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Abstract 

   It is argued that the usual formulation of the twin paradox makes use of the general principle of relativity, i.e. 

that accelerated and rotational motion are relative. The significance of perfect inertial dragging for the validity of 

the principle of relativity is made clear. Three new results are needed in the discussion: 1. A cosmic time effect 

which cannot be reduced to the gravitational or the kinematical time dilation; 2. Perfect dragging in an exact 

solution of Einstein’s field equations describing flat spacetime inside a shell with Kerr spacetime outside it; 3. An 

extended model of Minkowski spacetime in order to avoid introducing absolute acceleration and rotation through 

the asymptotic emptiness of the Kerr spacetime. 

1. Introduction 

   A great book has recently been published on Albert Einstein and his universe [1]. Here we come close 

to the person who made such an immense advance in our understanding of time, space and gravitation. 

His universe is our universe. Or it should be. Ninety years ago the British astronomer and author of two 

books [2,3] on Einstein’s general theory of relativity was asked: “Is it true that only three persons 

understand the theory of relativity?” Eddington thought for a moment and then answered: “Who is the 

third?” It is still not easy to make Einstein’s universe one’s own. 

   The general theory of relativity is deep. Physicists calculate new consequences of the theory – every 

day. And even the scientists are still not in agreement about some of the most fundamental properties 

of the theory, for example: Does the theory imply the validity of the general principle of relativity? Is 

rotational motion relative? And what happens to the rate of time? Which twin ages fastest? A student 

asking these questions to different university teachers has a fair chance of getting very different 

answers.  

   The point of departure for the present article is the connection between the twin paradox and the 

principle of relativity. I will argue that the Kerr (and Schwarzschild) spacetime as usually understood with 

a globally empty remote Minkowski spacetime, is in conflict with the principle of relativity, and hence 

that an extended model of the Minkowski spacetime is needed in order that the principle of relativity 

shall be contained in the general theory of relativity. 

2. The twin paradox and the principle of relativity 

   I will first consider the usual version of the twin paradox [4,5] in the Minkowski spacetime: Imagine 

that twin A remains at rest on the Earth and twin B travels with velocity v = 0,8c to the nearest star 

Alpha Proxima 4 light years from the Earth and back. According to A this will take 
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(1)                                                                           

                                            

which means that A is 10 years older at the reunion. A would predict that the twin B is                                                               

 

(2) 

 

older at the reunion. But according to the principle of relativity B could consider himself as at rest and A 

as moving. According to the special theory of relativity B would then predict that he is 10 years older 

and A is 6 years older at the reunion. The contradiction between these predictions is the twin paradox.   

   The principle of relativity is essential for the formulation of the twin paradox. There would be no 

paradox if not both A and B could consider them self at as rest. In the special theory of relativity non-

accelerated motion is relative. This special principle of relativity is, however, not enough to formulate 

the twin paradox. In order that the twins shall be able to travel away from each other and reunite again, 

at least one of them must accelerate during the departure. So the general principle of relativity 

encompassing accelerated and rotating motion is needed. 

   There is still no general agreement on whether the general theory of relativity implies the validity of 

the general principle of relativity. This will be discussed later on. Let us for the moment assume that the 

general principle of relativity is valid, so that we have a twin paradox. The standard solution of the 

paradox requires some preparations. 

    When twin B arrives at Alpha Proxima he turns on the rocket, stops and then immediately accelerates 

towards his brother. As we saw, the general theory of relativity, i.e. the general principle of relativity, 

was needed in order to formulate the twin paradox. It should then not be too surprising that we need 

the general theory of relativity also to solve the paradox. 

   The general theory of relativity is based on the local (i.e. the region in spacetime is so small that tidal 

forces cannot be measured) validity of the special theory of relativity together with the principle of 

equivalence. According to the principle of equivalence the physical effects of an ”artificial field of 

gravity” in an accelerated or rotating frame of reference are equivalent to the physical effects of a 

permanent field of gravity caused by a mass distribution. 

   Einstein deduced in 1911 the effect of a gravitational field upon the frequency of light. The point of 

departure was the Doppler effect: The frequency of a light signal gets an increase, i.e. the light gets a 

blue shift, if the light source moves towards the observer, and a red shift if the source moves away from 

the observer.  

