

"(c) 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other users, including reprinting/ republishing this material for advertising or promotional

purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any

copyrighted components of this work in other works."

The Hydra: A layered, redundant configuration
management approach for cloud-agnostic disaster

recovery

Ke Huang
Institute of Informatics

University of Oslo
kehuang@ifi.uio.no

Kyrre Begnum
Department of Computer Science

Oslo and Akershus University College
of applied sciences

kyrre.begnum@hioa.no

Abstract—This paper demonstrates a bottom-up approach to
developing autonomic fault tolerance and disaster recovery on
cloud-based deployments. We avoid lock-in to specific recovery
features provided by the cloud itself, and instead show that tools
used in system administration today can provide the foundation
for recovery processes with few additions. The resulting system,
Hydra, is capable of detecting failures in instances and can
redeploy any instance at a new location without human inter-
vention. The layered design of configuration management tools
enables separation of recovery processes and the actual service,
making the Hydra applicable to a wide range of scenarios. The
implementation was tested and an analysis of the recovery time is
provided, demonstrating that the Hydra is capable of completely
rebuilding a new site in 15 minutes.

Keywords: Cloud Computing, Autonomic management,
Fault tolerance, Fail-over, Configuration management

I. INTRODUCTION

With the massive growth of cloud-based services, there
are many options for storing and sharing information on the
Internet. Components such as servers and network manage-
ment solutions have been delivered as services by many cloud
providers. With the obvious benefits in flexibility, high avail-
ability and pay-as-you-go cost models, virtual infrastructures
have been purchased by many companies as resources to
run their sites rather than hosting them on their own. The
accelerating development of cloud services and technologies
has been accompanied by several critical issues, such as the
danger of unpredictable connectivity and unexpected outages.
Even the most popular hosting providers, such as Amazon Web
Services and Rackspace, still occasionally suffer from service
interruptions or failures [1], [2], [3], [4], [5], [6].

This paper aims to address global outages from the ground
up. Using established frameworks and tools in the system
administration profession, we demonstrate that fault-tolerant
behavior can be reached with little additional effort and while
keeping solutions within the domain of system administra-
tion in order to limit complexity. Node health as well as
deployment information can be handled by tools already in
use in real life. This paper explores a novel mechanism to
take advantage of cloud services and recover automatically
from unforeseeable system failure, without manual interaction.
The design enhances the reliability of cloud services by
providing a distributed, self-organizing structure built from

standard configuration management and storage tools that can
detect and heal failures spontaneously. Moreover, it provides
a degree of portability and usability as it is built to be free
of local/proprietary cloud-based features and thereby enables
cloud-agnostic adoption with little modifications.

II. THE HYDRA MODEL

The terminology used is explained as following:
Zone: A set of sites which locate in the same availability
region of a cloud.
Site: A set of servers which provides a service to users. A
site normally consists of one master server and several agent
servers which have different functions related to the purpose
of the site.
Master Server: A server that controls the behaviors of agent
servers and sends out reports of their status regularly.
Agent Servers: Servers in a site that host a set of designated
services.
Controller Server: A server which supervises other servers in
a site and manages their responsibilities. It also communicates
with other controllers and issues regenerating process if one
of the sites/zones it communicates with appears to be down.

A. Architecture of Hydra

In our design for Hydra, a fully redundant system, com-
bines several sites which can run in parallel over multiple
geographical locations (zones).

The zones are located in physically distinct regions to
ensure that a disaster occurring in one geographic region would
not cause service disruption of the whole system. However,
such a geographic distributed system may introduce network
latency if the users are served by the servers that are not in
the same geographic region. Hydra avoids such situation at the
zone creation stage by ensuring that whenever a new zone is
needed, it is always established in a region where no other
zones are present.

Figure II-A shows an example of the Hydra architecture
in a zone. In this figure, multiple sites located in the same
zone are directly monitored by a controller. In the controller,
the monitoring process keeps checking the status of every site,
and failed nodes are automatically detected. Once a site failure

Master

Controller

Site ControllerController Zone

Agent Agent

Master

Agent Agent

Master

Agent Agent

Fig. 1. Architecture of a Zone

is confirmed, the regeneration process will then be triggered,
and one of the remote controller servers will be in charge
of rebuilding the site somewhere else. The remainder of the
malfunctioning site will then be terminated and replaced by a
new site that is created at a location chosen by the controller.
All sites are assumed to be active and receive part of the
traffic. Therefore, instead of having backup sites sitting idly
in cloud waiting for activation, a new site will only be created
and brought online after the outage of an old site has been
confirmed.

Data synchronization is essential requirement for cooper-
ation between Hydra nodes and providing data availability.
This synchronization is taken care by a cluster file system.
In the design, the controllers are sharing a directory that is
provided through the cluster file system. Whenever there is a
change in the directory, such as a modification or upgrade of
the configuration files, it propagates to the rest of the cluster
in a short time.

