
An Error Tolerant Memory Aid for Reduced Cognitive

Load in Number Copying Tasks

Frode Eika Sandnes

Institute of Information Technology, Faculty of Technology, Art and Design

Oslo and Akershus University, College of Applied Sciences, Norway

Frode-Eika.Sandnes@hioa.no

Abstract. Number copying tasks are still common despite increased digitaliza-

tion of services. Number copying tasks are cognitively and visually demanding,

errors are easily introduced and the process is often perceived as laborious. This

study proposes an alternative scheme based on dictionary coding that reduces

the cognitive load on the user by a factor of five. The strategy has several levels

of error detection and error correction characteristics and is easy to implement.

1 Introduction

Number input and number copying tasks are common despite the fact that services are

increasingly being digitized. At the very basic level users set their microwave timer or

alarm clock. This study focuses on sequential interfaces which rely on numbered

keys, for example numeric keypads. One example of number input using numeric

keypads includes entering pin-codes to access buildings, or entering pin-codes to

finalize debit card transactions in shops.

Most calculators are equipped with numeric keypads and are often complex to use

[1]. Making phone calls involves entering digit sequences. Often placing a call in-

volves a number copying task where the number is read from some source such as a

phone directory and input using the numeric keypad of the phone [2].

Many commercial software packages require the user to copy printed serial num-

bers to authenticate installations. Online shops frequently operate with discount codes

issued on printed vouchers (see Fig. 1). Airlines frequently operate with booking ref-

erences printed on the reservation that the users enter on self-service terminals in the

airport to obtain their boarding cards (see Fig. 2). Such codes often use higher base

numbers such as 36, that is, combinations of letters and numbers or even base 62 with

combinations of numbers and upper and lower case letters. Shannon [3] was the first

to identify that a decimal digit is approximately equal to 3 1/3 bits. Similarly base 36

and base 62 numbers are equal to 5.2 bits and 6.0 bits, respectively. One may argue

that the increased information capacity gained through large base-digits does not justi-

fy the increased complexity of the copying tasks from a usability perspective. One

reason is that certain letters and digits look similar such as the following digit-letter

pairs, 0 - O, 1 - l, 2 - Z, 5 - S, 6 - G and 8 – B (see Fig. 2). Differentiating such sym-

bols is even more difficult if the user has reduced visual acuity and certain fonts are

used. When numbers are coded with a high base these digits appear random to the

user. The lack of internal structure means that users are unable to resolve ambiguous

looking characters. The problem of visually confusing characters is well known in the

optical character recognition literature [4].

Fig. 1. Special offer voucher with 10 symbol reference code and barcode for barcode readers..

Fig. 2. Booking references with confusing characters: o or zero (left), i or one (right).

In several countries users receive printed invoices with information that are input in

order to initiate online transactions [5, 6]. In Norway, a transaction can often com-

prise the copying of up to 50 digits including the recipients account number, the

transaction date, the amount to pay, an invoice identification code and an authoriza-

tion code obtained from a separate code generating device. Input errors of bank ac-

count numbers has led to severe problems for banking customers such as losing large

sums of money by incorrect transfers due to input error [5].

Number input in hospitals has also received much attention [7]. For example, in-

travenous drug administration involves the input of rate, dose, time and volume of

drugs and input errors can be lethal for obvious reasons. Studies have shown that error

rates in intravenous drug administration can be as high as 50-80% [8, 9]. A study of

the frequency of digits in drug infusion pumps showed that 0 is the most frequent

digit, followed by the digits 1 and 5, while 3, 4, 6, 7 and 8 are comparatively rare

[10]. Numbers ranged in 1 to 5 digits in length with 3 digits being the most common.

