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ABSTRACT 

Cells that are deficient in proteins involved in homologous recombination repair (HRR) have 

been shown to be hypersensitive to PARP inhibitors. While a cell may tolerate PARP 

inhibition or HRR defects alone, the combination is lethal. This phenomenon is termed 

synthetic lethality. The function of HRR signaling protein ATM is lost in 50% of mantle cell 

lymphomas (MCL). MCL is an aggressive and currently incurable subtype of Non-Hodgkins 

lymphoma. PARP inhibition might prove to be a valuable treatment option for ATM deficient 

MCL cases. 

 In this master thesis, we have investigated the alterations in cell growth, cell cycle 

distribution and DNA damage levels, as well as mode of cell death caused by PARP inhibitor 

treatment of ATM deficient lymphoid cells. Four lymphoid cancer cell lines (Reh, U698, JVM-

2 and Granta-519) were continuously exposed to the clinically relevant PARP inhibitor 

(olaparib/AZD-2281), and/or ATM inhibitor (KU-55933).  

Cell growth was reduced or inhibited in all cell lines exposed to both ATM inhibitor and PARP 

inhibitor. The ATM inhibitor alone had little effect on the measured parameters in general, 

but increased the doubling time for all cell lines, and extended mitosis of U698 and Granta-

519 cells. PARP inhibition caused a dose dependent-increase of DNA double strand breaks 

(DSB) during S phase. A G2 phase delay was induced by combined PARP and ATM inhibition. 

The cells repaired the DSBs associated with γH2AX foci during the prolonged G2 phase and 

entered mitosis without foci. Granta-519 and Reh cells became apoptotic from G2 or M in 

response to PARP and ATM inhibition, possibly because of high levels of DSBs. PARP and 

ATM inhibited U698 and JVM-2 cells suffered from mitotic catastrophe before necrosis. TP53 

deficient U698 cells endoreduplicated extensively, while JVM-2 (wildtype TP53) cells 

arrested after failed cytokinesis.  

ATM deficient/inhibited lymphoid cells are sensitized to PARP inhibitors in a cell line specific 

manner, possibly because of other underlying genetic aberrations. We propose that the 

synthetic lethality of PARP and ATM inhibition was caused by repeated cycles of incorrect or 

failed repair of DNA DSBs that occurred during replication. Even though the HRR deficient 

cells have repaired the DSBs (possibly by error-prone non-homologous end joining), they 

may still accumulate translocations and/or other structural chromosome-defects that lead to 

apoptosis or mitotic catastrophe. 
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SAMMENDRAG 

Celler som har defekter i  homolog rekombinasjon reparasjon-signalveien (HRR) har vist seg 

å være hypersensitive for behandling med PARP-inhibitorer. En celle kan tåle PARP 

inhibering eller HRR defekter hver for seg, men kombinasjonen er dødelig. Dette fenomenet 

kalles syntetisk letalitet. Tap av ATM funksjon (HRR signaleringsprotein) er funnet i  50% av 

alle mantelcelle-lymfomer (MCL). MCL er en aggressiv og p.d.d. uhelbredelig undergruppe av 

Non-Hodgkins-lymfom, der bruk av PARP inhibitorer kan vise seg å være en verdifull 

behandlingsmulighet for undergruppen som har ATM-forstyrrelser.  

I denne masteroppgaven har vi undersøkt endringer i cellevekst, cellesyklus og DNA-skade, 

samt celledød-mekanisme etter PARP inhibitor behandling. Fire lymfoide kreftcellelinjer 

(Reh, U698, JVM-2 og Granta-519) ble kontinuerlig behandlet med en klinisk relevant PARP-

inhibitor (olaparib/AZD-2281) og/eller ATM-inhibitor(KU-55933).  

Celleveksten ble redusert eller fullstendig hemmet i all cellelinjene etter samtidig ATM og 

PARP inhibering. Alene hadde ATM inhibitoren gjennomgående liten effekt på de fleste 

målte parametere, men økte doblingstiden i alle cellelinjene og forlenget mitosen for U698 

og Granta-519 celler. PARP inhibering medførte en doseavhengig økning av DNA 

dobbeltrådbrudd under S-fase. G2-fase ble forlenget som følge av kombinert PARP og ATM 

inhibering. Cellene reparerte γH2AX-foci assosierte dobbeltrådbrudd i den forlengede G2 

fasen og entret mitose uten slike foci. Granta-519 og Reh celler ble apoptotiske etter 

behandling med PARP og ATM inhibitorer, muligens på grunn av et høyt antall 

dobbeltrådbrudd. PARP og ATM inhiberte U698 og JVM-2 celler ble nekrotiske etter mitotisk 

katastrofe. De TP53-defekte U698 cellene endoreduplikerte, i motsetning til JVM-2 celler 

(har villtype TP53) som arresterte etter mislykket celledeling. 

ATM-defekte/inhiberte lymfoide kreftceller er sensitive for PARP inhibitorer. Effekten var 

cellelinje-spesifikk, noe som tyder på at andre genetiske ulikheter påvirket resultatet. Våre 

resultater tilsier at den syntetiske letale effekten av PARP og ATM inhibering ble forårsaket 

av gjentatte sykler med mislykket reparasjon av replikasjons-induserte DNA 

dobbeltrådbrudd. Selv om de HRR-defekte cellene har reparert  dobbeltrådbruddene (trolig 

med ikke-homolog endespleising), kan translokasjoner og/eller misdannelser i kromosom-

struktur akkumulere og lede til apoptose eller mitotisk katastrofe. 
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ABBREVIATIONS 

ADP Adenosine diphosphate 

ATM Ataxia telangiectasia mutated 
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PAR Poly(ADP-ribose) 

PARP Poly(ADP-ribose) polymerase 

PARPi PARP inhibitor, Olaparib (AZD2281) 
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siRNA Small interfering RNA 
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1 INTRODUCTION 

1.1 AIM OF STUDY 

Two studies published in 2005 demonstrating the profound sensitivity to PARP 

inhibitors in treatment of BRCA-defective cells1,2 spurred a promising development. 

The term “synthetic lethality”3 has been used to describe the effect of combined loss 

of function of BRCA1/2 and PARP. Depletion of other homologous recombination 

repair (HRR) proteins, like the DNA damage signal transducer, ataxia telangiectasia 

mutated (ATM), have also proved synthetically lethal in combination with PARP 

inhibition4-9. The tolerable side effect-profile of PARP inhibitors has made them 

rapidly available and attractive for clinical use. In contrast to the speed of clinical 

implementation, the knowledge of the underlying mechanisms has advanced far less 

rapidly. Recent studies have highlighted the poorly understood complexity of the 

DNA repair processes, in which PARP are involved10-14, establishing the need for 

further functional studies.  

Patients diagnosed with mantle cell lymphoma (MCL) have the worst prognosis of 

malignant non-Hodgkins B-cell lymphoma patients (figure 1-1). MCL patients are 

presently being treated with high doses of chemotherapy, mainly rituximab (anti-

CD20) and CHOP (cyclophosphamide, hydrodoxydaunomycin, oncovin, and 

prednisone), resulting in a median survival of only 4-5 years15. The relapse rate is 

high and after remission, MCLs have commonly developed chemo-resistance. MCL 

and its leukemia equivalent chronic lymphocytic leukemia (CLL) have frequent 

deletions and/or mutations of ATM16-19. Fifty percent of MCL cases have disabling 

ATM alterations20,21. While the frequency of ATM loss in CLL is around 20%17,19, the 

prognosis of this patient subgroup is inferior to that of ATM-proficient CLL patients18. 

Loss of ATM function could therefore prove to be a tumor specific target for MCL 

treatment. 
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Figure 1-1: Cancer-specific survival of the main B-cell lymphoma subtypes in the series of the 

Oncology Institute of Southern Switzerland, 1980-2006. MCL indicates mantle cell 

lymphoma; FL, follicular lymphoma; MZL, marginal zone lymphoma; and DLCL, diffuse large 

cell lymphoma. This figure was published in Blood 2009, in an article by Michele Ghielmini 

and Emanuele Zucca 22.  

PARP-inhibitors may be used to treat patients with ATM-deficient lymphoid 

neoplasias. Preclinical studies of the use of PARP inhibitors in ATM-deficient cell lines 

and xenografts have had promising results, but these studies mainly focused on the 

end point of cell death4,6-9. As the basic mechanism of synthetic lethality is not well 

understood, we decided to examine the details of certain biological aspects of PARP 

inhibition. First, we wanted to establish in vitro assays for studying synthetic lethality 

and to use these to investigate the basic mechanisms of PARP inhibition in ATM-

deficient cells. We have focused on determining the kinetics of the following 

phenotypes of lymphoid cancer cell lines during 72h PARP inhibitor treatment: 

- Cell growth alterations 

- Cell cycle alterations  

- Induction of DNA DSBs 

- Mode of cell death 
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1.2 BACKGROUND 

1.2.1 CANCER 

The cumulative risk of developing cancer by the age of 75 is 34,5% for men and 

27,9% for women in Norway (2005-2009)23. Although more than 65% of these 

patients survive for at least 5 years after diagnosis (1970-2009)23, cancer is the 

number one cause of death in Norwegian males and the second most common cause 

of death in the female population (2011)24. Cancer is uncontrolled cell growth and 

termed malignant neoplasia (Greek for “new growth/formation”). Cancer cells are 

characteristically insensitive to anti-growth signals and self-sufficient in pro-growth 

signals. A cancer cell must be able to divide limitlessly and avoid cell death and 

senescence. For a solid tumor to grow above 1mm3, it must be able to develop blood 

vessels (angiogenesis). Further growth of the tumor requires ability to invade 

surrounding tissue and possibly metastasize to distal locations. These original six 

hallmarks of cancer25 have recently been complimented by four new hallmarks26. 

Among the newly added hallmarks are “avoiding destruction by the immune system” 

and “genetic instability and mutation”. When a de novo genetic alteration translates 

into a growth advantage for a cell during malignant transformation, the change will 

be one of the many steps of the miniature evolutionary process that is cancer 

development. 

1.2.2 GENETIC ABERRATIONS  

Most genetic aberrations are silent (non-functional), while some might be 

incompatible with cell survival, others are corrected by DNA repair mechanisms. 

However, unrepaired, carcinogenic errors may accumulate and thereby create 

malignant lesions. The most common genetic aberrations are subtle sequence 

changes like base substitutions and small deletions or insertions. However, genetic 

aberrations also include chromosomal translocations, and amplifications or deletions 

of large chromosome segments and whole chromosomes.  
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Exchange of a single nucleotide, called a point mutation, is the simplest form of 

genetic alteration and may be caused by either exogenous or endogenous agents. If 

a nucleotide in a coding DNA sequence becomes permanently substituted, this may 

lead to an amino acid-exchange in the resulting peptide, i.e. a missense mutation. 

Insertions or deletions of a few nucleotides may lead to changes in the reading 

frame of the affected gene. In most cases, these changes result in a premature stop 

codon and subsequent truncated mRNA transcripts (nonsense mutations). 

Translocations may occur within a chromosome or between two or more non-

homologous chromosomes. Some genetic material may be lost during this process, 

due to unsuccessful ligation of the translocated DNA-ends (unbalanced 

translocation). Even if the translocation is balanced, there is a possibility of creating 

fusion genes if the chromosome fusion sites involve coding regions. Alternatively, a 

gene may be transcriptionally regulated by the enhancer/promoter elements of 

another gene. An example of the latter is the t(11,14)(q13;q32) translocation, which 

is one of the hallmarks of mantle cell lymphoma (MCL)27,28. This translocation 

juxtaposes CCND1 (CyclinD1) on 11q with the IGH (immunoglobulin heavy chain) 

locus on 14q. The IGH enhancer element is placed upstream of CCND1, causing 

enhanced transcription of CCND1. The resulting enhanced level of CCND1 promotes 

cell cycle progression into S phase. Amplifications and deletions change the copy 

number of the genes in the affected region, thus disturbing the expression of gene-

dose regulated genes. 

Studies of cancer development have led to definition of two broad classes of 

implicated genes. Proto-oncogenes are often amplified, as overexpression of these 

genes leads to growth promotion. Gain of function-mutations, which lead to 

hyperactivation of the resulting protein, is another way of disturbing the normal 

function of the protein. A proto-oncogene becomes an oncogene when the function 

of the resulting protein is malignantly altered. Some highly growth-promoting virus-

genes inserted in the mammalian genome are innately oncogenes and can in some 

cases drive oncogenesis. Deletions or loss of function-mutations in genes that 

restricts growth, the tumor-suppressor genes, are in some cases not efficient unless 

all copies of a specific gene are affected (e.g. RB1). Other tumor-suppressor genes 
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are gene-dose regulated and affected by mutation/deletion of a single allele (e.g. 

