aimed to
enhance its accuracy by combining it with sensor networks.
As this is the first approach to such problem, we focus on
networks in which the distances among nodes are known [4].
This integration is able to solve three different problems using
the same framework: (1) relative positioning of the nodes in
the network: for the case ofWSN, this is a very active research
field during the last years [5, 6]; (2) global positioning of the
nodes in the earth: in the literature this is done by GPS-based
systems, where at least one of the nodes of the network has
an integrated GPS or cellular-based localization system [7];
(3) improvement of the positioning accuracy of the SGPS as
a standalone system: the sensor network is built exclusively to
improve the SGPS accuracy.

Although the tendency is to use wireless sensor networks
(WSN), wired networks have been extensively applied in
industry [8] and other fields [9, 10]. Also, hybrid configura-
tions have been already proposed [11]. Along this paperwe are
assuming any kind of sensor network sincewe are focusing on
how to combine data from different nodes.

The proposed framework, identified with the acronym
SGPSNet, includes a probabilisticmodel of the error of SGPS,
which allows us to compensate it by combining the individual
SGPS results of the different nodes with the geometry of the
sensor network.

The paper is organized as follows: next section provides
the state of the art of satellite-independent geopositioning.
In Section 3 the SGPS is introduced. Section 4 analyzes the
error of the SGPS. Then, the SGPSNet framework is detailed
in Section 5. Experimental setup is described in Section 6
and results and discussion are in Section 7. Finally, the
conclusions are presented in Section 8.

2. State of the Art

Satellite-independent geopositioning systems have been
studied for several years. The results obtained in terms of
positioning accuracy have been a challenge [12]. However,
it has been successfully applied to some problems, such as
wildlife migratory movements tracking [13]. In fact, many
interesting improvements were suggested. Sunrise and sunset
times can be identifiedmore accurately by taking into account

the temperature together with the light intensity [14] since
the temperature signal is more stable. Kalman filters help to
decrease the positioning error through the days [15] when
the object to geolocate is moving. A simple motion model is
given, namely, the maximum distance a specific animal could
travel in one day. Therefore, results are corrected when they
are in conflict with the motion model.

Ekstrom [16] propose a complex analysis of the twilight
for a template-fitting based approach to irradiance data with
an estimation of the error [17].

The influence of weather, topography, and vegetation on
the light intensity and its measurement have been studied
[18]. Therefore, by combining sunlight intensity sampling
with other sensors (altitude, humidity, atmospheric pressure,
etc.) the location accuracy could be improved.

Other approaches to GPS-less geolocation have been also
proposed. For instance, a simple webcam can be used to
estimate geolocation by analyzing picture brightness [19, 20].
Themagnetic field of the earth has been also tested as a mean
to automatically geolocate objects [21, 22].

Statement of Contributions. A probabilistic error model for
the SGPS is computed, which is a first in this field. Then,
a methodology to combine SGPS solutions from different
nodes within a sensor network taking into account an error
model is proposed. This allows probabilistically improving
the accuracy of the SGPS results for every node. To our
knowledge, it is the first time a satellite-based geopositioning
system is combined with a sensor network. State-of-the-art
approaches are based on initial GPS measurements.

3. System Model

The SGPS is able to geolocate stationary outdoor objects
(longitude and latitude coordinates) by measuring sunlight
intensity. Since the basis of this system is deeply described in
[3], only its outline is included in this paper.

The SGPS operation is presented in Figure 1. In the
hardware side, the system is designed to be simple and
inexpensive, hence comprising a light sensor and amicropro-
cessor.

3.1. Sunlight-Based Global Positioning System. The mathe-
maticalmodel of the SGPS relies upon a celestialmodelwhich
takes into account the rotation and translation movements
of the earth. The daylight parameters are influenced by the
longitude and latitude coordinates of a given place as shown
in Figure 2.

