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Abstract— June 2012, 11% of the overall population in Taiwan 

was over the age of 65. This ratio is higher than the average 

figure for the United Nations (8%). Critical issues concerning 

elderly in healthcare include fall detection, loneliness prevention 

and retard of obliviousness. In this study we design type-2 fuzzy 

models that utilize smart phone tri-axial accelerometer signals to 

detect fall incidents and identify abnormal gaits among elderly. 

Once a fall incident is detected an alarm is sent to notify the 

medical staff for taking any necessary treatment. When the 

proposed system is used as a pedometer, all the tri-axial 

accelerometer signals are used to identify the gaits during 

walking. Based on the proposed type-2 fuzzy models, the walking 

gaits can be identified as normal, left-tilted, and right-tilted. 

Experimental results from type-2 fuzzy models reveal that the 

accuracy rates in identifying normal walking and fall over are 

92.3% and 100%, respectively, exceeding what are obtained 

using type-1 fuzzy models. 

Keywords- type-2 fuzzy models; gait; fall detection; 

accelerometer; healthcare. 

I. INTRODUCTION 

Parkinson’s disease, stroke and dementia are three 
geriatric diseases that have tremendous effect on peoples’ 
health. The common symptoms for these diseases include 
trembling, stiffness, moving with slow pace, and standing 
unstable. Apart from those symptoms, others consist of 
expressionless faces, excess saliva, tilted to forward body, 
decreasing arm concordant vibration during walking, and 
mini-step walking. Among those symptoms, arm trembling is 
a visible symptom. Tilted walking and decreasing arm 
concordant vibration require long-term observation to identify 
the symptoms. Thus, it is necessary to regularly observe the 
gait that in turn can help discover the geriatric diseases early 
as well as provide valuable information for elderly 
rehabilitation. 

This study bases on the tri-axial accelerometers embedded 
in smart phones to detect geriatric fall incidents. We use the 
variations of accelerometer signals to establish fuzzy 
detection models. The changes of Y-axis and Z-axis signals 
are compared to decide which fuzzy model will be fired and 
which directions of the fall incidents are.  

This study also integrates both pedometer and abnormal 
gaits into a novel judging model. After finishing the 
pedometer function, all the gaits during the walking are 
recorded in the system. The gait information contains the 

average tilted angle and the change of tilted angles, that is, the 
body main-axis and amplitude of vibration during walking.  
Those two representative features are used to judge whether 
the gait is abnormal. To design a universal system that fits 
individuals and different gaits among diverse age levels, type-
2 fuzzy sets [[10], [13], [16], [17]] are used.  

This paper is organized as follows. Section II reviews the 
related work of type-2 fuzzy sets. Section III introduces the 
proposed systems. Experimental results and discussions are 
given in section IV. Conclusions and future work are made in 
the final section. 

II. RELATED WORK 

Type-2 fuzzy models have various applications in the 
realm of health care. Lee et al. [1] used gender, age, height, 
weight, and regularly prepared menu to design a type-2 fuzzy 
model that recommended personalized menu good for 
diabetics. The personalized courses can help patients have a 
balanced diet and control their blood sugar levels. Khosravi et 
al. [2] proposed a type-2 fuzzy model for short-term 
prediction of power load and the results were compared to a 
type-1 fuzzy model and a neural network. Since the type-2 
fuzzy model is better than the type-1 fuzzy model in handling 
uncertain situations it has higher prediction accuracy. 
However, their present study did not take the power bill into 
consideration.  

Lai et al. [3] applied SVM (Sum Vector Magnitude) and 
SMA (Signal Magnitude Area) to estimate the amount of 
user’s activity that is used to judge their activity status. A user 
was asked to wear 6 accelerometers on the left arm, right arm, 
body, left leg, right leg and neck so that the estimation of 
user’s activity can be more accurate. The problems in their 
design were the high cost and difficulty of wearing the six 
accelerometers. Khan et al. [4] exploited the characteristic 
vector formed by self regression coefficients, area of signal 
strength and tilted angles of body to judge daily activities of 
users. 