TP53). DNA maintenance genes (caretaker genes) are also implied in cancer 

development, as they guard genomic integrity. Inactivation of DNA repair associated 

genes (through mutations or deletions) will lead to increased acquisition of DNA 

damage.  

1.2.3 DNA DAMAGE REPAIR 

Maintenance of genomic integrity is essential in normal proliferation, during 

development of organisms and in prevention of malignant transformation. The DNA 

molecule can be altered in many ways by perpetual attacks of both endogenous and 

exogenous agents (e.g. metabolites, free radicals, ionizing radiation). During one day, 

up to one million insults to the genetic material needs to be resolved in a single cell. 

Cells have developed a complex machinery of repair and checkpoint pathways to 

prevent genomic alterations in response to these insults. If the amount of DNA 

damage is too extensive, programmed cell death (apoptosis) may be induced. These 

pathways make up the DNA damage response (DDR)29, and they ensure the transfer 

of reliable genetic information throughout the generations.  

In addition to extensive proofreading and correction of base substitutions by DNA 

polymerase δ and ε in mammalian cells30, high fidelity DNA excision-repair systems 

evolved early in evolution to protect the genome. Base excision repair (BER) will for 

instance correct depurinated nucleotides and the most common point mutation 

(when a thymine is formed from a deamination of a 5-methyl cytosine). In 

mammalian cells APEX131, XRCC132 and DNA ligase III33 are essential BER proteins. In 

all eukaryotic cells, functional BER requires a DNA glycosylase, an AP endonuclease 

or AP DNA lyase, a DNA polymerase, and a DNA ligase. Nucleotide base excision 

repair (NER) is activated in response to chemically altered bases that leads to 

distortions of the α-helical structure of dsDNA. Approximately 25 nucleotides around 

the site of damage are excised during NER, in contrast to BER, which only excises the 

altered nucleotide. The DNA mismatch excision repair (MMR) corrects replication 

errors, such as base pair-mismatches and small insertions or deletions.  
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Single strand break repair (SSBR) is sometimes referred to as a separate entity of 

DNA repair. However, SSB structure is an intermediate during BER, and the 

machinery implicated in SSBR is the same as in BER. While BER, NER and MMR 

require intact complimentary DNA strands to guide their repair, some DNA repair 

mechanisms are able to repair the more severe DNA damage, DNA double-strand 

breaks (DSBs). 

Genomic information is protected by the robust structure of dsDNA with a sugar-

phosphate backbone of each strand. Extensive force is thereby required to create a 

DSB. Incidentally, DSBs are among the DNA damage events that occur most seldom. 

Identification and stabilization of DSBs are the first steps in the repair process. 

Phosphorylation of Serine139 of H2AX histones (γH2AX) close to the DNA breakage 

site occurs within seconds after a DSB34. Induction of γH2AX after DSBs leads to 

chromatin decondensation35 and recruitment of DDR-proteins36. Ionizing radiation, 

some chemotherapeutics, as well as replication fork collapse can cause DSBs. DSBs 

(identified by γH2AX foci) are often found in S and G2 phase of untreated normal and 

cancer-derived cells, they are, however, rare events in unperturbed G1
37 and mitotic 

cells38. Thus, it follows that DSBs are repaired before mitotic entry is allowed. The S- 

and G2-associated γH2AX foci have been shown to decrease after treatment with 

reactive oxygen species (ROS) scavengers, thus indicating that DSBs arise during DNA 

replication and is caused by ROS from cell metabolism39. 

Among the many proteins that participate in the DNA damage response, ataxia 

telangiectasia mutated (ATM) is one of the key players. The congenital human 

condition, ataxia telangiectasia (A-T), is an autosomal recessive disorder caused by 

inherited mutations in both ATM alleles. Homozygous A-T patients display many 

defects in their nervous- and immune-system, and have an increased risk of 

developing neoplasias. The MRN complex (MRE11-RAD50-NBS1) senses DSBs and 

recruits the inactive ATM homodimer40. Binding of ATM to NBS1 is essential to 

enable subsequent activation of ATM41-43. ATM is fully activated by 

autophosphorylation of serine1981, followed by dimer dissociation44. ATM is capable 

of inducing several signaling cascades, phosphorylating CHEK245, TP5346,47, Histone 

H2AX48, ATR49 and CtIP50.  
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MRN and ATM is necessary for induction of homologous recombination DSB repair 

through ATR49,51 and CtIP50. CtIP is recruited to damage sites by active ATM, where 

CtIP promotes the nuclease activity of MRE1150. ATR is recruited to DNA damage, via 

its binding partner ATRIP, by ssDNA coated with Replication protein A (RPA). ATR can 

further activate CHEK1. CHEK1 is thought to phosphorylate RAD5152 and BRCA253. 

NBS1 and ATM are required for this recruitment of ATR to RPA-coated ssDNA in S 

and G2
51. Additionally, ATM was recently found to be required for efficient HRR of 

DSBs in G2 after irradiation54.  

Homologous recombination repair (HRR) is considered a highly accurate mechanism 

of DSB repair (figure 1-2, right panel). The accuracy is a result of utilizing the 

homologous sequence from its sister chromatid as template to guide repair, and HRR 

is therefore restricted to S and G2. MRN mediates resectioning of the DNA ends after 

a DSB. This generates a small 3’-overhang of ssDNA on each end. RPA is bound to the 

ssDNA55, inhibiting further resectioning and protecting the vulnerable ends. 

Recruitment of the recombinase RAD51 will substitute the RPA coating and further 

attract BRCA1, BRCA2, RAD52 and RAD54 (creating a nucleoprotein filament) 56. The 

nucleoprotein filament will search for a homologous sequence and invade the 

sequence (strand invasion), once coated with RAD51. The intermediate structure is 

called a displacement loop (D-loop). After DNA synthesis of the 3’-invading strand 

the D-loop is converted into a cross-shaped structure called a Holiday junction. 

Further DNA synthesis effectively restores both the displaced and the invading 

strand. Finally, resolution of the recombination structure requires processing by 

several helicases and nucleases. 
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Figure 1-2: Non-homologous end joining and homologous recombination repair. The figure is 

adapted from a review article by Tom Misteli and Evi Soutoglou (2009)57. 

In G0/G1 phase, the cell is dependent on non-homologous end joining repair (NHEJ) 

to resolve DSBs (figure 1-2 left panel). NHEJ does not require sequence homology 

and the DSB DNA ends must be perfectly compatible for accurate repair. Loss of 

nucleotides and even translocations are some of the results of inappropriate NHEJ 

repair of incompatible ends. NHEJ is also found to be processed through initial 

binding and modification through the MRN complex58-61 (not shown in figure 1-2). 

However, the ends will subsequently bind the Ku70/80 heterodimer. DNA bound 

Ku70/80 recruits DNA-PKcs (catalytic subunit), forming DNA-PK62,63 . Activated DNA-

PK will tether the broken ends together64 and mediate recruitment of other end 

processing and repair proteins such as Artemis65.  
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Finally, a complex of DNA ligase IV, XRCC4 and XLF seals the break66,67. Competition 

of Ku70/80 and HRR for DSB ends is proposed to regulate the choice between the 

two repair mechanisms when sister chromatids are available68,69. It is still debated 

whether this is a competition or a collaboration70, as unique roles for the two 

pathways based on their repair kinetics have been reported. Kim et al. found that 

rapid and transient NHEJ factor assembly71 precedes, without inhibiting, the slower, 

yet persistent retention of HRR factors at the site of damage58.  

The diversity of DNA repair mechanisms forms a robust system that can withstand 

loss of one pathway as the remaining pathways continue to maintain genomic 

integrity. Loss of more than one pathway may on the other hand be lethal, which will 

be further discussed in section 1.2.7. 

1.2.4 THE CELL CYCLE 

DNA repair is essential for maintaining genome integrity. However, fixation of some 

types of damage may occur if the cell proceeds in the cell cycle. Eukaryotic cells have 

therefore evolved checkpoints that delay cell cycle progression until repair is 

completed. This will be discussed after a brief description of the normal cell cycle 

and its regulation. 

The mammalian cell cycle is a closely regulated process divided into four phases G1 

(gap phase 1), S (DNA synthesis), G2 (gap phase 2) and M (mitosis) shown in figure 1-

3. Mitosis is divided into prophase, prometaphase, metaphase, anaphase and 

telophase, and, finally, the phase of cell division is called cytokinesis. All 

chromosomes are condensed into sister chromatids during prophase. In 

prometaphase, the nuclear envelope breaks down to allow the microtubules that are 

emerging from the spindle poles to attach to the chromatids. The chromatids align at 

the spindle equator in metaphase, and anaphase is only initiated if all sister 

chromatids are attached to a microtubule from each pole (i.e. spindle assembly 

checkpoint). Destruction of sister chromatid cohesion marks the start of anaphase, 

and the separated chromatids are pulled to opposite spindle poles. During 

telophase, the segregated chromosomes become decondensed and two separate 
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nuclei form. Cytokinesis is the final stage, where the cell is cleaved into two daughter 

cells. The state of quiescence, often referred to as G0, is the withdrawal from active 

cell cycle. If stimulated, the cell is able to re-enter the cell cycle from resting in G0. 

Quiescence differs from the proposed irreversible and non-proliferative state of 

senescence72.  

The main players in the regulation of cell cycle progression are the cyclin dependent 

kinases (CDKs), and their activation is initiated by binding to a cyclin partner (CCN). 

The CCNs are expressed, repressed and/or degraded at different stages of the cell 

cycle, while the levels of CDKs are almost constant. Different CDK/CCN complexes 

are responsible for a multitude of coordinated cell cycle events, and their activity is 

again controlled by other kinases, phosphatases and ubiquitin-ligases.  

 

Figure 1-3: The mammalian cell cycle, with regulatory checkpoints. 

The cell will not start DNA replication if the environmental conditions, such as 

growth factors or inhibitory signals, are unfavorable. The cell decides in late G1 
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whether to start duplicating its DNA. The point of commitment to DNA replication is 

irreversible, and called the restriction point (RP). When the cell commences DNA 

replication it must complete the task, and in the absence of DNA damage, the cell 

cycle is completed without further growth factor signaling. The mechanisms of cell 

cycle progression mainly consist of binary “switches”, as the incompletion of mitosis 

or replication, for instance, would be disastrous.  

The switches are part of the evolved cell-cycle control system, known as checkpoints 

73. The proper order and completion of the major transitions of the unperturbed cell 

cycle are controlled by the following checkpoints (figure 1-3):  

1. G1/S-transition: the restriction point  

2. Re-replication: replication origins cannot be fired more than once 

3. G2/M-transition: DNA replication must be completed before mitotic entry 

4. Spindle assembly checkpoint (SAC): All centromeres must be connected to a 

kinetochore from each spindle to ensure faithful chromosome segregation 

DNA damage activates checkpoints in G1/S, S, G2/M and in metaphase. Induction of 

the checkpoints cause a halt of cell cycle progression (arrest) until the damage is 

repaired. The exception is the intra-S checkpoint (not related to the re-replication 

checkpoint described above), which causes a cell cycle delay. This intra-S checkpoint 

actively slows down replication forks and suppresses origin firing74. The G1/S DNA 

damage checkpoint guards against replication of a damaged template, and may 

employ the same downstream effectors as the RP. Mitotic entry with DNA damage is 

prevented by a G2/M checkpoint. Severe DNA damage will cause improper 

chromosome segregation, the cell is protected from this by the metaphase to 

anaphase-transition DNA damage-checkpoint, which employs effectors of SAC, e.g. 

MAD275 and AURKB76.  

The DNA damage checkpoints is initiated in the following order: Sensor proteins 

recognize DNA damage and relay the signal to transducers (mostly kinases).The 

transducers regulate the effector proteins that induce cell cycle arrest, DNA repair 

and apoptosis either indirectly (through transcription) or directly. The members of 

the phosphatidyl-inositol kinase-like kinase (PIKK) family of protein kinases ATM, ATR 
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and DNA-PKcs are central transducers in this signaling network, and they are involved 

in both overlapping and distinct pathways12,77. CHEK2 and TP53 are among the 

targets for ATM phosphorylation. While CHEK2 is a transducer itself, it can positively 

reinforce some of ATMs functions (e.g. TP53 phosphorylation78), but it has other 

separate functions as well, e.g. inhibition of Cdc25 phosphatases that activate CCN-

CDK complexes79-81. We have previously shown that TP53, CHEK1 and ATM have 

three separate roles in initiating the G2/M checkpoint after ionizing radiation in 

lymphoid cancer cell lines, and ATM and CHEK1 are essential to induce an early and 

late G2 arrest respectively82. TP53 is essential for induction of the G1/S DNA damage 

checkpoint83,84.  