Hereafter, the following convention is going to be
employed: times are measured in decimal hours, in the range
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Figure 2: Schema of the mathematical model of the SGPS.

from 0 to 23.99, and referred to the Coordinated Universal
Time (UTC), avoiding daylight saving time issues. Days will
be referred to from 1 to 365 (or 366 in a leap year) and angles
are expressed in radians. Coordinates are given in radians.
Degrees are only shown in the results in order to help the
reader in interpreting them. For the longitude the range is
from −180∘ to 180∘ with the zero reference in the Greenwich
meridian and positive coordinates to the east. In the case
of the latitude, the range is from −90∘ to 90∘ where zero
represents equator and positive coordinates represent north.

From the sunlight intensity measurements for a given day
𝑑, the sunrise and sunset times (𝑡sr and 𝑡ss, resp.) are identified
(see Section 3.2). Therefore, the solar noon, 𝑡md, for that day
is simply

𝑡md =
𝑡sr + 𝑡ss
2

. (1)

If 𝑡md < 𝑡ss a fractional day occurs in which the sunset
actually happened in the previousUTCday. In these cases, the
computed 𝑡md corresponds to themidnight time. To solve this
problem, the real noon time 𝑡󸀠md for a day 𝑑 is approximated
as follows:

𝑡
󸀠

md = mod (𝑡md + 12, 24) , (2)

where mod refers to the module operation.
The next step is to compute the angular sunset 𝑎ss,

𝑎sunset =
𝜋

12

󵄨󵄨󵄨󵄨𝑡ss − 𝑡md
󵄨󵄨󵄨󵄨 , (3)

and the declination of the sun 𝛿, approximated by a Fourier
series [23]:

𝛿 = 0.006918 − 0.399912 cos (𝛽)

+ 0.070257 sin (𝛽) − 0.006758 cos (2𝛽)

+ 0.000907 sin (2𝛽) − 0.002697 cos (3𝛽)

+ 0.00148 sin (3𝛽) ,

(4)

where 𝛽 is the fractional year, computed as

𝛽 =
2𝜋

365
𝑑. (5)

Finally, the coordinates of the object can be obtained [24].
For the longitude 𝜆,

𝜆 = 2𝜋
12 − 𝑡md
24

, (6)

and the latitude 𝜑 can be computed by numerically solving
the following equation:

cos (𝑎sunset) =
sin (−0.0145) − sin (𝛿) sin (𝜑)

cos (𝛿) cos (𝜑)
. (7)

Note that these formulae are well known in astronomy.
They are usually applied in a “forward” fashion, known as
sunrise equation [24]. That is, given longitude and latitude,
compute the sunrise and sunset times. In this case, we are
solving the “inverse” problem, which is not trivially solved
from the sunrise equation.

It is important to note that sensors usually work with
UTC-referred civil times. However, SGPS celestial model is
based on solar times. The conversion is straightforward:

𝑡civil = 𝑡solar + 𝐸𝑞𝑇, (8)
where 𝐸𝑞𝑇 refers to the equation of time. Concretely, the
Spencer 𝐸𝑞𝑇 expression [23] is employed since it uses only
information about the day 𝑑:
𝐸𝑞𝑇 = 229.18 ⋅ (0.000075 + 0.001868 cos (𝛽)

− 0.032077 sin (𝛽) − 0.014615 cos (2𝛽)

− 0.040849 sin (2𝛽)) .
(9)

3.2. Experimental Results. In order to test the systemwith real
measurements, data from the National Oceanic and Atmos-
pheric Administration (NOAA) public FTP server “ftp://aftp
.cmdl.noaa.gov/data/radiation/surfrad (August, 2013)” has
been employed. In this case, a simple zero-crossing algorithm
is enough to accurately detect the sunrise and sunset times.
Also, the sunlight intensity value chosen was determined by
using data only from two different days.This ensures a worst-
case scenario since more sophisticated methods could be
employed. In fact, the sunlight intensity cannot be negative
but, due to the hardware employed, inverse currents provoke
measures to be negative during night-time.This is the critical
point of the system in terms of accuracy. However, the
objective of this study is to improve accuracy by other means,
since a deeper study of detecting sunrise and sunset is very
hardware-dependent.