Bianchi et al. [5] combined both tri-axial accelerometers 
and barometers and proposed an algorithm that was based on 
sum of signal vector strength and area of signal strength to 
improve the detection rate of fall incidents. Curone et al. [6] 
combined both tri-axial accelerometers and heartbeat rates to 
identify user activity and to further infer whether there was an 
accident event. Roy et al. [7] integrated the accelerometers to 



 

 

sEMG (Surface Electromyography) and applied multi-layer 
neural network and adaptive neural fuzzy inference system to 
remote monitor user activities. Six accelerometers and sEMG 
were placed at upper left and right arms, left and right front 
arm, thigh, and chest to identify the user activities. Their 
proposed systems also had a high cost and were cumbersome 
to wear. Kurihara et al. [8] used the measured tri-axial 
accelerometer signals to calculate the amount of body activity. 
They also defined various walking exercise intensities from 
different walking patterns by MET (Metabolic Equivalent) to 
identify what kind of exercise a user was doing.  

III. PROPOSED METHODS 

A. Fall Detection System 

In this study we use the acceleration variations measured 
by the tri-axial accelerators in the smart phones to design the 
type-2 fuzzy systems [11], [12], [15] that are focused on 
detecting whether an elderly fell at home [18]. The proposed 
system flowchart for fall detection is shown in Fig. 1. At the 
beginning, the proposed system smoothes on the measured tri-
axial acceleration signals. Then, the system compares the 
larger acceleration variations between the Z-axis and the Y-
axis to initiate either forward-backward or left-right fuzzy 
model for fall detection. If the inferred result from the fuzzy 
model is assured to be fall incident, an alarm signal is sent to 
notify preset receivers such as medical staff and family 
member for emergent treatment. 

To design the feasible type-2 fuzzy membership functions, 
we conducted a multitude of simulations to record the 
acceleration variations during normal walking and fall 
incident patterns. In our simulations, the user is asked to wear 
the smart phone, which is put in a wallet, near the waist. To 
find the distribution of acceleration variations, the user is also 
asked to walk quickly, normally, or slowly.  Based on the 
acceleration variations, the type-1 fuzzy membership 
functions for X-axis, Y-axis, and Z-axis are constructed. Note 
that the cores of the membership functions are calculated from 
the means of each axis acceleration variations. The leftmost 
boundary and rightmost boundary for each membership 
function correspond to the minimum and maximum variations, 
respectively.  

According to the method proposed by Mendel et al. [9], a 
type-2 membership function can be constructed from type-1 
membership functions. The core of type-2 upper membership 
function (UMF) extends from the original leftmost to 
rightmost cores of type-1 membership functions while the 
leftmost and rightmost boundaries of type-2 upper 
membership function correspond to the original leftmost and 
rightmost boundaries of type-1 membership functions, 
respectively. The type-2 lower membership function (LMF)  
is formed by the intersection of the original type-1 
membership functions that has the minimum intersected area.  

Based on our experimental data, the type-2 membership 
functions are shown in Fig. 2. Since the current design focuses 
on detecting whether a fall incident occurs, only two cases, 
i.e., normal (N) and fall (F), are considered for the consequent 
parts in the fuzzy rules. The designed fuzzy rule base for 
identifying left-right fall incidents is given below: 

Rule1:  If ΔgZ is Low and ΔgX is Low, then output is N. 
Rule2:  If ΔgZ is Low and ΔgX is High, then output is N. 
Rule3:  If ΔgZ is High and ΔgX is Low, then output is F. 
Rule4:  If ΔgZ is High and ΔgX is High, then output is F. 

 

Fig. 1. The proposed system flowchart for fall detection. 

While the designed fuzzy rule base for detecting forward-
backward fall incidents is given below: 

Rule1:  If ΔgY is Low and ΔgX is Low, then output is N. 
Rule2:  If ΔgY is Low and ΔgX is High, then output is N. 
Rule3:  If ΔgY is High and ΔgX is Low, then output is F. 
Rule4:  If ΔgY is High and ΔgX is High, then output is F. 