Tumor suppressor and gene regulatory protein TP53 is one of the most important 

caretakers of genome integrity85. CDKN1A (p21), an inhibitor of CDK-CCN complexes, 

are among the proteins that TP53 can transactivate. TP53 is a regulator of the 

balance between cell death and repair in response to DNA damage, by either 

stimulating transcription of pro-apoptotic genes or DNA repair-associated genes86. 

1.2.5 CELL DEATH 

The tightly controlled balance of cell division and cell death maintains tissue 

homeostasis. Several different mechanisms induce cell death. Based on differences 

in morphology, these are divided into necrosis, apoptosis, autophagy and mitotic 

catastrophe87.  

Mitotic catastrophe is not established as a separate entity of cell death. It is most 

commonly described as cell death during or after catastrophic chromosome 

segregation in mitosis. Morphological features like micronuclei or multiple nuclei87  

are markers of mitotic catastrophe (figure 1-4). It is debated whether mitotic 

catastrophe is a cause of death or a separate cell death mechanism88, as the cell 

utilizes either the apoptotic machinery (DNA damage induced caspase 2 activation)89-

91 or become necrotic92. Whether or not autophagy is a separate cell death mode is 

also questioned. Autophagy is the process of intracellular degradation of organelles 

in enlarged lysosomes or autophagosomes. If this is a process accompanying cell 
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death, a mechanism of cell death or even a damage recovery-pathway is still 

debated93. 

 

Figure 1-4: Morphological characteristics of cell death by necrosis and apoptosis, as well as a 

preceding cause of cell death induction, mitotic catastrophe. 

Necrosis is a cell death mode characterized by cell swelling, loss of membrane 

integrity and subsequent leakage of the intracellular fluid into the surroundings 

(figure 1-4). Cytotoxic enzymes (mainly released from disintegrated lysosomes) 

degrade internal cell structures. When these are released into the extracellular 

matrix, they can trigger cell death of neighboring cells as well as severe 

inflammation. In contrast to apoptosis, necrosis is considered an uncontrolled mode 

of cell death in response to massive injury or energy depletion. New findings indicate 

that this may not be the case for all necrotic events, as induction of necrosis through 

death receptor signaling is reported to be activated by FAS ligands94-96. 
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Apoptosis or programmed cell death is an active enzymatic process. Proper initiation 

of apoptosis is crucial to prevent accumulation of damaged or excessive cells. 

Apoptosis is morphologically characterized by cell shrinkage, chromatin 

condensation, membrane blebbing, DNA fragmentation and formation of apoptotic 

bodies (figure 1-4). Apoptosis is induced by both internal and external signaling and 

the two separate pathways are respectively denoted: The intrinsic and extrinsic 

apoptotic pathway. Intercellular signaling predominantly from the immune response 

activates the extrinsic pathway, while genotoxic stress primarily activates the 

intrinsic pathway. Both pathways utilize members of the caspase family of cysteine 

proteases to initiate and execute apoptosis. A balance of the relative levels of pro- 

and anti-apoptotic proteins controls induction of the intrinsic pathway. Anti-

apoptotic proteins (e.g. MCL1 and BCL2) inhibit cytochrome c release into the 

cytoplasm from channels of the outer mitochondrial membrane, while the pro-

apoptotic proteins (e.g. BAX, BAD and BAK) have the opposite function. Release of 

cytochrome c or death factor signaling (from ligands like FASL, TNFα and TRAIL) will 

lead to activation of the “executioner” caspases -3 and -7 through large complexes 

called the apoptosome and DISC (death inducing signaling complex) respectively. The 

effector caspases cleave multiple regulatory (e.g. PARP and TP53) and structural 

proteins (e.g lamins and actins). Finally, the apoptotic cell will present phosphatidyl 

serine residues on its cell surface to initiate phagocytosis by neighboring cells. 

1.2.6 PARP 

The Poly(ADP-ribose) polymerase (PARP) family of proteins and PARP like proteins is 

identified in many entities, from dsDNA viruses and bacteria to a variety of 

eukaryotes, yet not in the yeasts S. pombe and S. cervisiae97,98. PARP proteins 

require NAD+ molecules to generate a polymer of ADP-ribose (PAR) and 

concomitantly release the by-product nicotinamid. PAR is negatively charged and 

may exist as a free polymer or be a post-translational modification of other proteins. 

PAR polymers can become several kDa in size and may be linear or branched (bound 

by glycosylic ribose-ribose links)99. PARPs (17 human members, although 10 

putative100) are capable of either mono- or poly-ADP-ribosylation (PARylation). 
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Hence, a new name is suggested, the ADP-ribose transferases (ARTs) 97. The most 

extensively studied PARP is its founding member PARP1, responsible for 90% of all 

PARylation99.  

Parp1 knockout mice are viable101, display increased sensitivity to genotoxic 

stress102, and show resistance towards inflammation103-105. Although the phenotype 

of Parp1-/- mice is quite mild, depletion of the only PARP-like gene in Drosophila 

causes larval lethality106-108. Additionally, Parp1 and 2 double knockout in mice was 

shown to be embryonically lethal109, indicating that PARP activity is essential in 

mammals as well. So far, exclusively PARP1 and PARP2 have been found to be 

activated by DNA breaks and have a DNA-binding domain (zinc finger binding 

domain)110,111. Although PARP1 PARylates many targets, it mostly PARylates itself112, 

and DNA damage enhances this activity113. The autoPARylation is suggested to cause 

PARP1 to be repelled from the DNA lesions, as the PAR-polymer and DNA are both 

negatively charged114.  

Among the many targets for PARylation by PARP1 are transcription factors such as 

TP53115,116 and NF-κB117, histones99 and enzymes such as AURKB (Aurora kinase B)76. 

The dramatic increase of PAR polymer levels after induction of DNA damage is 

transient (half-life of seconds to minutes), as the polymers are rapidly catabolized by 

PAR glycohydrolase (PARG) 118,119. The removal of PAR from PARP allows new DNA 

binding120 . Although PARP1 is abundantly expressed (≈0.5 million copies per cell121 ), 

the basal level of PARG activity is much higher than that of PARP. Removal of toxic 

amounts of PAR by PARG is essential as PARG-/- mice die early in embryogenesis122 

PARG was until recently the only known PAR-degrading enzyme, when mithocondrial 

PAR was found to be degraded by ARH3123. 

Since the discovery of the caspase 3 target PARP1124, there has been extensive 

research efforts into the functions of PARPs. Although numerous and diverse 

functions of PARPs have been discovered, the underlying mechanistic explanations 

are in some cases conflicting. The established role of PARP1 as a BER/SSBR 

protein102,125,126, have been challenged by further studies demonstrating that PARP1 

depletion only slow down BER initiation14,127 or does not affect BER efficiency at 
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all128. Moreover, BER is an essential process and knockout of either Xrcc1129 or 

Apex1130 is lethal early in embryogenesis, while Parp1 knockouts are viable131. 

Inhibition of PARylation and subsequent PAR-degradation has been reported to 

retard efficient repair of SSBs14,132-134, possibly because of PARP1s role in attracting 

the scaffold protein XRCC1 to the site of damage135. PARP1 has also been shown to 

PARylate ATM in response to DNA damage6,136. PARP1 aggregation at DNA DSBs137 is 

required for rapid accumulation of MRN-complex proteins NBS1 and MRE11138. All of 

which further establishes PARP1 as a DDR involved protein. 

The massive effort put in to development of PARP inhibitors, have resulted in an 

array of small molecules with different actions. The first generation of NAD+ analogs 

(nicotinamide and 3-aminobenzamide) was not very specific. However, the 2nd  

generation of competitive inhibitors of the enzymatic site e.g. veliparib (ABT-888), 

PJ34 and olaparib139 and the 3rd generation of covalent irreversible inhibition of the 

DNA binding domain (iniparib)140 have evolved to be highly specific and potent. Most 

PARP inhibitors inhibits both PARP1 and PARP2, yet they have low adverse effects on 

normal tissue141-145. In fact, the side effects are so mild that patients can be exposed 

to PARP inhibitors over several months without additional toxicity (olaparib was 

continuously administered for 168 days in two phase II-studies146,147). Several of 

these inhibitors have undergone more or less successful clinical trials 141,142,146-150. 

The clinical trials and preceding development of PARP inhibitors were a result of two 

promising studies by Bryant et al.2 and Farmer et al.1 in 2005 demonstrating 

synthetic lethality by inhibition of PARP in BRCA1/2-defective cells. Depletion of 

other DDR proteins such as ATM, ATR and CHEK1 were identified in a siRNA screen 

searching for kinases that increased sensitivity to PARP inhibitors151. PARP inhibitors 

are promising anti-cancer agents, especially since PARP expression have been shown 

to be upregulated in several cancer types; hepatocellular carcinoma152, malignant 

lymphoma153 and early stages of colorectal carcinogenesis154, as well as known HRR-

deficient malignancies13. The latter has been shown to be HRR deficiency-

dependent, as the upregulation is reverted in response to BRCA2 reconstitution in 

vitro13.  
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1.2.7 SYNTHETIC LETHALITY: PARP INHIBITION AND HRR DEFECTS 

The term synthetic lethality describes the fatal combined loss of two genes/proteins, 

even though loss of either of the two is compatible with life. First described in 

Drosophila over 60 years ago155, synthetic lethality  have long been proposed as a 

cancer treatment strategy156, yet only one synthetic lethal treatment approach have 

reached the clinic so far.   

Although the initial in vitro studies1,2 seemed very promising, phase II studies of 

PARP inhibitor (olaparib) treatment of BRCA1/2-defective breast and ovarian cancer 

have not had the expected effect, with 41146 and 33%147 objective response rate 

(ORR), respectively. A phase II study of metastatic TNBC (without regard to BRCA-

status) increased the overall response rate from 32% to 52% by addition of iniparib 

to gemcitabine and carboplatin (GC) treatment (without increasing normal tissue-

toxity of GC)148. However, the following phase III studies using PARP inhibitor iniparib 

in combination with GC as first line-treatment of triple negative breast cancer (TNBC) 

and non-small cell lung carcinoma, have been reported (both at ASCO 2011, and 

from the manufacturer Sanofi) to fail their primary goal of increased overall survival. 

The lack of patient selection by BRCA-status makes it harder to demonstrate 

synthetic lethality in clinical studies. Additionally, the PARP inhibitory effect of 

iniparib has recently been disproven157,158. Elevated PARP expression has been 

suggested as a biomarker for response to PARP inhibitor treatment, as this is shown 

in vitro to be correlated to PARP inhibitor response13. On a whole, it has now 

become clear that the failure to demonstrate an equal response in clinical trials as in 

in vitro/vivo studies is due to a poor understanding of the consequences of PARP 

inhibition on the molecular level. Future studies on the underlying mechanisms 

behind the synthetic lethality of PARP inhibition and defective homologous 

recombination repair (HRR) are therefore warranted. 

When synthetic lethality of PARP inhibition in HRR-deficient cells first was 

discovered1,2, the role of PARP in BER/SSBR was the proposed explanation. Cell death 

was until recently thought to be caused by accumulation of unrepaired DNA SSBs 

due to PARP inhibition. These were converted into DSBs during replication, and the 
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subsequent failure to repair these by HRR would be incompatible with life (figure 1-5 

A). This was the leading functional model until considerable amounts of 

experimental results accumulated to contradict or complicate this explanation10-14. 

Most importantly, the amount of SSBs was not increased after PARP inhibition, 

shown both by the alkaline DNA unwinding assay14 and the alkaline comet assay13. 

Moreover, XRCC1 depletion of HRR-defective cells did not cause synthetic lethality12, 

and combining XRCC1 depletion with PARP inhibitors actually created an unexpected 

synthetic lethal effect10,14. These data clearly demonstrated that the role of PARP1 in 

attracting XRCC1 to SSB repair135 could not be responsible for the phenotype induced 

by PARP inhibition.  