It has been found that number input errors are caused by either motor slips where

the fingers do not perform as expected, recall slips where numbers are remembered

incorrectly, or perception slips where the source number is read incorrectly [11]. The-

se errors can result in digit substitutions, inserting or omissions [11]. Most digit and

text input studies operates with typical error rates of 5-10%, which practically means

that up one in every 10 digits are likely to be incorrect. Even worse, one class termed

“out by 10 errors” are caused by incorrectly entering a decimal point or a zero [12].

Several studies have looked at various number input interfaces including touch

based [13] numeric keypads, displays with individual incremental up-down buttons,

incremental left-right/up-down buttons or 5-button interfaces [14] that are often at-

tached to mobile equipment in hospital wards, etc, and results show that the slower

incremental up-down interfaces leads to fewer errors than the faster serial numeric

keypad [15].

2 Number copying challenges

Number copying tasks are problematic for several reasons. First, copying digits is

cognitively demanding. Miller’s limit on humans’ short term memory of 7+/-2 pieces

of information at one time [16] is often cited and subsequent studies have narrowed

this limit down to a maximum of 5-7 pieces in short term memory [17]. Studies in-

volving memorizing phone numbers have shown that recall performance degrades

rapidly beyond 6 digits [2], and we could therefore chose to operate with the magic

number 5 as the upper limit to increase the probability that users with reduced

memory are included. A digit copying task therefore has to be split up into several

read-input cycles. For example, to copy 25 digits 10 read-input cycles are needed,

each cycle requiring shifting the visual attention from the source to the target. The

Target is usually a form input field. Matters are complicated further if the source dig-

its are not chunked, that is, strings of digits presented without separators. It is com-

mon practice to chunk strings of symbols into groups of say 4-5 symbols separated by

blank space. For example, most credit cards numbers comprise 16 digits that are usu-

ally presented as four chunks with four digits each. A lack of chunking means that

additional cognitive and visual effort is required for users to remember and locate

where in the string they were when shifting attention between the source and the tar-

get. Another issue that can contribute to the cognitive complexity is a lack of standard

form layout. If there is a mismatch in both information sequence and information

position at the source and the target it will be cognitively and visually harder for users

to pair data from the source to the target.

Second, the digit copying task is error-prone and error rates of 5-10% are not un-

common. Some number sequences contain parity checking symbols such as credit

card numbers. Simple parity checking schemes are only able to detect simple errors,

and if only one digit is employed there is an approximate 10% chance that an error

will go undetected. Many other numbers are not protected by any parity symbols or

other error-detection schemes. Also, a lack of chunking will also add to the chances of

input error. Errors can also occur if the source numbers are perceived incorrectly.

Third, the digit copying task is perceived as time-consuming and laborious. Many

users use inexpensive portable laptop computers. Such portable computers often have

a reduced keyboard without a numeric keypad and it has been demonstrated that the

input of digits on QWERTY keyboards without numeric keypads are significantly

slower than using full keyboards with numeric keypads [6]. The lack of numeric key-

pads is also common on touch based self-service kiosks [18] such as those found in

airports and train stations. Moreover, users who master touch typing are usually not

able to touch type digits without a numeric keypad.

It is occasionally necessary and practical to communicate numbers orally and each

digit will have to be read out one by one and often repeated to confirm the correctness

of the data. This further reduces efficiency and increases the chances of error.

Although the ideas presented herein will benefit most users, it is especially useful

for users with reduced cognitive functioning. Approximately 10% of the population

suffers from some form of reduced cognitive functioning or learning disorders such as

dyslexia. Providing better support for number input and number copying tasks is

therefore an important part of making computer systems universally accessible.

3 Memory aids

Practice is needed to move information from working memory into long term

memory. Unimportant information are filtered by the brain while frequently used

information, such our phone number, are gradually moved into long term memory.

Students often employ strategies involving memory aids to help remember details for

tests and exams. One popular memory aid is to remember number sequences associat-

ed with word input on mobile keypad using disambiguating text input [19] such as a

four letter word representing the height of a mountain. Instead of recalling the indi-

vidual digits where each digit counts as one piece of information, the student remem-

bers the word which counts as one piece of information.