   He then wrote about emission of light in an accelerated reference frame, for example in an 

accelerated rocket. First the situation is considered by an observer at rest. Light is emitted from the 

front end towards a detector further backwards. While the light moves from the emitter to the detector 

the rocket gets an increase of velocity towards the light signal. Hence a blue shift will be observed due 

to the Doppler effect. This is a co-ordinate invariant phenomenon. But it cannot be explained as a result 

of the Doppler effect by the observer in the rocket, since the detector is permanently at rest relative to 

the emitter in this reference frame. The observer in the accelerated rocket experiences a gravitational 
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field. Light moves downwards in this field of gravity. Hence, Einstein concluded that light is blue shifted 

when it moves downwards in a field of gravity, and red shifted when it moves upwards. 

   Einstein then described a stationary situation in which light waves move downwards in a gravitational 

field. A certain number of waves per second enter a room through the ceiling. Due to the gravitational 

frequency shift a larger number leaves through the floor per second. This seems to be impossible in a 

stationary situation. The resolution – said Einstein – is that each second is a little longer at the floor than 

at the ceiling. In this way he deduced the gravitational time shift: Time goes slower farther down in a 

gravitational field. For an observer staying far down in a gravitational field the effect is opposite. He will 

observe that the rate of time is faster higher up in the gravitational field. 

   Let us consider the twins again. B observes twin A and the Earth and Alpha Proxima move with a 

velocity v = 0,8c  a Lorentz contracted distance 

 

(3) 

 

According to B the time taken by A’s travel to Alpha Proxima and back is  

 

(4) 

 

i.e. B predicts that he ages by 6 years during A’s travel. This is in agreement with A’s prediction,  

 

(5) 

 

   But due to the kinematical time dilation B would predict that A ages by 

 

 

(6) 

 

which is in conflict with A’s prediction that he should age by ten years,                                  .                

 

   Our suspicion is that something is missing in B’s prediction of A’s ageing as given above. Let us take a 

closer view upon what happens with A, according to B, when B turns at Alpha Proxima. When B 

accelerates towards his brother he experiences a field of gravity away from A, who is higher up in this 

gravitational field than he is. Hence as measured by B twin A at the Earth ages faster than B during the 

time,   

 

(7) 

 

when B accelerates.  

   If B has constant proper acceleration it follows from the general theory of relativity that the relation 

between A’s ageing and B’s is [6]  
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(8) 

 

which gives 

 

(9) 

    

   When the Earthbound twin A calculated his own and B’s ageing during B’s travel he neglected the time 

taken by A at Alpha Proxima to reverse his velocity. This means that his calculation is correct only in the 

limit of an infinitely large acceleration,            .  The expression for the ageing of A as calculated by B 

during the time B experiences a gravitational field, then reduces to 

 

(10) 

 

Hence, the total ageing of A as correctly predicted by B is 

 

(11) 

 

in agreement with A’s own prediction. 

   We have considered the twin paradox in flat spacetime and the conclusion seems to be: The twin who 

accelerates when they are away from each other is youngest when they meet after the travel [7]. 

Eriksen and Grøn [8] have considered the more general situation when both twins accelerate and found 

that the twin who has greatest acceleration is youngest after the travel. One may wonder if this is valid 

in general in a curved spacetime. 

   Also there is a problem with the principle of relativity. In the treatment above we have only decided in 

beforehand that A is not accelerated and B is, and then shown how we can calculate A’s and B’s ageing 

both from A’s and B’s point of view when each consider themselves as at rest. But how can we be sure 

that B is younger than A when they meet after the separation? Implicitly we have treated acceleration 

as absolute, and said that B has been accelerated and A not. At least this is so if space is globally empty 

except for the twins. Then there is a problem in that the gravitational field experienced by B is without 

any cause. If the principle of relativity breaks down for accelerated motion, B cannot consider himself as 

at rest. One may also wonder if curved spacetime can cure the problem with absolute acceleration in a 

globally empty, flat spacetime. 