Based on both the upper and lower firing strength, the output 
interval of each rule can be determined. The upper and lower 
membership functions are determined as follows:  

                        ,                                (1) 

                       ,                                (2) 

where      and      correspond to upper and lower firing 

strength of each rule, respectively. LMF(I) and UMF(I) 
represent the lower and upper boundaries of consequent 
membership function, respectively. The union of all fired rule 
intervals is then taken for defuzzification to infer the desired 
output. 

Due to the complexity and computational cost when type-
2 fuzzy rules are used in inference and defuzzification, this 
study applies the method proposed by Mendel et al. that 
simplified the original membership functions into interval 
type-2 membership functions. The fuzzy intervals resulted 
from fuzzy inference must be order-reduced to infer a crisp 
output. This process is completed through KM algorithm to 
obtain an approximate output value. The KM algorithm is 
summarized as follows: first, rearranging the fired rules in 
ascending order according to the values of consequent parts. 
In the initialization of KM algorithm, the initial firing strength 
of a rule is the average of upper and lower firing strength. 
Then, using the initial firing strength and the corresponding 
consequent values to determine the center of area and find the 
output at the 0

th
 generation as follows: 
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where n is the number of sampling points at the consequent 
interval,         is the initial firing strength at the sampled 
point, and output[i] is the consequent value at the sampled 
point. 



 

 

Then, by identifying which two fuzzy rules where the 
output value is located to find both left switch point and right 
switch point. And a new output is generated through the KM 
algorithm. Finally, the newly generated output is compared 
with the previous generated value to decide whether the 
process continues. If no noticeable difference exists between 
both new and old values, this implies that the output is the 
defuzzified result.  

 
Fig. 2(a). Type-2 fuzzy membership functions for the X-axis. 

 
Fig. 2(b). Type-2 fuzzy membership functions for the Y-axis. 

 
Fig. 2(c). Type-2 fuzzy membership functions for the Z-axis. 

B. Abnormal Gait Judgment 

The procedure for judging abnormal gait is shown in Fig. 
3. When the user pressed the start button to initiate the 
pedometer the system continues to receive the acceleration 
signals that were used to judge the tilt angles and the changes 
of tilt angles. When the user pressed the stop button, the 
system calculated the average tilt angle and the average of 
changes of tilt angles during the walking experiment. Those 
two variables were used to be the inputs of type-2 fuzzy 
system to infer the user gait pattern. The inferred output was 
recorded in the database for further analysis. 

B.1 Calculation of Tilt Angles 

When a handset is placed on a table the acceleration is 
only exerted on the Z-axis and the gravity is 1g. When a smart 
phone is rotated, the gravity is decomposed into tri-axis 
components. For example, when a handset is rotated around 

X-axis by    angles, the Y-axis acceleration is the measured 
component on Y-axis. Similarly, when a handset is rotated 
around Y-axis by    angles, the X-axis acceleration is the 

measured component on X-axis. 

When a smart phone is tilted by 30 °  the measured 

acceleration is 0.5g. If there is no tilt and the smart phone is 
placed perpendicular to the earth surface, the measured 
acceleration is 1g. Based on the earth gravity exerted on the 
smart phones, we obtain the tilt angles as follows: 

         
  

 
 ,   

         
  

 
 ,                                                       (4) 

where    (  ) is the angle when the smart phone is rotated 

around the Z-axis (Y-axis) when it is fixed. gY (gZ) is the 
measured Y-axis (Z-axis) component. g is the measured 
acceleration of smart phone when the gravity is 1g.  

 

Fig. 3. The flowchart for judging abnormal gait. 