Figure 3 shows the results of the SGPS in a statistical
way. They represent the current state of the art of sunlight-
based geolocation. Note that these results contain data for
almost every day during 10 years along 6 different stations.
Although how different conditions affect the system has not
been deeply evaluated, results show that they do not have a
high impact on the error. How different conditions affect the
system has not been evaluated. Clouds, for instance, affect the
maximum sunlight value and therefore the rate of change of
measures sunlight. However, at sunrise/sunset times there is
still enough light tomeasure. Actually, results show that there
were very few days in which the relative error is excessively
high. Histograms for latitude and longitude relative errors are
shown, computed as

𝑒latitude% =
𝑒latitude
180

100, 𝑒longitude% =
𝑒longitude

360
100.

(10)
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Figure 3: System relative error histograms.
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Figure 4: Dispersion chart of the error and its Gaussian probabilistic model.

4. SGPS Error Analysis and Modeling

One critical part of the system in terms of accuracy is the
sunrise and sunset detection. A bias of several minutes can
result in error of hundreds of kilometers. Since it is not possi-
ble to accurately predict the error introduced by sunrise and
sunset times, the error of the system ismodeled in probabilis-
tic terms. Note that the error model (and hence the rest of the
framework) is hardware-independent because of the SGPS
mathematical model. For a given calibration, it is not possible
to have a larger error in longitude than latitude since they
are highly correlated. Only the parameters of the error model
would vary by sensor calibration. In any case, we are showing
a worst-case scenario in which results are shownwith a trivial
calibration.

If all the errors of the previous experiments are merged
and referred to as the global reference frame instead of their
local frame (corresponding station), they can be plotted as a

dispersion chart, as shown in Figure 4. Analyzing this plot,
it is possible to see that latitude error is much larger than
longitude error. However, a dispersion pattern is observed:
errors are concentrated about the (0, 0) point. The farther we
get from the origin, the less errors are found. This suggests
that the error can be modeled by a standard bidimensional
Gaussian distribution:

𝑓 (x) = 𝑒
(−(1/2)(x−𝜇)𝑇Σ−1(x−𝜇))

2𝜋 |Σ|
1/2

, (11)

where 𝜇 is the means vector, representing the average value
of the errors in both longitude and latitude, and Σ is the
covariance matrix (2 × 2), symmetric and positive definite,
giving the dispersion values in both axes. The variable is the
vector composed of a pair longitude-latitude x = (long, lat).
Both 𝜇 and Σ are computed using standard methods.
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The parameters of the fitting (covariance matrix and
means vector) depend on the hardware and signal processing
techniques used during the measurement and sunrise and
sunset identification processes.

5. SGPS Network Integration

The error model described in the previous section suggests
that using more than one sensor to measure may improve the
accuracy. In this fashion, errors can be decreased by combin-
ing the distance among two or more sensors with the output
of the SGPS algorithm for each node.

The algorithm described in the following paragraphs
aims to be integrated within any kind of sensor network.
This paper focuses on networks in which the distances
among nodes are known or can be accurately computed. It
is also assumed that the nodes of the network are measuring
sunlight intensity throughout all the day. In order to be
as general as possible, let us assume that the localization
is not the main task of the network, but it is required
(e.g., data geotagging). Therefore, SGPS algorithm will run
“in the background.” Network nodes will independently
sample sunlight intensity throughout the day, from 00 hours
UTC until 23.99 hours UTC. Once the day has finished,
every node will analyze the data to identify sunrise and
sunset times. For this, we employed a zero-crossing algo-
rithm as detailed in Section 3.2. Note that this can be done
in an online fashion so that no data is required to be stored.
Longitude and latitude are computed for every node accord-
ing SGPS formulae described in Section 3. Then, the SGPS
solutions are combined probabilistically with the objective of
improving the location estimates.