 
3. Ageing in curved spacetime 

   How should a twin move to age as fast as possible? In this connection J. Dorling [9] writes that every 

body has a privileged set of states of motion, namely those where it is moving along a path of maximal 

proper time, i.e. a geodesic curve. In so far as its trajectory deviates from such a path, non-gravitational 

forces must be invoked. Hence, the answer seems to be that the twin who moves along a geodesic curve 

between two events in spacetime ages fastest, i.e. that a freely moving twin ages fastest. 
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   M. A. Abramowitz and S. Bajtlik [10] have, however, shown that there exist situations where the 

proper time is not maximal along a geodesic curve. They considered two twins in the Schwarzschild 

spacetime, A at rest and B circling the Earth, and found that the ratio of their proper travelling times is 

 

(12) 

 

Hence, the twin A with               is oldest after the travel, 

 

(13) 

 

 

3.1.  The concept acceleration in the theory of relativity 

   There are two quantities called “acceleration”: Three-acceleration and four-acceleration. Three-

acceleration is defined as the derivative of the coordinate velocity with respect to coordinate time. It is a 

relative acceleration which can be transformed away.  

   Four-acceleration is defined as the derivative of the four-velocity with respect to proper time. It is an 

absolute acceleration which cannot be transformed away. Four-acceleration is the acceleration of a 

particle as measured in an instantaneous inertial rest frame of the particle.  Particles falling freely have 

vanishing four-acceleration. A non-vanishing four-acceleration is due to non-gravitational forces. 

   The heading of Abramowitz and Bajtlik’s preprint is: “Adding to the paradox: the accelerated twin is 

older”. The reason for this heading is their result cited above. They write: Twin A is accelerated and the 

twin B is not. From eq.(13) follows that at reunion the accelerated twin is older than his non-accelerated 

brother! Clearly by accelerated they mean that twin A is not in free fall, so he has a non-vanishing four-

acceleration.  

   It should be noted, however, that A has no three-acceleration while B has a non-vanishing centripetal 

acceleration. Hence, like in Minkowski spacetime, the twin with vanishing three-acceleration is older. 

   In the ”standard resolution” of the twin paradox presented above one considers two twins in 

Minkowski spacetime, and ”acceleration” is usually meant to be a three-acceleration. However, in this 

case there is a degeneracy between three-acceleration and four-acceleration. For twins in flat spacetime 

the invariant statement would be: The twin with a non-vanishing four-acceleration is younger. In other 

words: the freely falling twin ages fastest. It is this statement that Abramowicz and Bajtlik have shown is 

not generally true in curved spacetime. 

   One may wonder: What is generally true? Abramowitz and Bajtlik asked: ”Could the notion ”the twin 

who moves faster, is younger at the reunion” be somehow extended to the classical version of the 

paradox in the Minkowski spacetime, for example by referring to the starry sky above the twins?”. They 

left this question unanswered. The question has been investigated by S. Braeck and Ø. Grøn [11] by 

considering several versions of the twin paradox. 
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 4. Twins with vertical motion 

 

4.1.  Vertical motion in a uniformly accelerated reference frame 

   Twin A stays at rest in the uniformly accelerated reference frame. Twin B is shot upwards and is then 

falling freely in a uniform gravitational field. Then the relationship between A’s and B’s ageing while they 

were away from each other is [11] 

 

(14) 

 

Since                    it follows that               . In other words, the travelling twin (twin B) is older than the twin 

who stays at rest (twin A) at the reunion. 

   The situation described here is similar to the situation discussed by Abramowicz and Bajtlik. Twin A, 

who is at rest, has vanishing three-acceleration, but is not freely falling, and therefore has a non-

vanishing four-acceleration. Twin B is traveling and has a non-vanishing three-acceleration, but he is 

freely falling and has a vanishing four-acceleration. Hence, in this case the twin who has a non-vanishing 

three-acceleration, vanishing four-acceleration and moves faster is older at the reunion, in contrast to 

what was found in the example presented by Abramowicz and Bajtlik. We conclude, therefore, that 

four-acceleration, three-acceleration and velocity cannot be decisive factors in determining which twin 

becomes the older. 