When a new site is created in an availability zone, it auto-
matically synchronizes and replicates the most recent metadata
of the whole system amongst all the controllers. This means
that any controller can rebuild any other controller, which in
turn can rebuild any master and agent server. This ability
comes from the integration with configuration management.
Configuration management tools store policies on each type
of system. This policy directs the automatic installation and
configuration of any system which is part of the Hydra.
The policy descriptions are relatively small, consisting of a
collection of text files. They also tend to stay very stable,
so there is little bandwidth needed for synchronization. This
strategy gives the Hydra its needed robustness. That is, even
if there is only one controller, this single controller will have
enough information and ability to replicate itself and then re-
build the entire Hydra system.

Through the use of configuration management as the
deployment mechanism, the kinds of operating systems or
the services that run on the sites are largely irrelevant. The
intention of this design is to support any kind of operating
system and service using the same Hydra model. The in-
dividual details of each agent would be manifested in the
concrete configuration policies for that agent, and not interfere
with the overall configuration of the Hydra. The approach
taken here is to layer the configuration management into the
controller, a master and an agent. The controller will provide

a configuration management service to all masters in its zone.
The master will have its own configuration management server
which is configured by the client based on instruction from the
controller. The agents connect their client to the master and
receive the instructions on how to configure their respective
service (see Figure 3).

There are several reasons for this choice. This layered
approach will limit the number of client connections to the
controller. Each master server will handle the configuration
of its agents. Also, in line with common system adminis-
tration practices, it is wise to separate responsibility of the
site maintainers and the Hydra maintainers. A functioning
Hydra controller is critical and should be kept as simple as
possible as any syntax error in the policy would halt the entire
functioning. Should it go down due to a crash, the zone would
be unsupervised. Furthermore, the controller can detect the
failure of a master and its site and rebuild it locally, providing
extra robustness against local crashes.

Aside from managing their local zone, controllers keep
communicating with each other, tracking the availability of
entire zones in other regions. If a zone fails, such failure will
be detected by a controller from another arbitrary zone, which
then sends out an error signal and propagates it to controllers
in all zones. The controller with the lowest ID is in charge of
enacting any changes, such as terminating the remainder of a
zone and rebuilding it somewhere else. More details of how
the Hydra behaves in certain error situations can be found in
[15].

III. IMPLEMENTATION

A Hydra implementation has been built to prove the
concept as well as provide data on the speed of rebuilding a
zone based on the layered approach. In order to have the most
global spread, Amazon EC2 was used as the cloud platform.
In the implementation, the Hydra uses multiple zones with
one controller and one site at each zone. Every site has a
master and three agent servers. The controllers are all nodes
in a cluster filesystem, and thereby create replicated storage of
configuration management policies across them.

GlusterFS is used as the cluster file system in the Hydra.
GlusterFS is a well known open source platform for cluster
cloud storage file system. It is widely used and easy to manage.
Furthermore, it allows all the nodes to be clients of the
cluster and requires no meta-servers. This means that all the
controllers are GlusterFS cluster nodes as well as the clients
of the same cluster. The storage volume is set up in a fully
replicated mode, meaning that all the files are replicated in
all nodes. When a new controller is deployed, it will connect
first as a new cluster node, obtaining a full local copy of the
volume, and next as a client, mounting the filesystem for local
use.

The Hydra makes use of MLN to deploy, start and stop
virtual machines in Amazon EC2. MLN (Manage Large Net-
works) is a tool to build, configure and manage large groups of
virtual machines based on Amazon EC2 and Eucalyptus[13].
Its plugin system allows it to be adapted to other cloud
technologies as well.

Configuration management is handled through Puppet[14].
The architecture of Puppet is a master/client design, utilizing

a centralized Puppet master and any number of clients which
pull their updated configuration from the master at a defined
interval. In order to make it work with the layered model of
the Hydra, Puppet is set up in the following way: Puppet is
installed on controllers, masters and agents. The controller
will only provide its configuration to master servers. The
configuration manifests are located in the cluster filesystem
and available to all controllers. On the master, Puppet behaves
both as a client and a server. The client will get its instructions
from the controller, which also instructs it to set up its own
Puppet service. The configuration policies are installed from
the controller, and they also reside on the cluster filesystem.
However, since the master does not have direct access to it, this
installation is done via Puppet. The master’s Puppet service
will serve the Puppet clients on the agents.