Index Word

00000 a

00001 ex

00002 ai

… …

99997 desalinizing

99998 preallotting

99999 manipulative

Fig. 3. 5-digit sequence to wordlist mapping.

This paper proposes to use a fixed dictionary on the encoding and decoding sides. The

principle is to split sequences of digits into chunks, where each chunk is converted to

a linguistic word. The user is presented with a word sequence instead of a number

sequence and will thus be able to copy more information per copy-input cycle. Chunk

sizes of 5 digits are chosen as this relies on wordlists with 100,000 entries, which can

be found in many languages.

For example, take the digit sequence 01234 56789. It is first split into chunks of 5

digits namely 01234 and 56789. Each number is then looked up in the wordlist (see

Table 1). The digits 01234 could correspond to the English word “stir” and the digits

56789 correspond to the word “galumphs” meaning portions. Thus, the word se-

quence “stir galumphs” is presented to the user, who has the memory capacity to sim-

ultaneously hold both words in working memory while copying the words to the tar-

get. Next, the words are identified in the wordlist on the receiving end and the indices

of the two words identified, namely 01234 and 56789, respectively.

The word list can be organized such that the magnitude of the number correlates

with the word length such that smaller numbers with many prefix zeros are assigned

shorter words and larger number are assigned longer words. Another strategy would

be to assign the most frequently used numbers shorter words to maximize the effec-

tiveness of communication.

A key advantage of coding digit sequences into linguistic words compared to digit

sequences are that experienced readers do not read words character by character, but

word by word, while digit sequences are read a digit at a time. The reader recognizes

the height signature of text set in lower case letters. This greatly adds to the reading

speed. Obviously, the words must be presented in lower case to reap this benefit.

Moreover, the known internal structure of words means that users are manually

able to spot simple motor errors. Chances of visual perception errors are reduced

since words are read as one unit rather than individual unrelated units.

4 Error detection and correction

The literature on spell checking is large and usually classifies input errors as dele-

tions, insertions or replacements [20]. This strategy proposes three levels of error

detection. The first level of error detection catches misspelled words not found in the

wordlist. Such mistakes and their whereabouts are easily identified and the location of

the misspelled word can be reported back to the user.

To increase the chances of spotting errors the wordlist is organized such that simi-

lar words leads are associated with dissimilar digit sequences, and vice versa. The

Levenshtein distance is often used to measure the distance between words [21], but it

is relatively complex to compute as it allows strings of different lengths to be com-

pared. We therefore use the Hamming distance herein as it is simpler to compute.

Moreover, it is only necessary to compare pairs of words with the same lengths. The

following word to number assignment is employed. The list of 100,000 words is first

sorted according to length. Then words with the same lengths are grouped. The words

in each group were next shuffled into random order and assigned running numbers.

Finally, the groups were recombined into one list organized according to increasing

word lengths while exhibiting a random internal structure. This randomization strate-

gy was simple to realize and will ensure that neighboring words with short hamming

distances will have long number distances in most cases.

Fig. 4. Composing the error tolerant wordlist.

For example, the word “buys” can easily be mistyped as “buts” by substituting the

character y with t by erroneously pressing the neighboring key. The Hamming dis-

tance between these words are 1. However, the corresponding numbers for the two

words are 1225 and 3022. These numbers have a Hamming distance of 3 and a nu-

meric distance of 1797. If one had used running number instead of random numbers

the two numbers for buys and buts would have been 1352 and 1354, respectively,

yielding a Hamming distance of 1 and a numeric distance of 2.

A second level of error detection is achieved by introducing a parity check, such as

modulus 10 [22]. This parity check can be performed by summing each 5-digit chunk

and computing the desired modulus M of the total. An alternative, and perhaps more

robust strategy, to computing the sum is to compute a hash value and then take the

desired modulus from this hash. If there are any mistakes in one or several of the

words then this is likely to be caught since the parity will not match. For example, the

misspelled words “form” and “from” that both are valid words in the dictionary are

represented by the digits 01825 and 01249, respectively. This difference would flag a

modulus-10 parity error. Note also that the words form and from are easily mistaken

by humans, but the digits 01825 and 01249 are unmistakable.