 

        4.2 Vertical and circular motion in the Schwarzschild spacetime 

   The same situation is now considered in the Schwarzschild spacetime. The twin A is at rest and B 

moves freely in the vertical direction. Again the result is that twin A is younger at the reunion [11]. These 

calculations thus demonstrate that vertical motion in Schwarzschild spacetime gives opposite result to 

that with circular motion considered by Abramowicz and Bajtlik. 

   We then have the following possibility in the Schwarzschild spacetime. Three triplets meet at an event 

P. One, A, remains at rest, the second, B, is shot upwards, moves freely and falls down again, and the 

third, C, moves freely along a circular path. They arrange the motions so that they meet again at an 

event Q. Then they compare their ageing, i.e. their increase of proper time between the events P and Q. 

The general theory of relativity predicts the following result: B A C    , i.e. the triplet that moved 

along the circular geodesic path is youngest, and the triplet that moved along the vertical geodesic path 

is oldest. Timelike geodesics have in general extremal proper time between two events, but the proper 

time along a geodesic curve can be either maximal or minimal.   

 

 5. A cosmic time effect 

   We now consider the situation with A at rest and B in circular motion in the Schwarzschild spacetime 

from the point of view of a rotating reference frame in which twin B is at rest. A set of comoving 

coordinates                            in the rotating reference frame, is given by the transformation 

 

(15) 
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Here             represents the angular velocity of the reference frame. Note that the coordinate clocks 

showing     goes at the same rate independent of their distance from the origin. For simplicity we 

assume that the two twins perform orbital motion at a constant radius   in the equatorial plane for 

which                  . Then the line element in the rotating reference frame along the path of the twins takes 

the form 

 

(16)                    

 

For timelike intervals the general physical interpretation of the line element is that it represents the 

proper time        between the events connected by the interval, 

 

 (17) 

 

It follows that the proper travelling time measured by twin A’s clock is 

 

(18) 

 

where                     is the angular velocity of the twin A in the rotating reference frame. The travelling 

time of B, having                is   

 

 

(19) 

 

The terms in eq.(18) have the following physical interpretations: 

               represents the gravitational time dilation due to the central mass. 

                   represents the gravitational time dilation due to the centrifugal gravitational field. 

                   represents the kinematical, velocity dependent time dilation for clocks moving in the rotating 

frame.    

                       is neither a gravitational nor a kinematical time dilation. It has not earlier been given any 

reasonable interpretation. Bræck and Grøn [11] have called it a cosmic time effect for reasons that will 

be explained below. 

   The expression for A’s travelling time may be written 
 

(20) 

where                                     . . The graph of the function              is shown in Figure 1, 
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Figure 1. Sketch of the function              introduced in Eq.(20) for different coordinate velocities      .   

 

The graph shows that a twin with               ages fastest. This twin is at rest in the non-rotating inertial 

frame. Naturally the graph is symmetrical about this angular velocity. Hence for twins at the same 

height, the cosmic time effect acts so that the twin at rest in the non-moving, inertial frame ages fastest. 

 

       6. Ageing in the Kerr spacetime 

   The rotation of a mass distribution changes the properties of space outside it. Inertial frames are 

dragged along in the same direction as the mass rotates. We shall consider circular motion in an axially 

symmetric space. Along the circular path the line element can be written 

 

(21) 

 

The coordinate clocks  showing      goe  equally fast everywhere. Hence the proper time interval of a twin 

with angular velocity                       is given by 

 

(22) 

 

It can be shown [6] that an observer with zero angular momentum (ZAMO) has angular velocity 

 

(23) 

 

A non-vanishing value of         is an expression of inertial dragging. Let us find the angular velocity of the 

twin who ages fastest. One might think that it is the twin at rest due to the kinematical time dilation 

which tends to slow down the ageing. Putting the derivative of the function 
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equal to zero, one finds, however, that the ZAMO ages fastest. 

   In the Kerr spacetime the angular velocity of a ZAMO is [6] 

 

(25) 

   

where                      is the gravitational length of the central rotating body, and                       where      is 

the angular momentum of the central mass (note that   has dimension length). The ZAMO angular 

momentum vanishes in the asymptotic Minkowski spacetime in the limit             . If the central body is 

non-rotating there is Schwarzschild spacetime and the angular velocity of the ZAMO vanishes. 