The monitoring of the controllers is based on script-based
inspection of GlusterFS storage health as well as Amazon EC2
API to get status information. This is the only interaction with
the cloud service. Monitoring of the master and agents is done
by investigating Puppet client intervals and status reports from
the APIs. If a virtual machine is unresponsive for a defined
period of time, meaning its Puppet client stops connecting, or
is reported as terminated or shutdown by the cloud itself, it
is considered down by the controller. This requires that the
masters report Puppet logs back to the controller, which is
handled by the regular operation of their own Puppet client.

A. Controller Server

CM S

Availability Zone

Configuration
Management

Amazon API

Controller

Scripts

Master Server

Data

 Storage

Cluster File
System

Fig. 2. The architecture of a Controller.

Figure III-A shows the architecture of a controller server.
Local scripts that run on the controller compare status infor-
mation and make decisions on whether all nodes are opera-
tional. If a controller detects the failure of a local agent or
master server, it will attempt to rebuild it directly. If another
controller is unresponsive or the whole site does not respond
to service requests, it will be considered down and rebuilt by
one the controllers. It is important to note that although all
the controllers monitor all the agents and masters, only one
controller will take action. When a controller is being rebuilt,
information about it will be updated in the shared filesystem,

allowing all controllers to see its new location and start to
monitor it.

B. Rebuild process

The procedure of rebuilding a zone is the following:

1) Terminate the remainder of the damaged zone
Zdamaged

2) Find a new location for the zone Znew

3) Deploy and boot a controller Cnew at Znew. Cnew

will receive instructions for how to connect to the
Hydra.

4) The Cnew will connect to the cluster filesystem and
get access to configurations

5) Cnew sets up a Puppet master and becomes a part of
the Hydra

6) Cnew detects that master and agents which should be
in Znew are missing and starts recovery of them

7) Cnew deploys and boots a master Mnew

8) When Mnew is ready, the agents A1new . . . Annew

are deployed and booted

It may be the case that a network outage disconnects a
zone long enough for the Hydra to rebuild it somewhere else.
The API of that cloud may also be unavailable, preventing
the zone from being terminated. The old controller then will
notice that it has been replaced because it has been removed
from the storage cluster. It will then proceed to terminate all
masters and agents in its zone and finally itself.

IV. ANALYSIS

A set of experiments were carried out to test the features
of the Hydra. Of particular interest is the overall stability of
the recovery process and the time it takes from when a full
recovery starts until the service in the site is operational. A
web site was chosen as the service to be run by all sites. The
three types of disaster situations was (S1) the loss of a server,
(S2) the loss of a site and (S3) the loss of a zone.

During each experiment, the failure was induced by man-
ually shutting down one or more instances from the EC2
management console. The logs on the controllers then provided
the necessary data for when the recovery steps were taken and
how long they took.

For the sake of brevity, we will only discuss the results
from scenario S3, since it encompasses S1 and S2. This same
scenario was repeated seven times. Our initial findings showed
that a complete recovery of a zone was achieved in about 25
minutes using the m1.small instance type. Using a stronger
instance (c1.medium) will cut the time to 15 minutes from the
time the old zone is terminated until a webserver agent in the
new zone responds to clients. The performance gain is most
pronounced from m1.small to c1.medium, indicating that the
time of the API calls becomes the main factor as the virtual
machine becomes more powerful.

We can see from the table that the stage that takes the
longest is to create the controller server. In this stage the in-
stance needs to install Puppet and GlusterFS software packages
and dependancies, which are downloaded from repositories.
The following state is to connect the new controller to the

m1.small c1.medium c1.xlarge
Stage Average Average Average
Terminate a zone 207 69 47
Relocate a new controller 42 46 24
Controller up again 694 510 463
Rebuild Glusterfs 217 135 138
Create master and webservers 236 92 77
Master up again 132 80 75
Webserver up again 16 10 9
Sum 1545 941 833

TABLE I. THE TIME SPENT IN SECONDS AT THE DIFFERENT STAGES OF
THE RECOVERY PROCESS.

cluster filesystem and get a replicated copy of the files. Once
this is in place, the next stage will deploy the master server
and agents. It takes a while for the master server to get its
Puppet server up and running. In the mean time, the agents
have booted and will constantly try to connect their Puppet
client to the master until it is ready to accept. The resulting
time to install the webserver on the agents is consistently short
regardless of hardware type chosen for the agents.

0	 100	 200	 300	 400	 500	 600	 700	 800	

Webservers	 up	 again	

Master	 up	 again	

Deploy	 new	 master	 and	 agents	

Re-‐aBach	 GlusterFS	

Controller	 up	 again	

Relocate	 new	 controller	

Terminate	 zone	

Seconds	

Recovery	 -me	 rela-ve	 to	 instance	 type	

c1.xlarge	

c1.medium	

t1.small	

Fig. 3. The recovery time is affected by the performance of the master and
controller node. Using a more powerful node will reduce the overall time by

V. DISCUSSION AND CONCLUSION

One of the key concerns listed in the beginning was
that if disaster recovery processes are provided by the cloud
itself, they may create a lock-in for customers who become
dependent on them. The Hydra only makes use of the API to
get status information for each instance. The same function-
ality can be expected from every cloud provider with small
variations in API technology. This means that the Hydra can
be adapted to work on different clouds and also span multiple
clouds at the same time.