B.2 Peak Detection ofTilt Angles 

We did several experiments on the body tilt angles during 
normal walking and observed their variations [14]. The 
measured accelerometer signals are plotted as curves. When 
calculating both the average tilt angle and change of tilt angles, 
only the turning points on the curve are considered. Note that 
those dots are the peaks that indicate the changing points of 
tilt directions. The flowchart for the proposed peak detection 
method that is combined with the derived tilt angles is given 
in Fig. 4. 

Initially, the first datum is saved. When the second datum 
is larger than the first one it is judged as tilting to the right. On 
the contrary, it is judged as tilting to the left. After deciding 
the initial direction, the system continues to receive data until 
it finds the peak angles on the detected side. Then, the system 
keeps on finding the peak on the other side until the stop 
button is pressed by the user to terminate the experiment. 



 

 

 

Fig. 4. Detecting peak tilt angles. 

B.3 Type-2 Fuzzy Inference Model 

In this study we propose a type-2 fuzzy model to infer 
whether a fall incident has occurred. We did multitudes of 
experiments on normal, left tilted, and right tilted walking. 
The membership functions constructed from the experimental 
data are shown in Fig. 5 and Fig. 6, where N stands for normal 
patterns and A is abnormal. Note that both Fig. 5(a) and Fig. 
6(a) are type-1 fuzzy membership functions. To transform 
type-1 into type-2 functions, it is necessary to clarify the 
uncertain areas. In this study, we use the standard deviation of 
the simulated data to the uncertain areas of type-2 fuzzy 
membership functions as shown in Fig. 5(b) and Fig. 6(b). Fig. 
7 is the type-1 membership functions of consequent part 
where NP represents normal output while AP is for abnormal 
output. 

 

Fig. 5(a). The average tilt angle ( z) for type-1 membership functions. 

 

Fig. 5(b). The average tilt angle ( z) for type-2 membership functions. 

 

Fig. 6(a). The change of average tilt angle (Δ z) for type-1 membership 
functions. 

 

Fig. 6(b). The change of average tilt angle (Δ z) for type-2 membership 
functions. 

 

Fig. 7. The type-1 membership functions for consequent part. 

Since each variable ( z and Δ z) has only two labels (A 
and N), the fuzzy rule base contains 4 rules from the 
combinations: 

Rule1:  If  z is N and Δ z is N, then state is NP. 
Rule2:  If  z is N and Δ z is A, then state is NP. 
Rule3:  If  z is A and Δ z is N, then state is NP. 
Rule4:  If  z is A and Δ z is A, then state is AP. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Fall Detection 

Data measured from tri-axial accelerometers that 
simulated users’ normal and abnormal gaits are used to verify 
the inference effectiveness of the proposed type-2 fuzzy 
models. Seven subjects, including 5 males and 2 females with 
an average height of 171.8±6.7cm, participated our 
experiments. Taking the forward-backward fall detection 
model for example, part of 78 of the experimental data is 
listed in Table 1. For those normal walking gaits, our model 
can identify the patterns with 92.3% accuracy. Six normal 
gaits in Table 1 are misidentified as fall incidents due to the 
fact that they have higher changes in the Y-axis accelerometer 
signals as compared to other normal patterns. This implies 
that a fine adjustment of the type-2 membership functions is 
indispensible to reach a perfect accuracy of identification. 
Once a fall incident is detected the proposed model can 
identify the fall incident with 100% accuracy as shown in 



 

 

Table 2. The detection rates from normal walking and fall 
over by type-2 and type-1 fuzzy models are compared in 
Table 3 and Table 4, respectively. When the measured ∆gX 
signal is a little bit large as the third data pair shown in Table 
1 during the normal walking the type-1 fuzzy model had a 
false alarm while this situation is overcome by the type-2 
fuzzy model. 

Table 1. Inference results from normal walking gaits. 
No. normal (ΔgX, ΔgY) inf. status 

1 (2.1,4.6) 0.24 Normal 

2 (3.4,5.9) 0.69 Fall 

3 (6.8,2.6) 0.22 Normal 

4 (2.3,5.2) 0.41 Normal 

…
 

…
 

77 (4.5,2.7) 0.23 Normal 

78 (1.6,5.3) 0.46 Normal 

Correct data 72 

Incorrect data 6 

Accuracy rate 92.3% 

Table 2. Inference results from fall incidents. 