   Our treatment of the twins in the Schwarzschild and Kerr spacetimes seems to imply that rotating 

motion is absolute. For example one can decide which twin rotates by measuring how fast he ages. In 

the special theory of relativity rotational motion is absolute. However if the general principle of relativity 

is generally valid according to the general theory of relativity, rotational motion has to be relative. 

Whether this is so is still discussed. The phenomenon of perfect inertial dragging plays a decisive role in 

this connection. 

 

        7.  Inertial dragging inside a rotating shell of matter 

 

7.1. The weak field result 

    Inertial dragging inside a rotating shell of matter was described already in 1918 by H. Thirring [12]. He 

calculated the angular velocity of Z  a ZAMO inside a shell with Schwarzschild radius SR  and radius 
0r   

rotating slowly with angular velocity    , in the weak field approximation and found the inertial dragging 

angular velocity, 

   

(26) 

    
This calculation does not, however, remove the difficulty with absolute rotation in an asymptotically 

empty Minkowski space. Both the angular velocity of the shell and that of the ZAMO are defined with 

respect to a system that is non-rotating in the far away region. There is nothing that determines this 

system. The absolute character of rotational motion associated with the asymptotically empty 

Minkowski spacetime, has appeared. 

 

7.2. Perfect inertial dragging 

   In 1966 D. R. Brill and J. M. Cohen [13] presented a calculation of the ZAMO angular velocity inside a 

rotating shell valid for arbitrarily strong gravitational fields, but still restricted to slow rotation, giving 
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For weak fields, i.e. for             , this expression reduces to that of Thirring. But if the shell has a radius 

equal to its own Schwarzschild radius,              , the expression above gives                . Then there is perfect 
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dragging. In this case the inertial properties of space inside the shell no longer depend on the properties 

of the ZAMO at infinity, but are completely determined by the shell itself. 

 
   Brill and Cohen further write that a shell of matter with radius equal to its Schwarzschild radius 

together with the space inside it can be taken as an idealized cosmological model, and proceeds: “Our 

result shows that in such a model there cannot be a rotation of the local inertial frame in the center 

relative to the large masses in the universe. In this sense our result explains why the “fixed stars” are 

indeed fixed in our inertial frame.  

   In 1995 H. Pfister [14] wrote that whether there exists an exact solution of Einstein’s field equations 

with flat spacetime and correct expressions for the centrifugal- and Coriolis acceleration inside a 

rotating shell of matter, was still not known. However, permitting singular shells such a solution 

certainly exists, as will now be made clear. 

 
7.3.  A source of the Kerr metric with perfect inertial dragging 

 
   In 1981 C. A. Lopez [15] found a source of the Kerr spacetime. A few years later Ø. Grøn [16] gave a 
much simpler deduction of this source and discussed some of its physical properties. The source is a 
shell with  radius       rotating with an angular velocity 
                              
 

(28) 
 

The radius of the exterior horizon in the Kerr metric is 

 

(29) 

 
Hence, if the radius of the shell is equal to the horizon radius         , the ZAMO angular velocity just 

outside the shell is equal to the angular velocity of the shell, 

 

(30) 

 

   Demanding continuity of the dragging angular velocity at the shell it follows that the inertial frames in 

the Minkowski spacetime inside the shell are co-moving with the shell. There is perfect dragging of the 

inertial frames inside the shell. The properties of the shell, and of spacetime outside and inside the shell, 

solve Einstein’s field equations without needing the assumptions of week fields and slow rotation. The 

inertial properties of space inside the shell, such as the Coriolis acceleration, do not depend on any 

property of an asymptotic far away region, only on the state of motion of the reference frame relative to 

the shell. 