Professor Thomas Helleday has lately proposed two new models of PARP inhibition 

in HRR-deficient cells, rejecting the formerly accepted hypothesis159. The first is 

termed “PARP trapping model” (figure 1-5 B) and is based on a suggested difference 

in sensitivity to PARP inhibitors and PARP depletion (RNAi techniques). Indicating 

that catalytically inactive PARP is not inhibited from DNA binding, but the lack of 

subsequent auto-PARylation prevents PARP from being repelled from DNA. Some 

results support this theory2, while others have not found a profound difference 

between depletion and inhibition1,12. A possible explanation for this discrepancy may 

be that the effect of RNAi-mediated knockdown does not last for many cycles, and 

PARP inhibitor induced kill of HRR-deficient cells is normally analyzed after 7-12 

days. The model further postulates that inhibited PARP is trapped onto DNA lesions, 

thereby becoming an obstacle for passing replication forks, much like the action of 

topoisomerase I inhibitors160. The subsequent replication fork collapse will produce a 

one-sided DSB (the Okazaki fragment in process). These DSBs will not be repaired or 

be incorrectly repaired by NHEJ in the absence of functional HRR.  
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Figure 1-5: Models of PARP inhibition in HRR defect background. Presentations of the 

original model (A), PARP-trapping model (B) and Replication restart model (C) are from 

Thomas Helleday’s article:  “The underlying mechanism for the PARP and BRCA synthetic 

lethality: Clearing up the misunderstandings” (2011)159 . PAR-polymers are depicted around 

PARP1-protein in A and C. “The balance of DSB repair mechanisms” model (D) is adapted 

from a figure in a review article by Amal Aly and Shridar Ganesan (2011)161. 

The second model called “Replication restart model” (figure 1-5 C) is based on the 

involvement of BRCA2162 and RAD51163 in replication fork stabilization/restart, and 

the reported affiliation of PARP1 at replication forks11,164. The model suggests that 

lethality is caused by abolishing both BRCA-mediated and PARP-dependent 

replication restart. However, PARylation was not found to colocalize with γH2AX and 

RPA foci in BRCA2-deficient cells, indicating that the PARP overexpression in these 

cells is not affiliated with stalled replication forks13. Recently, PARP1 and BRCA2 was 

found to prevent Mre11 dependent degradation of stalled replication forks, and 
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acquired resistance towards PARP inhibition was correlated with reduced Mre11 

foci165. 

Several studies have demonstrated an unexpected rescue of the PARP inhibitor 

induced synthetic lethality in HRR defective cells after additionally inhibiting 

NHEJ9,12,166,167. PARP1 may compete with Ku70/80 for DNA ends131,167-169, or 

Ku70/80-affinity to DSBs could be decreased by PARylation of Ku70/80170. This 

suggests a third model of PARP inhibition in HRR-defective cells; tilting the balance of 

DSB repair mechanisms, towards the error-prone NHEJ (figure 1-5 D). Disturbing 

NHEJ-proteins in vitro by DNA-PKcs inhibition or depletion (by RNAi) of DNA-PKcs, 

Ku80, Artemis or DNA ligase IV all alleviate the synthetic lethal phenotype induced 

by PARP inhibition in HRR-defective cells 9,12,167. Additionally, the severe 

immunodeficiency of DNA-PKcs
-/- mice was abolished after additional Parp1-/- 

knockout166. Other unexpected results of PARP inhibition are the rescue of PARP 

inhibitor-sensitivity in BRCA1-defective cells by loss of 53BP1171. 53BP1 is a TP53 

activating and DSB-binding protein172, and is found to guide DSB repair towards NHEJ 

in the absence of BRCA1171.  Severe structural chromosome aberrations have also 

been reported in BRCA1/2-defective cell lines after PARP inhibition1, indicating high 

activity of low fidelity repair. Radial chromosomes have been reported in BRCA1 

mutants rescued by TP53 or 53BP1 knockout171. A recent study of the requirement 

of 53BP1 and γH2AX in Parp1-/- mice, reported that additional H2AX knockout 

induced synthetic lethality and proposed NHEJ associated repair to be 53BP1-

dependent173. The DSB repair balance model still does not give an explanation as to 

how repair is facilitated in the combined absence of HRR, NHEJ and PARP (figure 1-5 

D, lower right quadrant), although a reconstitution NHEJ and HRR have been 

proposed161. 

Efforts have also been put into researching synthetic lethality induced by depletion 

of other HRR proteins combined with PARP inhibition4-9,13. Several studies have 

established that loss of function of ATM is synthetically lethal when combined with 

PARP inhibitor treatment4,6-9. Although, Atm and Parp1 double knockouts were 

found to die at gastrulation5. The in vitro and in vivo studies revealed that synthetic 

lethality of ATM and PARP loss is somewhat less potent than that of PARP and 
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BRCA1/24,6-9. However, most of these studies have solely focused on the potency of 

PARP inhibitors on cell death-induction. The study by Aguilar-Quesada et al. reported 

that ATM is activated by PARP inhibitor-induced DNA DSBs6. Moreover, Williamson 

et al. found that DNA-PK inhibition rescued synthetic lethality of PARP inhibition in 

ATM-deficient cells, and that additional synthetic lethality by PARP inhibition was 

observed in ATM- and TP53-defective cells9. Thus, inhibition of PARP in an ATM- 

deficient setting requires further study to elucidate its full potential and mechanism. 

2 MATERIALS AND METHODS 

Supplier information (including product numbers) regarding all materials used in this 

study is listed in the appendix. Detailed recipes for the different solutions needed to 

perform the methods described in this chapter, can also be found in the appendix. 

The specifications and dilutions of antibodies used are listed in a separate section in 

the appendix. Supplier and product information of instruments and software are 

listed continuously in the text. 

2.1 CELL CULTURE AND TREATMENT 

2.1.1 CELL LINES 

Reh is derived from a pre-B cell acute lymphoid leukemia (ALL) patient174. U698 is 

derived from a diffuse large cell lymphoma175. JVM-2 is an Epstein-Bar virus (EBV)-

transformed B-lymphocytic leukemia (B-CLL) cell line176 which was acquired from the 

Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, 

Germany). There are several studies indicating that B-CLL s carrying the t(11,14) 

translocation may correspond to blastoid MCL variants177, and use of the JVM-2 cell 

line as a model system for MCL is well established. Granta-519 is an EBV-

transformed cell line from a high-grade MCL relapse patient with t(11,14) 

translocation. Granta-519 was also purchased from DSMZ178. Granta-519 is ATM-

deficient with one ATM allele deleted179, and the other allele containing a missense 

mutation R2832C in the ATM kinase domain180. All cell lines were confirmed free of 

mycoplasma infection before use. 
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2.1.2 CULTURE CONDITIONS 

All cell lines were incubated at 37 °C with 5 % CO2 and H2O-saturated air in a Nu-

5510/E/G incubator (NuAire, Plymouth, MN). Reh, U698 and JVM-2 cells were grown 

in RPMI 1640 containing 10%(v/v) fetal bovine serum and 1%(v/v) penicillin-

streptomycin and 2mM L-glutamine. Granta-519 cells were first grown in Dulbecco’s 

Modified Eagle Medium (DMEM) as recommended by DSMZ with the same 

supplements.  

Comparison of growth rates of Granta-519 in DMEM and RPMI 1640 over 4 weeks 

indicated that there was a growth advantage in the RPMI 1640-medium and this 

medium was later used for all experiments involving Granta-519 cells. Cells were 

split and reseeded every Monday, Wednesday and Friday at a density of 3.0·105 

cells/ml for U698 and Reh and 1.5·105 cells/ml for JVM-2 and Granta-519. Cells were 

grown and handled in a sterile environment, to prevent infections from bacteria and 

fungi.  

2.1.3 CELL TREATMENT 

All cells treated with the PARP inhibitor olaparib/AZD2281 139 were seeded in their 

normal culture medium containing 0.3 – 10μM PARP inhibitor (PARPi) for the 

duration of the experiment. Stock solutions of both 1 and 10mM olaparib in DMSO 

were prepared from dry state. Initial experiments with 1.0, 3.0 or 10μM PARPi alone 

in ATM proficient cells treatment for 48h revealed equally severe cell cycle arrests 

induced by both 3 and 10µM, therefore 3μM was selected as the highest 

concentration to be used in further experiments. Patients that received 200mg or 

400mg of olaparib twice each day were reported to have blood plasma 

concentrations of olaparib ranging from 1.38 to 20.0µM145. All cells treated with the 

ATM inhibitor KU-55933181 were seeded in their normal culture medium containing 

10μM ATM inhibitor (ATMi) for the duration of the experiment. The stock of ATMi 

was prepared from dry state into a 10mM solution in DMSO. 

Reh, U698, Granta-519 and JVM-2 cells were all treated for 72h with three different 

concentrations of the PARPi alone or in the presence of 10μM ATMi. Untreated 
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control (receiving vehicle alone) and ATMi alone control were also included for each 

cell line in every experiment. Chosen experimental and clinically relevant 

concentrations of PARPi were 0.3μM, 1μM and 3μM. The experimental layout is 

illustrated in figure 2-1. The cultures not treated with ATMi were all given equivalent 

amounts of DMSO, the final DMSO concentration in the cultures ranged from 0.10-

0.13%. In order to keep the cells growing at an exponential rate for the duration of 

the experiment, an appropriate starting density of each cell line was chosen. The 

experiments started at following cell densities: Reh at 250.000cells/ml, U698 cells at 

200.000cells/ml, JVM-2 at 100.000cells /ml and Granta-519 at 120.000cells/ml. Reh 

and U698 cells were treated in 25cm2 culture flasks, with a starting volume of 10ml. 

JVM-2 and Granta-519 were treated in 75 cm2 culture flasks and, with a starting 

volume of 20ml.  

Cells were harvested from each culture at 24, 48 and 72h after treatment. 2ml (Reh 

and U698) or 4ml (JVM-2 and Granta-519) of the culture was washed once in 

phosphate buffered saline (PBS) and then fixed in 1ml -20°C, 100% methanol, and 

kept at -20°C until staining. 0.5ml (Reh and U698) or 1ml (JVM-2 and Granta-519) of 

the harvested cells was immediately counted on a Coulter Counter. 0.5ml (Reh and 

U698) or 1ml (JVM-2 and Granta-519) of each culture was also harvested for 

immediate live cell staining. 

 

Figure 2-1: Experimental layout of 72h PARP inhibition in each cell line with or without ATM 

inhibition. 
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The flux of cells into mitosis for all the cell lines was monitored by adding 1μg/ml of 

the microtubule-polymerization inhibitor nocodazole182 for 6h prior to cell harvest. 

In cells with proficient spindle assembly checkpoint, nocodazole treatment causes 

MAD2 binding of all kinetochores, resulting in a cell cycle arrest in metaphase183,184. 

The cells were first treated with vehicle alone (DMSO), 3μM PARP inhibitor and/or 

10μM ATMi, and harvested at 24h and 72h. A control of each sample (not treated 

with nocodazole) was also harvested at the same time. Cells were fixed at the time 

of harvest as described above.  

A 144h continuous exposure of U698 cells with vehicle alone or 3μM PARP inhibitor 

with/without ATMi was replicated twice. Nutrient depletion of the medium was 

avoided by medium substitution after 72h treatment. The cells were spun at 500g for 

4 minutes, before 85% of the old medium was substituted with fresh medium 

containing the same concentrations of PARPi and/or ATMi. Cell growth measured by 

Coulter Counter and fixed samples after 72h for these experiments were similar to 

the previous three replicates of 72h treatment. 

Cells with or without 10μM ATMi was irradiated with 4Gy for protein expression 

analysis. X-irradiation was executed at a dose rate of 1Gy/min in a CP160 X-ray 

generator (Faxitron, Tucson, AZ) at 160kV and 6.3mA. One hour after irradiation, the 

cells were washed once in ice cold PBS. 

2.2 CELL STAINING 

The appendix contains detailed recipes, as well as specifications and suppliers of all 

primary and secondary antibodies used in this section.  

2.2.1 FIXED CELL STAINING 

An automated cell staining procedure for fixed cell samples was developed using the 

microplate washer ELx405 Select (BioTek, Winooski, VT) and the microplate sample 

processor Precision XS (BioTek). The spatial properties of all vessels and tips had to 

be defined for the microplate processor by a procedure called “stepping”. This 

procedure determines the travel margins for the microplate processor, in x-, y-, and 
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z-direction, for instance making sure the tips reaches the desired depth in a defined 

sample volume and preventing crashes of the mobile parts. BD Falcon 5 ml 

polystyrene tubes can be used directly on all the flow cytometers available in the lab. 

These tubes have good pellet visibility and electrostatic properties. The supplied 48 

tubes-rack allowed these tubes an unacceptable margin of motion within each tube 

position, which could potentially be damaging for the precise movement of the 

instrument. A new 48 tubes-rack specifically fitted for the smaller diameter of the 

5ml BD Falcon tubes was therefore made at our instrument workshop. 