In case of an infrastructure-less network, where there is a
lack of a central controller, one of the nodes could temporally
act as central node in order to carry out the SGPS solution
combination. As it will be explained, the proposed optimiza-
tion algorithm is only based on summations and multiplica-
tions (also the optimizationmethod chosen), meaning it does
not require high computational capacity. Besides, the algo-
rithm does not require to be computed in real time. There-
fore computational limitations are not a problem. Also, the
optimization parameters could be highly optimized in order
to reduce the number of computations required in order to
save energy.

5.1. Formulation as an Optimization Problem. The proposed
approach formulates the problem as an optimization trying
to minimize two factors: (1) distance error among sensors
and (2) deviation of the candidate solution with respect to the
initial SGPS location. Let us consider the scenario shown in
Figure 5, composed of three nodes. “SGPS initial result” is the
nonoptimized calculated position, while “candidate solution”
is the optimized position.

Let us suppose a sensor network with 𝑛 nodes, with a
real distance among nodes 𝑖, 𝑗 of 𝑑(x

𝑖
, x
𝑗
) = 𝑑(x

𝑗
, x
𝑖
) for all

𝑖, 𝑗, which we assume to be known. The set of coordinates
of the node 𝑖 of the sensor network is denoted as x

𝑖
=

(long
𝑖

, lat
𝑖
). Consequently, x

𝑆,𝑖
is the set of coordinates of the
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Figure 5: Parameters influencing the fitness function evaluation for
a given candidate solution (𝐻

1,3

omitted for clarity).

initial solution of the SGPS for that node. x
𝑐,𝑖
is the candidate

solution for every node 𝑖. Intuitively, the farther a candidate
solution goes from the initial SGPS solution, the less likely it is
(given the proposed error model). Therefore, we will use the
Mahalanobis distance 𝐷

𝑀
(x
𝑆,𝑖
, x
𝑐,𝑖
) to compute the distance

between the initial SGPS solution and the current candidate
solution for node 𝑖. It computes the distance between two
randomvariables subject to the same probability distribution:
the probabilistic error model in our case, defined by (𝜇,Σ)
computed in Section 4. It is computed as follows:

𝐷
𝑀
(x
𝑆,𝑖
, x
𝑐,𝑖
) = √(x

𝑆,𝑖
+ x
𝑐,𝑖
− 𝜇)Σ−1 (x

𝑆,𝑖
+ x
𝑐,𝑖
− 𝜇)
𝑇

.

(12)

Since the error model is centered at x
𝑆,𝑖
, 𝐷
𝑀
(x
𝑆,𝑖
, x
𝑐,𝑖
)

expresses in terms of distance how likely the location of x
𝑐,𝑖

is. The objective of the addition of the Mahalanobis distance
is keeping the candidate solutions in themost probable places
according to the error model.

On the other hand, let us define the distance error 𝑒
𝑟
(𝑖, 𝑗)

as the comparison between the real distances between nodes
𝑖, 𝑗 and the distances of the candidate solutions for those
nodes:

𝑒
𝑟
(𝑖, 𝑗) =

󵄨󵄨󵄨󵄨󵄨
𝑑 (x
𝑖
, x
𝑗
) − 𝐻(x

𝑐,𝑖
, x
𝑐,𝑗
)
󵄨󵄨󵄨󵄨󵄨
, (13)

where 𝐻(x
𝑐,𝑖
, x
𝑐,𝑗
) means the Haversine distance between

candidate solutions for two different nodes. The Haversine
is defined as the shortest distance between two points on a
sphere expressed in terms of longitudes 𝜆 and latitudes 𝜑.
Using the earth’s parameters (distances in kilometers and
angles in degrees), the Haversine distance is computed as
follows:

𝐻(𝑝
1
, 𝑝
2
) = 6372.8 × 2 × atan2 (√ℎ,√(1 − ℎ)) , (14)

where ℎ is

ℎ = sin (𝜑
2
− 𝜑
1
)
2

+ cos (𝜑
1
) cos (𝜑

2
) sin (𝜆

2
− 𝜆
1
)
2

. (15)

Finally, the following fitness function is defined:

𝑓 =

𝑛

∑
𝑖=0

(𝛼𝐷
𝑀
(x
𝑆,𝑖
, x
𝑐,𝑖
) + (1 − 𝛼) ∑

∀𝑗 ̸=𝑖

𝑒
𝑟
(𝑖, 𝑗)) . (16)



6 International Journal of Distributed Sensor Networks

Intuitively, this fitness function is a weighting (with 𝛼 as
weighting factor) between the Mahalanobis distance among
candidate locations and original SGPS locations and the total
error of the distances nodes.

The magnitude orders of the components of the fitness
function are different. The distance errors are usually around
hundreds or thousands of kilometers. The Mahalanobis
distance could reach such orders of magnitude, but once the
optimal solution is being reached it is usually less than 1.Then,
saturation is applied in order to ensure that outliers are not
decisive when evaluating the fitness function. The saturation
levels sat

𝐻
and sat

𝐷𝑀
are experimentally chosen because they

enormously dependon the errormodel parameters.Once sat-
urated, the fitness parameters are normalized to be between
0 and 1. Thus,

𝐻
󸀠

(𝑝
1
, 𝑝
2
) =

min (sat
𝐻
, 𝐻 (𝑝

1
, 𝑝
2
))

sat
𝐻

,

𝑒
󸀠

𝑟

(𝑖, 𝑗) =
󵄨󵄨󵄨󵄨󵄨
𝑑 (x
𝑖
, x
𝑗
) − 𝐻

󸀠

(x
𝑐,𝑖
, x
𝑐,𝑗
)
󵄨󵄨󵄨󵄨󵄨
,

𝐷
󸀠

𝑀

(x
𝑆
, x
𝑐,𝑖
) =

min (sat
𝐷𝑀
, 𝐷
𝑀
(x
𝑆
, x
𝑐,𝑖
))

sat
𝐷𝑀

.

(17)

Finally, the objective is to find the set of coordinates for
all the nodes X

𝑐
= ⟨x
𝑐,1
, . . . , x

𝑐,𝑛
⟩ that minimizes:

min
X𝑐
𝐽 (X
𝑐
)

=

𝑛

∑
𝑖=0

(𝛼𝐷
󸀠

𝑀

(x
𝑆,𝑖
, x
𝑐,𝑖
) + (1 − 𝛼) ∑

∀𝑗 ̸=𝑖

𝑒
󸀠

𝑟

(𝑖, 𝑗)) .

(18)

Among all the existing optimization methods, the differ-
ential evolution (DE) algorithm [25] has been chosen. More
specifically an implementation optimized to solve large-scale
problems [26]. This choice is not critical in the performance,
since a low computational time is not an objective. However,
DE has proved to work efficiently in many applications [27]
so it is robust enough to provide good results for the proposed
approach.

6. Differential Evolution Algorithm Setup

In order to test the validity of the proposed optimization
model, a subset of days among the NOAAdatabase have been
chosen, which are common for all the available stations, dis-
played in Figure 6. The SGPS algorithm was applied to every
node individually and the aforementioned optimization was
carried out. The test bench is composed by the application of
the algorithm from 3 up to 6 NOAA stations.