A modulus 10 scheme will miss 10% of the errors, while modulus 100 and 1000

will only miss 1% and 0.1% of errors respectively.

A third level of error detection can be introduced computing some modulo of each

number chunk and representing the result as sequence of modulus values. The modu-

lus values for each chunk will allow the system to also report the location of the error.

The ratio of errors detected depends on the size of the modulo. Thus, 50% of errors

are detected with one bit per word, 24% with two bits per word, etc.

Fig. 5. The overall modulus test detects the presence of errors, the set of individual modulus

tests indicates the location of the errors.

index word one char a one char a index word

00000 a 00000 a

00001 ab

two chars

ab

two chars

Ex 00001 ex
00002 ac → ac → ai → 00002 ai
… … … … … …
99997 pseudopodium zn 99997 desalinizing

99998 psychedelics 99998 preallotting

99999 psychiatries
three
chars

aah
three
chars

bps 99999 Manipulative

 abc ibm
 … …

sorted word list split on length randmized
groups

 random word list

parity
chunk 1

parity
chunk 2

… parity
chunk N

overall
parity

payload
chunk 1

payload
chunk 2

… payload
chunk N

The linguistic representation of digits can also assist detecting mistakes when compar-

ing numbers. For instance imagine a customer comparing the dates 23-06-2012 and

23-08-2012, coded as 23062 and 23082, respectively. Each date comprises three in-

formation parts, day, month and year. If the user focuses on the day he or she might

overlook the difference in month, that is, June versus August since the shape of 6 is

similar to 8. However, when comparing the linguistic representations, that is, the

words “thrives” and “marxist”, it is obvious that the dates are different.

5 Information coding schemes

This section illustrates how various numbers can be fitted to the proposed scheme. It

is recommended that various units are fitted to chunk segments such that they do not

overlap. This allows various information parts to be assessed independently of each

other.

Large numbers with more than 5 digits are simply split into several chunks. For

example, Norwegian account numbers comprise 11 digits. Such numbers can be pre-

sented as two 5 digit numbers by discarding the 11th digit which is a parity check

digit that can be omitted and recalculated at the receiving end since the proposed

scheme has a more powerful error-detection mechanism than this simple modulus-11

parity check. Consequently, an account number can be represented using two-word

phrases, which is easier to work with than 11 digit numbers. Invoice identification

codes represent another example. Invoice identification codes, which in Norway can

consists of 2 to 25 digits, are simply split into as many 5-digit chunks as required.

Some number sequences are longer than 5-digits, but can easily be reduced to 5-

digit chunks without much loss of generality, such as dates. Dates usually indicate the

day, month and year suing eight digits. An alternative 5-digit representation is to

specify the day and month using four digits and one digit for the year. This will work

as most applications operate within a limited scope of time – usually less than a year.

This scheme will work for with a 10-year window. However, if a longer time window

is needed, the day and month can be reduced to a 3-digit format using the day of year,

which is less readable. However, such a scheme will allow to digits for the year giv-

ing a time window of 100 years. The two date formats illustrated allows dates to be

specified using a single linguistic word which is useful when making comparisons.

Comparisons across years are simplified further if the year is dropped altogether.

Numbers comprising of 5 digits or more are simply represented using heading ze-

ros such as small quantities, prices, drug doses, etc.

6 Implementation

An English wordlist published by the SIL International Linguistics Department was

used as starting point. This wordlist contains 109,582 entries with lengths ranging

from 1 to 28 characters. The entries were sorted according to increasing word length

and the 100,000 shortest words were kept and the other words discarded. The average

length of the remaining words is 8 with the longest words being 12 characters long.