 

8. Is there perfect dragging in our universe? 

   The distance that light and the effect of gravity have moved since the Big Bang is called the lookback 

distance,                , where      is the age of the universe. WMAP-measurements have shown that the age 
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of the ΛCDM-model of our universe is close to its Hubble-age,                    , namely that                         , 

and that the universe is flat, i.e. that it has critical density 

 

(31) 

 

It follows that 

 

(32) 

 

The Schwarzschild radius of the cosmic mass inside the lookback distance is 

 

(33) 

 

Hence in our universe the Schwarzschild radius of the mass within the lookback distance is 

approximately equal to the lookback distance. It follows that the condition for perfect dragging may be 

fulfilled in our universe.  

   The question of perfect dragging in our universe has been considered from a different point of view by 

C. Schmid [17, 18]. By introducing a rotational perturbation in a realistic FRW-model he has shown that 

the ZAMO angular velocity in the perturbed FRW universe is equal to the average angular velocity of the 

cosmic mass distribution. Hence perfect dragging explains why the swinging plane of the Foucault 

pendulum rotates with the “starry sky”. In Newtonian gravity where there is no dragging, this is a 

consequence of the absolute character of rotation. One says that the swinging plane of the Foucault 

pendulum is at rest relative to the starry sky because neither of them rotates. Hence the pendulum is in 

a room with an absolute rotation.  

 

9. An extended model of Minkowski spacetime 

   Accelerated and rotational motion is absolute according to the general theory of relativity if the 

asymptotically far away regions in the Schwarzschild- and Kerr spacetimes are imagined to be globally 

empty Minkowski spacetime. Then the general principle of relativity is not valid. The previous results 

show, however, that the general principle of relativity can be saved by introducing an extended model 

of Minkowski spacetime in which space is completed by a far away cosmic shell of mass with radius 

equal to the horizon radius of the space outside the shell. This radius may be set equal to the lookback 

distance of the universe. The shell then represents the cosmic mass inside the lookback distance, i.e. the 

mass that may act causally upon us. 

   The extended model of Minkowski spacetime is also relevant in connection with a point made several 

years ago by C. Møller [19]. He wrote that when one solves Einstein’s field equations in a rotating 

reference frame it is necessary to take account of the far away cosmic masses. However there was an 

exception for globally or asymptotic Minkowski spacetime, where there was no cosmic masses. In the 

extended model the Minkowski spacetime is treated in the same way as any other spacetime. 

   In the spacetime inside the shell a centrifugal gravitational field appears in a reference frame rotating 

relative to the shell. An observer in a frame R rotating relative to the shell can maintain that the frame R 

01/Ht H 0 0,996 Ht t

2

03 / 8cr H G 

 
22 2

0 08 / 3 / 1/crG c H c R   

 2 2 3

0 02 / 8 / 3S crR GM c G c R R   
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does not rotate, and that it is the shell that rotates. His calculations would show that there is perfect 

dragging inside the rotating shell, and that this causes the centrifugal gravitational field. With this model 

of the Minkowski spacetime rotational motion is relative. Without the shell rotation is absolute.  

   Translational inertial dragging inside an accelerating shell has been investigated in the weak field 

approximation by Ø. Grøn and E. Eriksen [20]. They found that the inertial acceleration inside a shell 

with acceleration g , Scwarzschild radius SR  and radius R  is 

 

(34) 

 

Hence, according to this approximate calculation there is perfect translational dragging inside a shell 

with radius                          .                

 

10. Conclusion 

   The assumption that spacetime outside a central mass distribution has an asymptotically flat far away 

region which is globally empty is inconsistent with the general principle of relativity. In such a spacetime 

the accelerated twin cannot say that he is at rest because the gravitational field he experiences has no 

source. It is an ad hoc gravitational field introduced into the description when we say that twin A is at 

rest and B travels. In order that both twins shall have the right to claim that they are at rest, we have to 

introduce the extended model of the Minkowski spacetime. Then the field of gravity experienced by B is 

due to perfect dragging induced by the accelerating cosmic shell.    

   Consider a non-rotating central mass inside the extended Minkowski spacetime and a twin moving 

around it. In this space a ZAMO is not moving relative to the cosmic shell. Among all twins moving along 

the same circular path, the ZAMO ages fastest. The cosmic shell determines not only the inertial 

properties of spacetime inside it, but also its temporal properties. This is the physical significance of the 

cosmic time effect. 
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