Version 2.0 of the software Precision Power (BioTek) was used to create a sample 

processing and cell-staining program for the Precision XS microplate sample 

processor. The program contained the following steps: 

1. Transferring samples from 5ml tubes to 96 well microplates  

2. Performing a TUNEL-assay with biotinylated dUTPs 

3. Primary antibody staining of phosphorylated proteins, Histone H3 and Histone 

H2AX.  

4. Addition of fluorescently labeled secondary antibodies and fluorescence-

labeled streptavidin. 

5. DNA-staining with Hoechst 33258 

6. Returning the stained samples from the microplate to 5 ml tubes  

The fixed cell samples were manually washed in 3ml PBS. Afterwards, the samples 

were transferred with the microplate sample processors single channel pipette from 

5ml BD Falcon tubes onto a Nunclon 96 round well plate. The microplate washer was 

used for washing and supernatant aspiration between the steps in the Precision XS 

program. The ELx405 Select is equipped with the Dual Action manifold that consists 

of independent 8x12 dispenser and 8x12 aspiration tubes. Each sample wash was 

performed by a protocol administrating 200μl PBS through the dispensing manifold 

simultaneously on the walls of all wells. A suitable aspiration protocol for aspirating 

supernatant after centrifugation was designed to minimize residual fluid in each well 

while keeping cell loss at a low level. The final aspiration protocol left 15μl of fluid 

when used on a plate filled with water.  
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It is necessary that the cell pellets are sufficiently firm, as to allow aspiration. On the 

other hand, they must also be loose enough for dissolving into single cell 

suspensions upon plate vortexing or mixing by the microplate processor. Thus, 

centrifugation speed and time used was optimized for fixed suspension cells. The 

microplates were all centrifuged at 700g for 5 minutes in a GS-15R centrifuge 

(Beckman Coulter). The program for the microplate sample processor was defined to 

pre-mix and dispense all staining solutions and mix (by pipetting) the staining 

solution and cell pellet.  

The Terminal deoxynucleotidyl transferase (TdT) dUTP nick end labelling (TUNEL) 

assay was used to detect cells with fragmented DNA, which is associated with 

apoptosis. TdT can be used to catalyze the polymerization of dUTPs (biotin-labelled) 

to the free ends of DNA strand breaks. Although TdT has the ability to label blunt 

ended DSBs and 5’-overhang ends, it has strongest affinity for 3’ends. TUNEL assays 

were performed using the microplate sample processor in a volume of 20μl per well. 

The TUNEL-assay reaction solution from the Recombinant Terminal Transferase kit 

had previously been optimized for minimal reagent use (appendix), and using 

microplates instead of tubes further reduced the total volume used for each sample 

by 43%. 0.1mM DTT (a reducing agent) was added to the reaction solution (0.2M 

potassium cacodylate, 25mMTris-HCl, 25mg/ml BSA, 1.6U/µl TdT enzyme, 1.5mM 

CoCl2, 10µM biotin-16-dUTP). DTT relaxes the chromatin and frees more DNA-strand 

breaks185, increasing the sensitivity of the assay. The samples were incubated for 30 

minutes at 37°C. To stop the reaction, the samples were washed using the 

microplate washer.  

The phosphorylation of Histone H3 at serine 10 (pHistone H3) is involved in 

chromatin condensation in the G2 to prophase transition, and it is widely used as a 

marker of the onset of mitosis186-188. Anti-pHistone H3 (Ser10), diluted 1:500, was 

administered by the microplate sample processor to the sample wells in a blocking 

buffer of 5%(w/v) non-fat dry milk in PBS and incubated for 30 minutes on a 

microplate shaker in room temperature.  
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Staining of phosphorylated serine 139 on Histone H2AX (γH2AX) was used to detect 

DNA double strand breaks. The antibody was administered in a dilution of 1:500 in a 

blocking buffer of 5%(w/v) non-fat dry milk in PBS together with the anti-pHistone 

H3 antibody. 

Nuclear envelope breakdown is essential for the onset of mitosis, and reassembly 

happens during anaphase and telophase. The nuclear envelope consists mainly of 

the intermediate filaments lamins, where laminB is a major component189. To 

inspect possible multinucleation or deformed nuclei, an antibody against the nuclear 

envelope protein, LMNB2 (Lamin B2), was deployed to stain JVM-2 and U698 cells. 

The antibody was diluted 1:200 in PBS containing 5% dry milk, and incubated for 30 

minutes at room temperature.  

All samples were washed twice in PBS after primary antibody incubation. Secondary 

antibodies against pHistone H3 (PE-conjugated) and γH2AX or LaminB2 (both FITC-

conjugated) were diluted 1:50 in PBS supplemented with 5% dry milk. The staining 

for apoptosis (Cy5-conjugated streptavidin) was also added to this solution of 

secondary antibodies, in a 1:400 dilution. Incubation for 30 minutes was performed 

at room temperature, before the samples were washed once in PBS. 

Hoechst 33258 is a non-permeable nucleic acid binding fluorescent dye, with high 

affinity to adenine and thymine rich areas, efficiently excluding RNA binding. When 

the molecule binds non-covalently to areas of double stranded-DNA, the 

fluorescence is 60-fold enhanced, which is important as DNA-bound and -unbound 

Hoechst stain is at equilibrium in cells which are suspended in a Hoechst solution. As 

a final step in the staining procedure, 1.5μg/ml Hoechst 33258 in PBS was added for 

DNA staining, and incubated for at least 20 minutes.  

2.2.2 LIVE CELL STAINING 

The BD Cell Viability Kit was used to quantify the amount of dead cells in the cultures 

treated with molecular inhibitors. It contains two nucleic acid dyes with different 

membrane permeable properties, which were used simultaneously to distinguish 

cells with permeable membranes. Thiazole Orange (TO) and Propidium Iodide (PI) 
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was added directly to culture samples. TO is a permeant dye that stains the nucleic 

acids (preferably RNA) of the whole cell population, effectively excluding debris from 

the analysis. PI, on the other hand, stains only nucleic acids of cells with 

compromised membranes, i.e. dead cells. 84nM TO was added 5 minutes prior to 

flow cytometry analysis, and 4.3μM PI was added to each sample at the time of 

analysis.  

Hoechst 33528 (non-permeable) was added to a final concentration of 1.5 μg/ml to 

stain dead cells immediately prior to cell sorting of live and dead cells. 

2.3 FLOW CYTOMETRY 

Data acquired during flow cytometry measurements was processed using the FACS 

Diva Software (BD Biosciences), version 4.1.3 or newer. Cell sorting into 5ml tubes or 

directly on microscopy slides was performed in a FACS Vantage SE (BD Biosciences, 

San Jose, CA) equipped with a 50mW 351 and 355nm krypton laser, a 200mW 

488nm argon laser (both Coherent, Santa Clara, CA) and a 20mW 633nm laser 

(Spectra Physics, Santa Clara, CA). The flow cytometry analysis was performed on 

either of two BD LSRIIs equipped with the following laser combinations:  

- 60mW 355nm (JDSU, Milpitas, CA), 20mW 407nm, 50mW 488nm and 20mW 

633nm (all Coherent)  

- 100mW 405nm, 50mW 488nm, 40mW 561nm and 40mW 639nm (all 

Coherent) 

Flow cytometry is fluorescence and light scatter analysis and counting of single 

microscopic particles in suspension. A hydrodynamically focused stream of particle 

suspension is passed through one or more lasers, one particle at the time. The 

particles will be excited and scatter light when passing through each laser focus. 

Fluorescence emission and scattered light from each particle is collected by 

detectors, e.g. photomultiplier tubes (PMT), and converted into electric pulses 

(signal intensity over time) (figure 2-2 A-D). A threshold value for pulse signals in one 

of the detectors (either scatter or fluorescence) (figure 2-2 A) is set to exclude noise 

(electronic and optical) and analyze solely on particles of interest. The intensity of 
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the detected signal must generate a pulse height above the threshold value to be 

analyzed and counted. The detected emission intensity signal is directly proportional 

to the expression of each stained target molecule. 

Emission originating from each excitation source (laser) is directed into several 

emission detectors, enabling the simultaneous use of multiple fluorescent markers in 

the same sample. Emission is partitioned by wavelength through dichroic mirrors 

and optical filtration. Moreover, overlap of multiple emission spectra as well as 

excitation spectra may require additional fluorescence spillover-compensation of 

detected signal. The forward light scatter (1-10˚ angle from the laser) is nearly 

proportional to the size of the particle, while side scatter (around 90˚ angle) is mainly 

caused by internal structures in the cell or particle. The power of flow cytometry is 

the ability to separately analyze multiple parameters of each cell rapidly and 

combine the information from the single cell level into a detailed picture of the 

whole population.  

One signal originating from two cells (doublet) (figure 2-2 D) is a major confounding 

factor. The problem may be reduced by filtering the cell suspension, but post-

processing the data by gating strategies is still essential (figure 2-2). Gating of single 

cells requires combining the pulse width and the pulse area of one parameter. The 

parameter must be universal for the population of interest.  
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Figure 2-2: Doublet discrimination: A. One cell gives rise to an electrical pulse. Parameters 

measured of each pulse are height, width and area. B. Two differently sized cells generously 

separated in time, giving rise to proportionately sized pulses. The width of the pulse from 

the bigger cell is not increased in the same magnitude as the pulse height and area. C. Two 

cells closely separated in time. The signal reaches below the threshold value between the 

two pulses, the cells are separately analyzed. D. Two cells are attached or in immediate 

proximity and the generated single pulse is bimodal. Both pulse area and width are less than 

the sum of the pulses generated by each of the two cells, separately. A, B and C will be gated 

as single cells in a Hoechst width against area dot plot, shown on the right, while the cells 

analyzed as doublets will be gated out. 

A forward scatter (FSC) signal threshold was applied to all unfixed cell samples at a 

constant FSC detector voltage for each cell line. A Hoechst 33258 fluorescence 

threshold, of 5.000 (arbitrary units) was used for fixed cells and PMT voltage was 

individually set for each sample so the peak for G1 phase cells was placed at 50.000 

(arbitrary units). Unless it is stated otherwise, 30.000 events (signals above 

threshold) were recorded for each cell sample. 

Single cell gating, for all flow cytometry analysis in this thesis, was either done on 

Hoechst staining or on side scatter, using the area and width of each signal as 

illustrated in figure 2-2. The discrimination of doublets was done prior to all other 

analysis.  
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2.3.1 DETERMINATION OF CULTURE VIABILITY 

The BD Viability kit was employed to determine the amount of live cells in each cell 

culture sample. Each sample was directly stained with Thiazole Orange (TO) and 

Propidium Iodide (PI) before flow cytometry analysis, as described in chapter 2.2.2. 

The absolute concentration of cells was determined by adding a fixed volume of 

fluorescent microspheres (BD Liquid Counting Beads), further described in chapter 

2.5.2. TO fluorescence (510-540nm) was measured with excitation at 488nm. PI 

fluorescence (663-677nm) was measured with excitation at 561nm. There was no 

spectral overlap under these conditions. Beads and debris were excluded (figure 2-3 

A) before gating live cells from dead and injured as shown in figure 2-3 B and C. A 

stopping gate of 5000 beads was employed and the total number of recorded cells 

varied from 10.000-100.000 cells. 
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Figure 2-3: Flow cytometry analysis of live and dead Reh cells stained with propidium iodide 

and thiazole orange, after gating away debris and beads based on forward and side scatter 

(A). The untreated control (B) and cells treated with 10μM ATM inhibitor and 3μM PARP 

inhibitor (C) after 72h incubation. 

2.3.2 DETERMINATION OF CELL CYCLE FRACTIONS AFTER DNA STAINING  

DNA content of each cell was indirectly measured by the signal intensity of Hoechst 

33258 emission. As each cell’s DNA content is measured, the total distribution of the 

varying DNA content in the cells analyzed yields a cell cycle distribution for each 

sample. Hoechst 33258 fluorescence (425-475nm) was measured with excitation at 

either 405nm or 355nm for analysis (LSRIIs), and with 351/355nm for cell sorting 

(FACS Vantage SE). Analysis of the cell cycle distributions obtained by flow cytometry 

was all analyzed by version 7.2.4 of the FlowJo software (TreeStar, Ashland, OR).  
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Doublet and fragment discrimination of each sample as well as removal of apoptotic 

cells (further described in section 2.3.3) was done prior to this cell cycle analysis. The 

FlowJo software computed an automatically fit cell cycle model. Cell cycle fractions 

for 282 of 288 samples were computed by the Watson Pragmatic model190 whiles 

the 6 samples which were Watson-incompatible (no easily definable G1 peak) was 

calculated by the Dean-Jett-Fox model191. Both models fit G1 and G2/M distributions 

with Gaussian curves. However, the Dean-Jett-Fox model fits the S phase-

distribution with a 2nd degree polynomial curve, while the Watson model fits the 

acquired shape exactly and without theoretical assumptions. A total Root Mean 

Squared (RMS) value of the fit of the model is calculated from the RMS of each cell 

cycle phase model fit. In the cases where the automatic model clearly fitted the 

actual distribution incorrectly, e.g. giving negative values for the sub G1-fraction, the 

model was manually adjusted. The adjustments were guided by reduction of the 

RMS value, thereby minimizing the difference between the model and the actual 

distribution. The mean RMS value for the 288 samples was 2.4, with a standard 

deviation of 0.7. 