The size of the final wordlist is less than 1 Mb. Words of equal length were shuffled

into random order to increase the distances between number chunks.

A proof of concept coder and decoder were implemented in a Microsoft Excel. Ex-

cel was chosen in order to prove the simplicity of the approach demonstrating that it is

simple to implement irrespective of platform.

The strategy can be illustrated using one of the flight reference number shown in

Fig. 2, namely ZO38FC, which is hard to perceive because of the o/0 ambiguity, hard

to remember and hard to input as it involves a mixture of numeric and letter keys. It is

assumed that this reference uses base 36 comprising letters and digits with the right-

most symbol being the least significant. When converted to decimals this becomes the

10 digit number 2218923661 which is split into two chunks, namely 22189 and

23661. These numbers correspond to the two linguistic words “relets sheaves” which

are easier to read, remember and type. This example does not employ any explicit

party checks.

Another example is the payment of a TV-license invoice issued twice a year by the

Norwegian Broadcasting Corporation issued to each household with a television set.

The details printed on the invoice are as follows:

Accout no. 70410542100

Date 31 Jul, 2012

Amount 1290,06

Invoice ID 500330570102919

This is first converted to the digit sequence with the first chunk used for error cor-

rection with N=1 and M=10 giving

01206 70410 54210 31072 01291 50033 05701 02919

which would have to be copied in eight cycles if done manually. This sequence gives

the following eight words

vive islanding sockeyes hautboy pint limberer puled hors

This sequence is easily remembered in two chunks, that is ”vive islanding sock-

eyes” and “hautboy pint limberer puled hors”. When this phrase is input to the decod-

er the original invoice information is detected successfully.

Imagine that one of the words in incorrectly spelled, for instance “viwe” instead of

“vive”. The mistake and the location of this mistake would easily be detected as this

word is not present in the dictionary. Next, imagine we misspell “hors” as the valid

word “horn”. This mistake is both detected and located since both the modulus-10 and

modulus-2 tests fire. Instead, imagine the word “hors” is misspelled as “hops”. This

mistake is detected as the modulus-10 test fires, while the location is not detected

since hops is a valid word and the modulus 2 test does not fire. Finally, imagine that

we misspell “hors” as the valid word “hers” – this mistake is not detected with the

following setup as the parity tests pass despite the error.

Only a simple linguistic parity word is used in the example. The error rate would

be very robust by detecting nearly every error if error correction is compromised for

error detection by using the entire parity word with a modulus 100,000 test. If error

correction is more important the number of bits per chunks can be improved, doubling

its capacity with each bit added. By dropping the overall modulus check and using to

bits per chunk one could survive with one parity word while doubling the capability

to detect the location of the errors.

7 Conclusions

A memory aid for simplifying manual number copying tasks is proposed. The strategy

converts the digits sequences to sequence of linguistic words, reducing the number of

read-input cycles by a factor of five, meaning that certain transactions can be remem-

bered in one go. In addition the strategy can be used as an alternative modality allow-

ing users to easily verify the correctness of information as it is easier to compare lin-

guistic words than number sequences. The approach is capable of detecting and cor-

recting multiple errors and is more powerful than simple parity symbol methods. Er-

rors can be detected and corrected at word level as incorrectly spelled words or

through two levels of parity checks allowing the position of the error to be reported to

the user. The wordlist is constructed to ensure sufficiently large linguistic word dis-

tances between neighboring number sequences increasing the chances of detecting

errors. The approach is applicable to all areas where users have to copy number se-

quences into a computer or electronic device.

References

1. Thimbleby, H. (2000). Calculators are needlessly bad, International Journal of Human-

Computer Studies 52 (6), pp. 1031–1069.

2. Raanaas, R. K., Nordby, K. and Magnussen, S. (2002). The expanding telephone number

Part 1: Keying briefly presented multiple-digit numbers, Behaviour & Information Tech-

nology 21 (1), 27-38.