In the DE algorithm, the latitude and longitude values
for every node are introduced as variables to optimize.
Therefore, there are 2𝑛 variables, where 𝑛 is the number of
stations included. As there is no information about the initial
conditions, the first population is created using a uniform
distribution within [−90, 90] for latitude and [−180, 180] for
longitude. Each candidate, a vector composed of 2𝑛 values (𝑛
latitudes and 𝑛 longitudes), is evaluated according the fitness
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Figure 6: Location of the 6 stations used in the experiments.

function (18). Longitude coordinates are enforced to lie
within −180∘ and 180∘. However, the candidates which have
latitude values out of range are assigned an infinite fitness
value. For instance, a latitude of 91∘ is not equivalent to any
other latitude, while a longitude of 181∘ is equivalent to −179∘.
The population size is set to 100 individuals, with amaximum
of 1000 iterations. The DE step size (known as parameter 𝐹)
is set to 0.7 while the crossover probability (CR) is set to 1.
This increases the speed of the optimization for the proposed
optimization problem. Finally, the DE strategy employed
is DE/local-to-best/1/bin, which means that the mutation
takes a random element and the best element of the previous
population. This strategy attempts a balance between robust-
ness and fast convergence.

7. Results and Discussion

In first place the Gaussian distribution for the error model is
computed as described in Section 4, for the data belonging to
the first two years available in the NOAA dataset (1995-1996),
totaling 2077 days. In this case the Gaussian is defined by the
following parameters (given in degrees):

𝜇 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜇long
𝜇lat

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−0.0941

1.8674

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, Σ =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2.4024 0.6757

0.6757 190.73

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (19)

The means of the distribution are slightly north-biased since
the data available in the NOAA FTP are only from the United
States.

In our experiments, we simulated the sensor network
using a computer as a central node in order to perform
computations. SGPS was independently applied to all NOAA
stations, obtaining a set of longitude and latitude estimates.
Then, the optimization was proposed in Section 5 for each
available day. Therefore, we assumed perfect communication
among nodes and the existence of a central node (which can
be any of the network nodes).

As the optimization procedure is stochastic it is possible
for the final results to be worse than the initial results since a
lower fitness value does not assure a better final result.
Although this would seem counterintuitive, no other vari-
ables are available in the optimization. The initial error is
considered as the sum for all the nodes of distances between
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Table 1: Improvement of the SGPSNet method over the standard SGPS.

Number of stations Number of days Number of days improved Number of days worsened Improvement Mean computation time (s)
3 3587 1820 1767 50.7% 22.65
4 2943 1428 1515 48.5% 28.44
5 2180 1273 907 58.4% 35.16
6 1730 1142 588 66% 41.97
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Figure 7: Improvement of themeans of the errors depending on the
number of stations.
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Figure 8: Geometric representation of the SGPSNet results.

the real locations of the nodes and the SGPS locations. The
final error is defined as the sum of the distances between the
enhanced locations and the real node locations. Table 1 shows
the number of days in which the final results are improved.
Figure 7 shows the mean of the initial and final errors plotted
against the number of stations.

As can be seen from Table 1 and Figure 7, the improve-
ment ratio increases with the number of stations. On average,
the final error is reduced compared to the initial error. This
means that, in case of improvement the accuracy gain is more
significant that theworsening in the rest of the cases. Also this
improvement increases as more stations are used in the algo-
rithm. In Figure 8 a geometric representation of the results
for a specific day is shown.While the final position for station
4 is worsened, stations 3, 5, and 6 are improved. Stations 1 and
2 remained on the surroundings of their initial position.

In order to deeply analyze these results, let us divide the
year into two different parts: central part, those days between
the first equinox (𝑑 = 81) and the second equinox (𝑑 = 265),
and lateral part, those days between the second equinox (𝑑 =
265) and the first equinox of the following year (𝑑 = 81).

Table 2: Improvement of the SGPSNet method over the standard
SGPS on the central part of the year.

Number of
stations

Number
of days

Number of
days

improved

Number of
days

worsened
Improvement

3 1851 1691 160 91.4%
4 1439 1330 106 92.6%
5 1120 1082 38 96.6%
6 793 754 39 95%
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Figure 9: Improvement of themeans of the errors depending on the
number of stations for the central part of the year.