2.3.3 ANALYSIS OF pHISTONE H3, γH2AX AND TUNEL-ASSAY 

Hoechst 33258 fluorescence (425-475nm, DNA content) was measured with 

excitation at either 405nm or 355nm. Cy5 fluorescence (664-677nm, DNA 

fragmentation/apoptosis) was measured with excitation at either 633nm or 639nm. 

Thirty thousand events were recorded for each cell sample. Following doublet 

discrimination employing area and pulse width of the DNA signal, the fraction of 

apoptotic cells were estimated, and gated out for the further analysis of non-

apoptotic cells, in a plot of DNA content versus apoptosis. The lower boundary of the 

region defining the apoptotic cells (Cy5 positive) was set at 50% of the intensity of G1 

cells along the Hoechst 33258 fluorescence axis and just above the viable cells along 

the Cy5 axis (figure 2-4 A). This was done to avoid that fragmented apoptotic bodies 

originating from one cell were counted more than once, but may result in an 

underestimation of the apoptotic fraction when extensive fragmentation has 
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occurred. No upper border in DNA content or Cy5 intensity was employed for this 

gate. 

PE fluorescence (570-600 nm, mitosis) was measured with excitation at either 

561nm or 488nm. FITC fluorescence (525-575nm, γH2AX) was measured with 

excitation at 488nm. Only when the LSRII without a 561nm laser line was used, there 

was a need for spectral overlap compensation. In the case of 488nm excitation for 

both FITC and PE, the FITC emission will spill over into the PE fluorescence detector, 

and to a small degree from PE into the FITC detector. This was compensated for by 

subtracting about 20% of the FITC signal in the PE channel, and about 2% of the PE 

signal in the FITC channel.  

The fraction of mitotic cells was determined by setting a region around the pHistone 

H3 positive population with 4n DNA content (figure 2-4 B). Single, non-apoptotic 

cells were divided into pHistone H3 positive and negative cells. The pHistone H3 

negative cells were further subdivided in a cell cycle histogram (figure 2-4 C) and the 

γH2AX intensities of those subgroups and the mitotic cells were then determined 

(figure 2-4 D). Median γH2AX intensity for each subgroup was determined in the 

cases where the peak was a symmetrical.  This was the case for G1, S and mitotic 

cells. The distribution of γH2AX in the G2 fraction was, however, often bimodal, but 

with insufficient separation of the two populations for separate analysis (figure 3-9 

and figure S4 in the appendix). Thus, the γH2AX intensities of G2 cells were not 

calculated. 

Cell numbers in each sample varied from 250.000 to 5∙106 cells. Both specific and 

background antibody binding increased at low cell numbers. Hoechst fluorescence 

also increased at low cell numbers, but this was adjusted for by varying the PMT 

voltage, such that the G1 peak was positioned with an intensity of about 50.000 

(arbitrary units). In the cases where no G1 peak was suspected to be present, the 

sample was mixed with control cells to annotate ploidies accurately (see appendix).  

The TUNEL- and pHistone H3 positive populations were clearly separated from the 

negative population, i.e. discrete binary variables (either positive or negative). The 

position of the regions used for enumeration and gating was therefore adjusted for 
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each sample by eye to compensate for the variation in specific and non-specific 

binding. The estimation of a continuous variable; γH2AX content, however, required 

a more objective treatment of the flow cytometry data. Each cell may contain any 

given number of γH2AX foci, and the strength of the foci varies, yielding a 

distribution of γH2AX content. As shown in section 3.3 (figure 3-9 A and B), 

background due to the secondary antibody increased with decreasing cell number. 

We also noted that the γH2AX staining of G1 cells increased at lower cell numbers, 

although only a few of these cells contained γH2AX foci by microscopy, even in 

heavily treated samples (figure 3-10). Hence, the staining in G1 cells was due to non-

specific binding of the primary, as well as the secondary antibody. Assuming that 

background binding increases with DNA content and cell size, the γH2AX intensity in 

the different cell cycle phases was divided by the γH2AX intensity of G1 cells 

multiplied with the amount of DNA in that cell cycle phase. This procedure ensured 

that fold changes from G1 should be close to one if expression increases in parallel 

with DNA content throughout the cell cycle. Mid-S phase γH2AX-intensity was 

divided by 1.5 times the γH2AX intensity of G1 cells in the same sample, while 

intensity in mitosis were divided by 2 times the γH2AX intensity of G1 cells. Others 

have previously employed a similar normalization of γH2AX intensity, compensating 

for the variation in background and normal cell cycle specific differences37.  
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Figure 2-4: Gating strategy used for determining apoptotic and mitotic fraction and γH2AX 

staining intensity according to cell cycle phase of fixed cells. Reh cells treated with 3µM 

PARP inhibitor and 10µM ATM inhibitor for 72h is shown as an example. 
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2.4 STRUCTURED ILLUMINATION FLUORESCENCE MICROSCOPY 

Structured illumination microscopy is a method of improving the resolution and out-

of-focus rejection in a conventional microscope. Instead of expensive laser-scanning 

and spinning-disc methods of traditional confocal microscopy, a single-spatial-

frequency grid pattern of projected light is used to create high resolution optical 

sectioning of the specimen192. Differential interference contrast (DIC/Nomarski) is a 

microscopy technique in which the difference in optical path length between two 

states of polarized light is used to enhance the contrasts of a transparent specimen. 

Cells from fixed or unfixed samples were either sorted by FACS directly onto a glass 

slide, or samples were spun at 1500g for 4 minutes before supernatant removal and 

they were transferred onto glass slides. All samples were mounted immediately after 

fluid condensation by ProLong Gold Mounting media. Coverslips of 0.17mm was 

used to avoid spherical aberrations. Tables of specifications of all primary and 

secondary antibodies used in this section can be found in the appendix.  

An Axio Z1 Imager microscope was used for immunofluorescence imaging and DIC 

microscopy of cells. This microscope was equipped with an ApoTome (enabling 

structured illumination) and a 120W Hg metal halide lamp (all Carl Zeiss, 

Oberkochen, Germany). DNA was detected using Hoechst 33258 fluorescence. 

Antibodies towards the nuclear envelope (LaminB2) and DNA DSBs (γH2AX) were 

both detected by FITC fluorescence, and these two parameters were not stained for 

simultaneously. Mitotic cells were stained for by an antibody against pHistone H3, 

and detected by PE fluorescence. Apoptotic cells were stained with a streptavidin 

linked Cy5 fluorochrome for biotin-dUTP incorporation after the TUNEL assay. To 

avoid photobleaching during imaging, the cells were illuminated with decreasing 

wavelengths, e.g. the last parameter to be imaged was DNA (UV light for Hoechst 

excitation). The filter sets used during microscopy are listed in table 2-1. 
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Table 2-1: Fluorescence microscopy filter set specifications. HE abbreviates High Efficiency 

and BP abbreviates Band Pass filter.  

A 63x oil immersion-objective with numerical aperture of 1.4 (0.2µm resolution) was 

used for all microscopy of fixed cells. For unfixed cells, a 40x air immersion-objective 

with a numerical aperture of 0.95 (0.3µm resolution) was employed. For visualizing 

multinucleated cells (LaminB2) each image field was optically sectioned into five 1.5 

µm thick slices, for counting γH2AX foci each field was sectioned into seven slices of 

1.0µm. AxioVision LE software (Carl Zeiss), version 4.5, was used to process the 

microscopy images.  

2.5 CELL COUNTING 

2.5.1 COULTER COUNTER 

Coulter counting is an efficient way of calculating the cell concentration in a cell 

suspension. The Coulter Counter-principle is based on detecting electrical resistance 

changes between two electrodes in a conductive fluid on each side of a cylindrical 

aperture. Each change in resistance is caused by a particle transiently displacing the 

conductive fluid in the aperture, as a fixed volume of particles is brought through. In 

a dilute solution of particles, each particle changes the impedance between the two 

electrodes and this generates an electrical pulse 193. The height of the pulse is 

proportional to the volume of the particle 193-195. The exact relation between pulse 

height and actual particle volume is calibrated using a uniform bead solution of 

known bead volume. 

A Z2 Coulter Counter (Beckman Coulter, Brea, CA) was utilized for growth 

assessment and reseeding calculations, both during routine cell culturing and during 
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all the experiments with molecular inhibitors. An amount of thoroughly mixed cell 

culture was diluted to appropriate counting concentration in physiological saline 

solution (NaCl 0.9%). The range for appropriate counting concentration was 

determined by the noise threshold and the highest tolerable chance of coincidence. 

The noise threshold was determined by five replicates of counting a solution of pure 

media diluted in the same manner as each sample. The threshold value average was 

114 counts with a standard deviation of 10, whereas the lowest cell count measured 

in a sample was 6500 counts. The term coincidence refers to event of two particles 

entering the aperture at the same time. In that case, two discrete particles will be 

measured as one particle with the combined size of the two particles. The chance of 

coincidence was calculated from the concentration of the particle solution and 

automatically corrected for in the Coulter Counter.  

2.5.2 BD LIQUID COUNTING BEADS 

A liquid suspension of fluorescent microspheres, BD Liquid Counting Beads (an 

addition to the BD viability kit) enables cell counting. The principle of these beads is 

that a relative concentration of cells can be determined in a solution with a known 

bead concentration using flow cytometry. To test the reliability of the method, all 

Coulter counted cell samples was also analyzed with this counting method. The BD 

Liquid Counting Beads solution has an accurate bead concentration, and cell samples 

with unknown cell density was added a fixed volume of 50µl BD Liquid Counting 

beads. The sample volume was 0.5ml for all Reh and U698 samples and 1.0ml for 

JVM-2 and Granta-519 samples due to the differences in initial cell concentrations. 

To acquire reliable data for all samples, a stopping gate of 5.000beads was chosen. 

This ensured a minimum cell count of 10.000cells for the samples with the lowest 

cell concentrations. The beads and bead doublets was clearly distinguishable from 

cells in a plot of side scatter against forward scatter. Figure 2-3 A, in section 2.3.1, 

illustrates a typical example of the population of beads and cells. 
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The concentration of cells in the sample was calculated using equation [1]. 

 

An ordinary linear regression was performed to establish the correlation between 

the Liquid Counting Beads and Coulter counting (figure 2-5). 

 

Figure 2-5: Ordinary linear regression of cell concentration assessment in the same samples 

with Coulter Counter and BD Liquid Counting Beads 

2.6 WESTERN BLOTTING 

For detailed specifications of all primary and secondary antibodies, as well as 

recipes used this section, see appendix. 

Protein lysates for western blotting were prepared by adding 100µl 2x loading 

buffer (0.125M Tris-HCl, 5mM DTT) directly to cell pellets consisting of 500.000 

cells. The loading buffer contains 4% Sodium dodecyl sulfate (SDS). The negatively 

charged SDS molecules will coat the denatured proteins according to size. A 

glycerol content of 20% and 0.1% Bromophenol Blue in the loading buffer, will 

ensure eased and more secure loading into running buffer-submerged wells. 5-

10 U/ml Benzonase, 0.025-0.05 TIU/ml Aproteinin and 0.1% of phosphatase 
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inhibitor cocktail II and III were added to the loading buffer to reduce sample 

viscosity, proteolysis and phosphatase activity respectively.  

The cells were both chemically lysed by the detergents in the loading buffer 

(mainly SDS and DTT) and mechanically lysed by pipetting on ice, vortexing for 5 

minutes and, finally, by heat denaturation at 95°C for 7 minutes. Samples were 

stored at -20°C and used within a two-week period. 

SDS-Polyacrylamide Gel Electrophoresis (PAGE) was used to separate the SDS-

coated proteins in the lysates by size. First, an 8% polyacrylamide gel with a 

standard Tris/Hepes-running buffer was employed, but the phospho-ATM 

protein band at 370kDa was barely visible and blurred. Separation and blotting 

of this large protein was successfully improved by using a 7.5% polyacrylamide 

TGX-gel from Bio-Rad with the supplied Tris/Glycine/SDS-running buffer. SDS-

PAGE was performed at 150V for 1h. When an electric current is applied to the 

gel, the negatively charged SDS-coated proteins will be trapped and 

concentrated between the chlorides and the glycine in the first part of the gel 

(stacking gel), before the pH changes in the separating part of the gel and the 

zwitterion glycine shifts charge to positive. To assess the size of the proteins 

after SDS-PAGE, a dual colored protein standard of known size (kDa) was applied 

to at least two separate wells of each gel. 