3. Shannon, C. E. (2001). A mathematical theory of communication. SIGMOBILE Mobile

Computing and Communication Review 5 (1), 3-55.

4. Kahan, S., Pavlidis, T. and Baird, H. S. (1987). On the Recognition of Printed Characters

of Any Font and Size. IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-9 (2), pp. 274 – 288.

5. Olsen, K. (2008). The $100000 Keying Error. Computer 41 (4), 108, 106-107.

6. Sandnes, F. E. (2010). Effects of common keyboard layouts on physical effort: Implica-

tions for kiosks and Internet banking. In Proceedings of Unitech 2010. Trondheim: Tapir

Akademisk Forlag, pp. 91–100.

7. Oladimeji, P. (2012). Towards safer number entry in interactive medical systems. In Pro-

ceedings of the 4th ACM SIGCHI symposium on Engineering interactive computing sys-

tems (EICS '12), ACM, New York, NY, USA, pp. 329-332.

8. Barber, N., and Taxis, K. (2004). Incidence and severity of intravenous drug errors in a

german hospital. European Journal of Clinical Pharmacology 59 (11), 815–817.

9. Taxis, K., and Barber, N. (2003). Ethnographic study of incidence and severity of intrave-

nous drug errors. BMJ 326 (7391), 684. CHECK PP

10. Wiseman, S. (2011). Digit distributions, What digits are really being used in hospitals?

Proceedings of the Fourth York Doctoral Symposium on Computer Science, The Universi-

ty of York, pp 61-68.

11. Wiseman, S., Cairns, P. and Cox, A. (2011). A taxonomy of number entry error. In Pro-

ceedings of the 25th BCS Conference on Human-Computer Interaction (BCS-HCI '11).

British Computer Society, Swinton, UK, UK, pp. 187-196.

12. Thimbleby, H. and Cairns, P. (2010). Reducing number entry errors: solving a widespread,

serious problem, Journal of the Royal Society Interface 7 (51), 1429-1439.

13. Isokoski, P. and Koki, M. (2002). Comparison of two touchpad-based methods for numeric

entry. In Proceedings of the SIGCHI conference on Human factors in computing systems

(CHI '02). ACM, New York, NY, USA, pp. 25-32.

14. Cauchi, A. (2012). Differential Formal Analysis: Evaluating safer 5-key number entry user

interface designs, EICS'12 Proceedings of the 4th ACM SIGCHI symposium on Engineer-

ing interactive computing systems, 2012, pp. 317-320.

15. Oladimeji, P., Thimbleby. H. and Cox, A. (2011). Number Entry Interfaces and Their Ef-

fects on Error Detection, Lecture Notes in Computer Science 6949, pp 178-185.

16. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our

capacity for processing information. Psychological Review, 63, 81–97.

17. Simon, H. A. (1974). How Big Is a Chunk? Science 183 (4124), 482-488.

18. Sandnes, F. E., Jian, H.-L., Huang, Y.-P. and Huang, Y.-M. (2010). User Interface Design

for Public Kiosks: An Evaluation of the Taiwan High Speed Rail Ticket Vending Machine,

Journal of Information Science and Engineering 26 (1), 307-321.

19. Sandnes, F. E., Thorkildssen, H. W., Arvei, A, Buverud, J. O. (2003). Techniques for fast

and easy mobile text-entry with three keys, In Proceedings Norsk Informatikkonferanse

2003, Trondheim: Tapir Utrykk, pp. 205-216.

20. Kukich, K. (1992). Techniques for automatically correcting words in text. ACM Compu-

ting Surveys, 24(4), 377–437.

21. Navarro, G. (2001). A guided tour to approximate string matching. ACM Computing Sur-

veys 33 (1), 31–88.

22. Wagner, N. R. and Putter, P. S. (1989). Error Detection Decimal Digits, Communications

of the ACM, 32(1), 106-110.