Our data show that the recovery time will decrease with
stronger hardware types. This is interesting and one would be
tempted to automatically choose the most powerful alternative.
However, the hourly price of m1.small ranges from USD
$0.060 to $0.088 while the price for c1.medium is USD
$0.140 to $0.200 and c1.xlarge varies from $0.580 to $0.740.
This means that with three controllers and three masters
the 10 minutes saved comes at an increased cost of almost
USD$16 per day. For very large deployments, this added cost
is perceived to be of little consequence. With more complex
services running in the sites, the recovery process may take
longer. The fastest recovery was with the strongest instance,
the fastest recorded time was 718 seconds, about 11 minutes. It
is unclear if the increase in cost would justify the performance.

The Hydra is a disaster recovery solution built on the tools
Puppet, MLN and GlusterFS. It demonstrates that complex
deployments can be rebuilt elsewhere using the established
approach of configuration management and automated deploy-
ment. The layered design of the Hydra allows for a distributed
group of controller nodes to manage each other and local
sites. The sites are managed in a traditional local centralized
architecture. Monitoring information is gathered from the the
cluster storage, configuration management logs and cloud API.
Recovery times have been observed in real-life experiments to
be down to 15 minutes.

REFERENCES

[1] H. S. Gunawi, T. Do, J. M. Hellerstein, I. Stoica, D. Borthakur, and J.
Robbins, Failure as a service (faas): A cloud service for large-scale,
online failure drills. University of California, Berkeley, Berkeley, vol. 3,
2011.

[2] M. W. Thomas, Rackspace resolves email out-
age following possible denial of service attack,
http://www.bizjournals.com/sanantonio/news/2013/01/14/rackspace-
resolves-email.html, Last accessed July 2013.

[3] Amazon, Summary of the december 24, 2012 Amazon ELB service
event in the us-east region, https://aws.amazon.com/message/680587/,
Last accessed July 2013.

[4] S. Ludwig, Amazon cloud outage takes down Netflix,Instagram, Pinter-
est, http://venturebeat.com/2012/06/29/amazon-outage-netflix-instagram-
pinterest/, Last accessed July 2013.

[5] J. Scott, Amazon and microsoft cloud services hit by lightning strike,
http://www.cloudpro.co.uk/cloud-essentials/1453/amazon-and-microsoft-
cloud-services-hit-lightning-strike Last accessed July 2013.

[6] B. Butler, Amazon outage one year later: Are we safer? http://www.
networkworld.com/news/2012/042712-amazon-outage-258735.html, Last
accessed July 2013.

[7] V. Sarathy, P. Narayan, and R. Mikkilineni, Next generation cloud com-
puting architecture: Enabling real-time dynamism for shared distributed
physical infrastructure, in Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE), 2010 19th IEEE International
Workshop on. IEEE, 2010, pp. 48-53.

[8] C. S. U. Omar H. Alhazmi, Taibah University Yashwant K. Malaiya,
Evaluating disaster recovery plans using the cloud,Software Reliability
Engineering, 2012.

[9] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker and I. Stoica, Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing, Proceedings
of the 9th USENIX conference on Networked Systems Design and
Implementation, 2012, USENIX Association

[10] E. Juhnke, T. Dornemann and B. Freisleben, Fault-tolerant BPEL
workflow execution via cloud-aware recovery policies, 35th Euromicro
Conference onSoftware Engineering and Advanced Applications, 2009.
SEAA’09, p. 31 - 38, 2009,IEEE.

[11] J. Deng, SC-H. Huang, Y. Han and J.H. Deng, Fault-tolerant and
reliable computation in cloud computing, GLOBECOM Workshops (GC
Wkshps), p. 1601-1605, 2010, IEEE

[12] N. Bonvin, T.G. Papaioannou and K. Aberer, A self-organized, fault-
tolerant and scalable replication scheme for cloud storage, Proceedings
of the 1st ACM symposium on Cloud computing, p. 205-216, 2010,
ACM

[13] K. Begnum. Simplified cloud-oriented virtual machine management with
MLN. Journal of Supercomputing, 2010

[14] L. Kanies, Puppet: Next-generation configuration management,The
USENIX Magazine. v31 i1, p.19-25,2006, The USENIX Association.

[15] K. Huang, The Hydra: An automated disaster recovery solution for the
cloud, MSc Thesis, University of Oslo, Norway, 2013

	Forside IEEE
	1107511