The negatively charged, separated proteins were transferred from the gel to a 

methanol activated polyvinyldifluoride (PVDF)-membrane (pore size 0.45 µm), 

during an overnight electro-blotting procedure at 15V in transfer buffer 

(20%methanol, 0.02M Tris-HCl, 0.2M Glycine) at 4°C. The PVDF-membrane was 

preblocked in a 5% dry milk solution of TBS (Tris-buffered saline) with 0.05% 

Tween 20 (TBS-T) for 1h, before incubation with primary antibodies diluted in 

TBS-T. The membrane was cut horizontally between the 75 and 100kDa protein 

standard bands, the upper part was incubated with 1:1000 anti-phospho-ATM 

(Ser1981), the lower part was incubated with 1:1000 anti-phospho-CHEK2 

(Thr68) and 1:5000 anti-TUBG2 (γTubulin). Incubation of the membrane with 

primary antibodies was done overnight at 4°C, before the excess antibodies 
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were washed from the membrane in three times TBS-T for 5 minutes. Species-

specific secondary antibodies conjugated with horseradish-peroxidase (HRP) 

were incubated 1:10.000 in 5% dry milk TBS-T for 1h before the same wash 

procedure was performed.  

To detect the protein bands on the membrane, enhanced chemiluminescence 

(ECL)-detection was used. Photons are released by oxidization of luminol, as 

hydrogenperoxide is reduced by the HRP-enzyme. The HRP-linked antibody is 

again bound to the proteins of interest. Light emitting from the 

chemiluminescent substrate stained a photosensitive Amersham Hyperfilm ECL 

(GE Healthcare, Little Chalfont, UK). The film was developed in a Curix 60 

automatic developer (Agfa, Greenville, SC), and scanned using a GS800 scanner 

(Bio-Rad, Hercules, CA). 

2.7 CALCULATION OF CELL CYCLE PHASE DURATIONS  

The age distribution in the mitotic cell cycle is not uniform because one cell at cell 

cycle completion always divides into two newborn daughter cells. Consequently, the 

proportion of the duration of one cell cycle phase is not equal to the proportion of 

cells in that particular phase. The relative proportion of cells of any cell cycle age 

decreases exponentially with increasing cell cycle age. To calculate the duration of 

each cell cycle phase in a population, a function of cell cycle age frequency was 

derived. Relative frequency of cells at different cell cycle time points in an 

exponentially growing population can be defined by the function [2]:  
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A normalized time parameter was defined to make the function as universal as 

possible, excluding differences in total cell cycle duration between different cell 

systems: 

 

Under the assumption of an ideal, asynchronous population during exponential 

growth, the frequency of cells at time zero will always be twice the frequency of cells 

at cell cycle completion. To ensure this premise, the negative constant k must satisfy:

Integration of the relative frequency of cells as a function of t’ yields the fraction of 

cells between given time points in the cell cycle. To ensure a total cell fraction of one 

in the definite integral from time=0 until time=Tc, a normalization of N(0) is required: 

 

The final equation [3] describing cell cycle time and cell frequency is illustrated in 

figure 2-6:
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Figure 2-6: Distribution of cells in an ideal, asynchronous population of proliferating cells. 

Cell cycle phase areas defined by 47% cells in G1, 42% in S, 6% in G2 and 2% in mitosis (M). 

The shape of the distribution is given by function [3].  

The total cell cycle duration was assumed equal to the doubling time, and was 

calculated by the mean cell counts. Thereafter, function [3] was used to calculate the 

lengths of the cell cycle phases from the mean cell cycle fractions after three 

replicates of 24h incubation with PARPi and ATMi.  

2.8 CALCULATION OF ADDITIVE EFFECT 

Determination of additive effect of combining two drugs in the same cell system 

requires advanced calculation if both drugs have an effect on the system. Simple 

calculation of potentiation and enhancement can be used if one drug does not have 

an effect by itself, but increases the effect of the other drug. According to the Chou-

Talalay method, calculation of whether the combination of two drugs has a 

synergistic (more than additive), additive or antagonistic (less than additive) effect, 

requires testing of at least three appropriate concentrations of each drug alone and 

in combination196. However, the combined effect (E1+2) of two mutually non-

exclusive drugs (1 and 2), as expected for ATMi and PARPi, can be described by the 

simple function [4]:   
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The equation can be rewritten as: 

 

This equation shows that the combination curve and the dose response curve of the 

single drug are in parallel in a logarithmic plot. In the case of this study, the total 

effect of PARPi and ATMi is additive if this curve is in parallel with the PARPi curve in 

a logarithmic dose response plot. 

2.9 STATISTICAL METHODS 

Standard Error of the Mean (SEM) has been used throughout this thesis to describe 

the variation in the expected mean of repeated measurement-series. Standard 

deviation (SD) was only used to describe the variation between measurements using 

a particular method. Ordinary linear regression was performed with version 18.0 of 

SPSS (IBM, Armonk, NY). 
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3 RESULTS  

3.1 CELL DEATH AND PROLIFERATION AFTER PARP AND/OR ATM 

INHIBITION 

Cell death and total cell numbers were measured during a 72h-period after addition 

of PARP inhibitor (PARPi) and/or ATM inhibitor (ATMi). Before proceeding with these 

experiments, we first wanted to determine the functionality of ATM in these cell 

lines. If present and functional, ATM is autophosphorylated at serine 1981 after e.g. 

X-irradiation44. Immunoblotting showed that ATM became strongly phosphorylated 

in Reh, U698 and JVM-2 cells 1h after irradiation with 4Gy (figure 3-1). However, 

some phospho-ATM (pATM) was also induced in Granta-519 cells, although these 

cells have been reported to have defective ATM function179,180. If cells were 

irradiated in the presence of ATMi, phosphorylation was reduced, but not entirely 

back to control levels. The downstream ATM-target CHEK2 was also analyzed, and 

the phosphorylation of threonine 68 of CHEK2 (pCHEK2) levels varied in the same 

manner. 

 

Figure 3-1: ATM autophosphorylation and phosphorylation of downstream ATM target 

CHEK2 in unirradiated, irradiated and ATM inhibited and irradiated Reh, U698, JVM-2 and 

Granta-519 cells. Samples were lysed 1h post-4Gy, and an irradiated sample of each cell was 

added 10µM ATM inhibitor 15 minutes prior to irradiation. Loading control was TUBG1 

protein amount displayed in the last row. 
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The fraction of dead cells was assessed by the PI/TO assay and was below 5% in 

control Reh and U698 cells, and 8-13% in control JVM-2 and Granta-519 cells during 

the time course of the experiment (figure 3-2). Treatment with ATMi alone did not 

induce more cell death than in the control.  

 

Figure 3-2: Fraction of dead cells as a function of PARP and/or ATM inhibitor treatment 

duration for Reh, U698, JVM-2 and Granta-519 cells. Mean value from three independent 

experiments ±SEM. 

Treatment with PARPi alone at varying concentrations did not increase the fraction 

of dead cells, the exception being for the highest concentration (3μM) in Reh, JVM-2 

and Granta-519, and a slight increase for Granta-519 after incubation with 1μM. 



 

R
es

u
lt

s 

50 

 

However, cell death caused by inhibition of PARP by the three different 

concentrations of PARPi was increased from control levels in the presence of ATMi, 

indicating enhancement of the effect of PARP inhibition by inhibition of ATM 

(synthetic lethality). The exception was Reh cells treated with 0.3μM PARPi and ATMi 

(figure 3-2). 

The dose response curves for cell death at 72h as a function of PARPi concentration 

are shown in figure 3-3. Inhibition of ATM caused an increase in cell death for Reh, 

U698 and JVM-2 cells for all concentrations of PARPi. This effect was much less 

pronounced for Granta-519, which only showed a small increase in cell death caused 

by ATM inhibition at 0.3 and 1.0μM PARPi. 

 

Figure 3-3: Dose response curves of cell death in Reh, U698, Granta-519 and JVM-2 as a 

function of PARP inhibitor concentration after 72h treatment with/without 10µM ATM 

inhibitor. Mean value from three independent experiments ±SEM. 
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Total cell numbers were assessed by Coulter counting. The number of viable cells 

was calculated from the raw data after subtraction of the number of dead cells 

(figure 3-4). Growth was close to exponential in control cultures. Although treatment 

with ATMi alone did not increase the fraction of dead cells (figure 3-2), a decrease in 

live cell numbers was observed at all time points in all cell lines, indicating that the 

ATM inhibition caused an increased cell cycle time. 

Inhibition of PARP in the absence of ATMi decreased the number of cells at 48-72h in 

a dose-dependent manner (figure 3-4). At 0.3μM, this reduction was only significant 

for JVM-2. Additionally, the growth curves after treatment with 3μM PARPi were not 

exponential at the later time points. This is to be expected if cell death becomes 

more extensive, which was observed for Reh, JVM-2 and Granta-519 (figure 3-2). 
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Figure 3-4: Cell growth during PARP and/or ATM inhibitor treatment in Reh, U698, JVM-2 

and Granta-519 cells. Live cell number is plotted as a function of treatment duration. Mean 

value from three independent experiments ±SEM. 

When cells were treated with ATMi in addition to PARPi, the cell numbers decreased 

further, but this reduction was not significant for Granta-519 at 3μM PARPi. The cell 

numbers tended to decrease from 48 to 72h after treatment with ATMi and 3μM 

PARPi (figure 3-4); at this time, there was pronounced cell death for all cell lines 

(figure 3-2). If a simple model for additive effect is applied (see section 2.8), the 

dose-response curves in the absence and presence of ATMi should be parallel (figure 

3-5). This was the case for Granta-519. However, for the other cell lines, and 

particularly for U698, the diverging curves indicated that the total effect of the two 
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inhibitors was larger than the sum of the individual treatments, i.e. the effect was 

synergistic. 

 

Figure 3-5: Dose response curves of relative live cell numbers in Reh, U698, Granta-519 and 

JVM-2 as a function of PARP inhibitor concentration after 72h treatment with/without 10µM 

ATM inhibitor. Mean value from three independent experiments ±SEM. 

3.2 PARP AND ATM INHIBITED GRANTA-519 AND REH CELLS DIE BY 

APOPTOSIS 

 

Apoptosis was measured by TUNEL-assay (DNA fragmentation), but also confirmed 

during fluorescence microscopy as all the observed TUNEL-positive cells had typical 

morphological characteristics associated with apoptosis. Cells which were TUNEL 

positive were in general smaller than average, some had undergone membrane 
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blebbing, and apoptotic bodies were observed. It is difficult to determine by 

microscopy whether an apoptotic cell originates from an interphase cell or a mitotic 

cell. However, a distinct peak of apoptotic cells likely to be tetraploid, strongly 

suggested that the cells initiated apoptosis from G2 or mitosis. 

Apoptotic fraction in the mock-treated cell samples was below 1.5% in Reh and U698 

cells, below 4% in JVM-2 cells and below 6% in Granta-519 cells (figure 3-6). 

Treatment with PARPi alone induced no increase in apoptosis in U698 cells 

compared to control. However, a slow increase, most pronounced at 48h and 72h, 

was observed in 3µM PARPi treated Reh and JVM-2 cells. ATM inhibition alone did 

not cause significant increases in apoptosis in Reh and U698 cells, but a slight 

elevation in JVM-2 and up to 3% increase in Granta-519. A rapid increase in 

apoptotic levels was observed in Granta-519 cells at all three PARPi concentrations. 

The combined PARPi/ATMi treatment increased the apoptotic fractions compared to 

PARP inhibition alone. However, the apoptotic fractions were below 4% and 11% for 

U698 and JVM-2, respectively. There was a large, but again delayed, increase in 

apoptosis in Reh cells caused by the additional treatment with ATMi. The apoptotic 

fractions of Granta-519 cells also increased in the presence of ATMi, but the effect 

was not as pronounced, and not significant at 3μM PARP inhibition for 72h. 
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Figure 3-6: Apoptosis measured by TUNEL assay in Reh, U698, JVM-2 and Granta-519 cells 

during 72h treatment with PARP and/or ATM inhibition. Apoptotic fraction is plotted as a 

function of treatment duration. Mean value from three independent experiments ±SEM. 