No. fall (ΔgX, ΔgY) inf. status 

1 (1.0,6.3) 0.77 Fall 

2 (9.8,5.9) 0.71 Fall 

3 (2.0,8.3) 0.79 Fall 

4 (1.1,8.2) 0.79 Fall 

…
 

…
 

47 (4.4,5.6) 0.58 Fall 

48 (4.3,6.7) 0.78 Fall 

Correct data 48 

Incorrect data 0 

Accuracy rate 100% 

Table 3. Comparison of accuracy rates from type-2 and type-1 fuzzy models 
during normal walking. 

Normal Type-2 Type-1 

Correct data 72 67 

Incorrect data 6 11 

Accuracy rate 92.3% 85.8% 

Table 4. Comparison of accuracy rates from type-2 and type-1 fuzzy models 
during fall over. 

Fall Type-2 Type-1 

Correct data 48 48 

Incorrect data 0 0 

Accuracy rate 100% 100% 

B. Abnormal Gait Judgment 

To judge whether a user has abnormal gait during 
walking, six different combinations of experiments were 
performed. The six experiments include the cases when the 
smart phone is carried around the user’s left waist under 
normal walking, around the right waist under normal walking, 
around the left waist under left-tilted walking, around the right 
waist under left-tilted walking, around the left waist under 
right-tilted walking, and around the right waist under right-
tilted walking. 

Table 5 compares the inference results under normal 
walking from our type-2 fuzzy models. When the threshold is 
set to 0.6 the average judging rate is about 92.5%. For the left-

tilted and right-tilted experiments the inference results are 
shown in Table 6 and Table 7, respectively. When the 
threshold is set to 0.6, the accuracy is approximately 82.5%. 
The comparison results from normal and abnormal tilt gaits 
are given in Table 8. By analyzing the results shown in both 
Table 6 and Table 7, it is interesting to find when the smart 
phone is carried around the user’s right waist it gives better 
identification accuracy than carried around the left waist if the 
user had a left-tilted tendency during walking. Similarly, for a 
right-tilted gait it would be better that the smart phone is 
carried around the left waist to achieve better identification 
accuracy. Of course, the results are individually dependent. 
However, through multitudes of experiments the better 
position to carry the smart phone can be located to improve 
the average identification accuracy. 

Table 5. Inference results under normal walking. 

smart phone at left waist smart phone at right waist 

 z Δ z inf. status  z Δ z inf. status 

16.67 -2.48 0.4 Normal -11.95 -1.64 0.57 Normal 

16.62 -1.49 0.57 Normal -10.96 -1.5 0.57 Normal 

19.28 -2.69 0.4 Normal -13.62 -3.82 0.4 Normal 

8.06 -3.31 0.28 Normal -8.42 -3.14 0.28 Normal 

14.33 -1.37 0.65 Abnormal -15.56 -1.33 0.65 Abnormal 

18.65 -2.13 0.4 Normal -13.05 -2.73 0.38 Normal 

14.12 -1.98 0.4 Normal -12 -1.27 0.57 Normal 

10.89 -1.16 0.57 Normal -12.93 -1.44 0.57 Normal 

11.86 -0.72 0.55 Normal -17.37 -1.26 0.65 Abnormal 

11.75 -0.75 0.55 Normal -12.69 -1.48 0.53 Normal 

6.18 -2.54 0.28 Normal 6.36 -2.88 0.28 Normal 

0.89 -3.6 0.28 Normal -11.73 -1.97 0.4 Normal 

12.91 -3.97 0.38 Normal -9.92 -3.08 0.28 Normal 

2.75 -3.37 0.28 Normal -17.26 -4.38 0.4 Normal 

16.29 -3.52 0.4 Normal -5.97 -2.44 0.38 Normal 

16.99 -6.87 0.4 Normal -8.1 -2.64 0.28 Normal 

2.66 -1.36 0.4 Normal -10.86 -1.89 0.4 Normal 

3.76 -3.9 0.28 Normal -3.58 -3.03 0.28 Normal 

14.72 -2.53 0.4 Normal -8.3 -1.12 0.4 Normal 

7.84 -3.9 0.28 Normal -7.59 -5.15 0.28 Normal 

Table 6. Inference results under left-tilted walking. 