In our case, the days in the central part of the year are
favored due to the bias of the Gaussian error model. Table 2
and Figure 9 detail the same results as shown before, but only
taking into account days of the central part of the year. The
improvement ratios are higher. However, Figure 9 shows that
the results in the worsened cases (mainly in the lateral part of
the year) are almost the same as if no algorithm was applied,
since the final error is near to that plotted in Figure 7. One
possible solution is to fit two different Gaussian distributions,
one for every part of the year. In any case the distribution
chosen is enough to prove the validity of the proposed
method.

Next, the results are analyzed from the point of view of
the centroid of the sensor network. In this case, the initial
error is measured as the distance from the centroid of all the
independent SGPS solutions to the real centroid. The final
error is then computed as the distance from the centroid of all
the enhanced SGPS positions to the real centroid. In Figure 10
and Table 3 these errors are depicted for the whole year.
As seen in the figure, the final error ismuch lower for the cen-
troid computedwith the enhanced SGPS locations. Intuitively
the progression of the graph is expected to decrease linearly,
as in Figures 7 and 9. However, a possible explanation is that
the same centroid can be obtained from infinite combinations
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Table 3: Improvement of the centroid distances on SGPSNet
method over the standard SGPS.

Number of
stations

Number
of days

Number of
days

improved

Number of
days

worsened
Improvement

3 3587 1820 1767 50.7%
4 2943 1517 1426 51.5%
5 2180 1416 764 65%
6 1730 1297 433 75%
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Figure 10: Improvement of the means of the centroid errors
depending on the number of stations for all year.

of positions, giving a more stochastic character to these
results. Although the proposed method does not explicitly
optimize the centroid error, it improves the centroid error
really well, which can be worthy to explore in the future
work. Table 3 shows the improvement ratio of the centroid
distances. Comparing the results with those shown in Table 1,
it turns out that the algorithmworks better for optimizing the
centroid of the stations.

8. Conclusion

Throughout this paper various novelties have been included.
First, the error of the SGPS has been modeled as a proba-
bilistic function allowing us to leverage this model in order
to improve the accuracy. A novel method based on the appli-
cation of the SGPS to sensor networks to geolocate the nodes
both globally and locally is proposed but focusing on the
improvement of the global positioning accuracy. This SGPS-
sensor network integration enhances the accuracy of the sys-
tem by reducing the global positioning error of the SGPS that
is also one of the main drawbacks of this system together
with the refresh rate of the position. The proposed approach
is modeled as an optimization problem. The accuracy is
improved stochastically, but, thanks to the DE metaheuristic
optimization method, an improvement is guaranteed for
most of the cases.

Note that our proposed approach uses SGPS as an
underlying system but any method capable of estimating
global coordinates for an object fits the SGPSNet formulation.
The only requirement is that the error model for those meth-
ods should be accurately modeled. Along this paper many
assumptions were made. Namely, nodes were far away from
each other and distances among them are known. Future

work will focus on creating a more general methodology
so that it can be applied to smaller networks (in terms of
distances among nodes) in which the overlapping among
probabilistic error functions is higher. Also, the application
to WSN, in which the distances among nodes are unknown
and have to be computed online by automaticmethods, is one
of the main points of the future work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors want to gratefully acknowledge the work of the
people involved in the SGPS Community and, specially, Isaac
Rivero for his work in the C++ SGPS Library.

References

[1] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global
Positioning System: Theory and Practice, Springer, Wien, Aus-
tria, 5th edition, 2001.

[2] F. E. Sandnes, “An energy efficient localization strategy for
outdoor objects based on intelligent light-intensity sampling,”
in Ubiquitous Intelligence and Computing, vol. 6406 of Lecture
Notes in Computer Science, pp. 192–204, 2010.
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