smart phone at left waist smart phone at right waist 

 z Δ z inf. status  z Δ z inf. status 

17.33 0.34 0.6 Normal -26.2 0.16 0.85 Normal 

19.82 1.01 0.53 Abnormal -14.58 0.33 0.53 Abnormal 

29.12 0.3 0.85 Normal -17.3 0.79 0.6 Normal 

30.4 0.11 0.85 Normal -22.93 0.05 0.85 Normal 

22.71 1.27 0.65 Normal -19.5 1.05 0.6 Normal 

26.9 1.05 0.6 Normal -22.07 0.53 0.85 Normal 

23.12 0.11 0.85 Normal -20.84 0.07 0.85 Normal 

32.3 1.87 0.4 Abnormal -18.58 0.43 0.6 Normal 

24.79 0.66 0.85 Normal -26.91 0.19 0.85 Normal 

27.18 1.68 0.57 Abnormal -19.62 0.85 0.6 Normal 

Table 7. Inference results under right-tilted walking. 

smart phone at left waist smart phone at right waist 

 z Δ z inf. status  z Δ z inf. status 

21.13 -0.21 0.85 Normal -19.69 0.5 0.85 Normal 

29.28 0.7 0.85 Normal -28.05 0.99 0.53 Abnormal 



 

 

19.08 -0.56 0.6 Normal -19.95 -0.24 0.85 Normal 

23.77 -0.13 0.85 Normal -14.99 -0.04 0.53 Abnormal 

38.54 0.27 0.85 Normal -19.07 -0.18 0.6 Normal 

25.62 -0.69 0.85 Normal -15.19 -0.48 0.53 Abnormal 

19.6 0.16 0.85 Normal -27.29 -0.81 0.6 Normal 

24.02 -0.08 0.85 Normal -18.63 -0.7 0.65 Normal 

27.97 -0.11 0.85 Normal -21.25 0.14 0.85 Normal 

16.66 0.86 0.65 Normal 21.64 0.71 0.85 Normal 

Table 8. Comparison of accuracy rate. 

 normal tilt gait abnormal tilt gait 

Correct data 37 33 

Incorrect data 3 7 

Accuracy rate 92.5% 82.5% 

V. CONCLUSIONS 

In this study we proposed type-2 fuzzy models from smart 
phones tri-axial accelerometer signals to identify whether an 
elderly has fallen at home. The elderly body tilted angles and 
the change of tilted angles during walking are used to 
construct a type-2 fuzzy model to infer whether the elderly 
gait is normal or not. The long-term recorded gait patterns can 
provide useful information to monitor the health conditions of 
elderly. 

All the models created to identify elderly fall incidents are 
based on type-2 fuzzy sets. Different to the type-1 fuzzy sets, 
the uncertain areas in type-2 fuzzy sets can represent the 
variations of tri-axial accelerometer signals from normal 
walking and fall over of different elderly. Consequently, the 
type-2 fuzzy models can resolve the problems remained in 
type-1 fuzzy models. 

The current experimental results indicate that there 
remains false alarm in identifying walking patterns. When an 
elderly has unusual body vibration during walking there is a 
chance that the pattern may be misidentified as fall incidents. 
The future work will focus on automatically adjusting the 
parameters defined the type-2 membership functions to reach 
an almost perfect detection rate. Moreover, more elderly will 
be invited to install our system so that various walking and 
fall patterns can be used to train the proposed type-2 fuzzy 
models and in the hope to design a feasible system to identify 
fall incidents. 
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