The dose-response curves for apoptosis after 72h treatment revealed an 

enhancement of approximately threefold in Reh cells (figure 3-7). A synthetic lethal 

interaction between the two drugs was seen in Reh cells, since there was no effect of 

ATMi alone. In contrast, the apoptotic fractions of the presumably ATM-deficient 

Granta-519 cells (figure 3-1) were only 50% enhanced by ATMi (at 0.3µM PARPi). 

This increase was also observed with ATMi alone, resulting in almost parallel dose-

response curves in the absence and presence of ATMi. The dose-response curves for 
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U698 and JVM-2 suggested some enhancement by ATMi, but the effects of 

treatment on apoptosis were far less pronounced than on cell death (figure 3-3).

 

Figure 3-7: Dose response curves of 72h treatment with PARP inhibitor and/or 10 µM ATM 

inhibitor on induction of apoptosis. Mean value of single, TUNEL positive cells ±SEM. 

Ordinary Linear Regression (OLR) of cell death as a function of apoptosis for all 

treatments at all time points for the four cell lines (figure 3-8), revealed that the 

dead cell fractions were almost three times (slope of regression lines/regression 

coefficients) higher than the apoptotic fraction in the same samples of U698 and 

JVM-2 cells. The regression coefficient in Granta-519 cells was not significantly 

different from 1.0.  
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Reh cells showed the same trend as Granta-519, but the slope of 1.39 was 

significantly different from 1.0 (95% CI of 1.23-1.54). Since there are few data points 

at the high levels of apoptosis and cell death for Reh, the regression is heavily 

influenced by those points without regard for the insecurity of the measurement. 

More observations of severe cell death and apoptosis in Reh cells (e.g. new 

experiments with expanded treatment duration) could be performed to test the 

validity of the current slope. OLR results for each cell line are attached in the 

“Calculations” section in the appendix. 

 

Figure 3-8: Ordinary linear regressions of dead cell fraction as a function of apoptotic cell 

fraction in the 24 differentially treated samples of PARP and/or ATM inhibited Reh, U698, 

JVM-2 and Granta-519 (mean values from three independent experiments). The dotted lines 

represent the 95% confidence interval of the regression coefficient. 

Hence, Reh and Granta-519 cells died by apoptosis after PARP inhibition, while JVM-

2 and U698 cells mainly died by necrosis (further evaluated in sections 3.6 and 3.7). 
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3.3 DNA DAMAGE IN S PHASE INCREASE BY PARP INHIBITION 

To assess the amount of DNA double strand breaks occurring as a result of PARP 

inhibition, we measured the closely correlated intensity of phosphorylated Serine 

139 on histone H2AX (γH2AX) by flow cytometry197. However, antibody binding 

varied with cell number, and normalization of the data was required. It was observed 

that secondary antibody background was highly dependent on cell number as shown 

in figure 3-9 A (approx. 1.5 million stained cells) and B (approx. 300.000 stained 

cells). This background increased linearly with increasing DNA content. Untreated 

cells have been shown to have a bimodal γH2AX-distribution due to cell cycle specific 

DSBs and subsequent repair37,39. PARP inhibition induced phosphorylation of γH2AX 

in a cell cycle specific manner, and the γH2AX levels increased during S and partially 

in the G2 phase (figure 3-9 A and B). There were no local variations in intensity 

during S phase, and we therefore assessed γH2AX content in mid-S to avoid 

contributions from G1 and G2/M. In contrast, X-irradiated cells will acquire DSBs 

independently of position in the cell cycle. As the DNA content in mid S is 1.5 times 

that of G1, this is consistent with the observed 1.5-fold increase in γH2AX intensity in 

mid-S phase compared to G1 in the irradiated sample (figure 3-9 C) 
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Figure 3-9: Flow cytometry analysis of γH2AX staining intensity in Granta-519 cells exposed 

to vehicle alone (A) or 10µM ATM inhibitor and 3µM PARP inhibitor (B) for 72h or 1h post-

irradiation of 4Gy (C). Staining with secondary antibody (2˚Ab) alone is shown in black/white 

for A and B. Upper row shows two parameter dot plots of γH2AX against DNA content, while 

the lower row shows the γH2AX intensity histograms for the same samples. 

The bimodal γH2AX distributions suggest that the fluorescence of the G1 cells was 

due to non-specific staining. We sorted cells according to DNA and pHistone H3 

content by flow cytometry and inspected them by fluorescence microscopy for the 

characteristic γH2AX foci in cells with DSBs198. Most G1 cells had no foci; some had 

one γH2AX focus, and a few had two foci (figure 3-10). The γH2AX intensity of G1 

cells by flow cytometry should thus reflect background staining. Assuming that the 

background of the primary antibody varied in the same manner as the secondary, we 

normalized the flow cytometry data for S and M phase cells to the G1 intensity as 

described in 2.3.3. S phase cells had multiple foci both in treated and untreated 

samples, although the variation in number of foci was higher in the untreated 

samples, and the mean focus number was higher in the treated samples. This was in 

agreement with the internally varying intensities of γH2AX in control S phase cells 

(figure 3-9 and figure S4 in the appendix) and the higher intensity of treated S phase 

cells by flow cytometry, respectively (figure 3-11 and figure S4 in the appendix). G2 

cells showed a bimodal γH2AX distribution, which was most pronounced for JVM-2 

and Granta-519 (figure S4 in the appendix). The bright G2 cells are probably the ones 

that most recently left S phase and have not yet repaired the damage inflicted in S 
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phase. Most of the G2 cells with low γH2AX content had no foci, with some cells 

having one or two foci (figure 3-10), reminding of the distribution seen in G1 cells. 

Mitotic cells showed strong and diffuse staining, although they rarely contained foci. 

 

Figure 3-10: Fluorescence microscopy images of Granta-519 cells treated with 10µM ATM 

inhibitor and 1µM PARP inhibitor for 48h. The cells were sorted on DNA content and 

pHistone H3 status prior to microscopy. 

The normalized γH2AX level in mid-S phase of the untreated samples was found to 

be 1.5-3.5 times the amount in G1 (figure 3-11), which is in agreement with previous 

studies37. In contrast to this, the normalized γH2AX level in mid-S phase cells after IR 

was close to 1.0 (figure 3-9). PARPi alone increased the amount of DNA DSBs in S 

phase in a dose dependent manner for all cell lines. ATMi had no significant effect 
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alone in Reh or Granta-519 cells, but increased γH2AX for JVM-2 and U698 cells. 

Combined PARP and ATM inhibition did not enhance or alter the effect of PARP 

inhibitor treatment in Reh and Granta-519, and the trend for U698 cells is actually a 

decrease in induction of γH2AX with increasing PARPi concentration, while JVM-2 

cells had less systematic changes. 

 

Figure 3-11: γH2AX intensity in mid-S phase cells during 72h PARP and/or ATM inhibitor 

treatment. The fold change of γH2AX intensity in mid S phase was normalized by DNA 

content (1.5) and the intensity of G1 phase in the same sample (three experiments, ±SEM). 
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Mitotic cells in this cell line panel displayed high γH2AX intensity even in the 

untreated samples (figure 3-12). This was in good agreement with the results from 

fluorescence microscopy (figure 3-10), showing that the pHistone H3 (Ser10) positive 

cells had diffuse and strong γH2AX staining. DNA DSBs should cause focal staining, 

and such foci have been observed in cells that enter mitosis after ionizing radiation38. 

Additionally, substantial and non-focal γH2AX induction in mitosis have previously 

been found to be independent of DNA damage199. The relative γH2AX content in 

mitotic cells did not increase after treatment with either of the inhibitors alone or in 

combination (figure 3-12). In contrast to the S phase results, the mitotic cells 

displayed a trend of decreasing intensity with increasing PARPi concentration.   

 

Figure 3-12: γH2AX intensity in pHistone H3 positive cells during 72h PARP and/or ATM 

inhibitor treatment.  The fold change of γH2AX intensity in mitotic cells was normalized by 

DNA content (2.0) and the intensity of G1 cells in the same sample (three experiments, 

±SEM). 

PARP inhibition induced about half the amount of DNA damage as 4Gy of ionizing 

radiation induced in Granta-519 cells (figure 3-9).  
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3.4 ATM INHIBITION INDUCES MITOTIC DELAY IN                               

U698 AND GRANTA-519 

The mitotic fraction was assessed by immunostaining of pHistone H3 (Ser10). In 

U698 and to some degree in Granta-519 the ATMi alone caused an increase in the 

mitotic fraction (figure 3-13). We have previously observed that the ATMi (KU-

55933) is able to create this phenotype in U698 cells82. PARP inhibition reversed this 

effect in a dose dependent manner for U698 and Granta-519 cells. The doubling time 

increased somewhat in the presence of ATMi (figure 3-4), and the transition time 

through mitosis thus increased even more. Although the mechanism for this delay is 

unclear, it may contribute to the growth inhibiting effect of ATMi alone in these cell 

lines. With only a few significant changes in mitotic fraction, PARP and/or ATM 

inhibition had no systematic effect on the mitotic of Reh and JVM-2 cells (figure 3-

13). 
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Figure 3-13: pHistone H3 (Ser10) positive fraction of single non-apoptotic Reh, U698, JVM-2 

and Granta-519  cells during 72h treatment with PARP inhibitor and/or 10μM ATM inhibitor. 

Mean value is derived from three independent experiments ±SEM. 

3.5 PARP AND ATM INHIBITION CAUSES G2-PHASE DELAY 

Cell cycle distribution analysis is a static snapshot of a dynamic process. The 

distribution does not give information about the duration of the cell cycle. 

Moreover, it will not be altered in the event of simultaneous arrest/delay of the 

whole population. As PARP and ATM inhibition caused low and in some cases 
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negative cell growth rates (figure 3-4), we needed to address whether or not the 

cells were actually cycling. The mitotic fraction was not changed significantly by 

PARP inhibition alone (figure 3-13), indicating that this treatment did not cause a 

disproportional increase in mitotic transition time. The flux of cells into mitosis was 

monitored by adding the microtubule polymerization-inhibitor nocodazole 6h prior 

to harvest after 24h and 72h (figure 3-14) incubation with 3 μM PARPi and/or ATMi. 

This stathmokinetic experiment demonstrated that cells were passing through 

mitosis in all the samples. The amount of cells trapped in mitosis by nocodazole was 

reduced by PARP inhibition, consistent with an increased doubling time at 24h 

(figure 3-4). 

 

Figure 3-14: Nocodazole induced mitotic arrest during 18-24h and 66-72h of PARP and/or 

10μM ATM inhibition. The controls were harvested at 24h and 72h. 

Cell cycle analysis by flow cytometry revealed that the cell cycle distributions in 

control samples varied somewhat between the cell lines (figure 3-15). Most notably, 

Reh cells differed from the three other cell lines by having a lower G2 fraction and no 

cells with >4n DNA content. 
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Only small changes in cell cycle distribution were observed after ATM inhibition, 

notably an increase in mitotic fraction (in U698 and Granta-519) discussed in section 

3.4. Inhibition of PARP resulted in a dose-dependent increase in the G2 fraction, 

except for JVM-2 cells. Additional treatment with ATMi increased the G2 fraction 

compared to PARP inhibition alone, but not for Granta-519 cells. The fraction of 

U698 cells with >4n DNA content also increased upon PARPi treatment (in a dose- 

and time-dependent manner), and this effect was further enhanced in the presence 

of ATMi. In Granta-519 and JVM-2 cells the fraction of cells with >4n DNA content 

did not increase with PARP and/or ATM inhibition. The treatment-induced decrease 

in G1 fractions is only relative, as it will be shown later that the G1 transition time (at 

24h) was almost constant (figure 3-17). 

The dose-response curves revealed that ATMi-enhancement of PARPi effect on G2 

fractions was most pronounced in Reh followed by U698 cells (figure 3-16). PARPi 

was tenfold potentiated by the ATMi in Reh cells, as 3µM PARPi alone created the 

same effect as 0.3 µM PARPi combined with ATMi. While the y-fold enhancement 

increased with PARPi concentration for Reh cells (up to threefold), maximum 

enhancement was achieved in U698 cells at 0.3µM PARPi. In JVM-2 cells, the 

enhancement was less pronounced, and only significant after incubation with 1 and 

3µM PARPi. The ATMi alone caused a small enhancement of the effect of PARPi in 

the Granta-519 cell line.  
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Figure 3-15: Cell cycle analysis of single non-apoptotic Reh, U698, JVM-2 and Granta-

519 cells during 72h treatment with PARP- and/or 10µM ATM inhibition. Mean 

values from three independent experiments ±SEM. 
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Figure 3-16: Dose response curves of the effect of 72h treatment with PARP and/or ATM 

inhibition on accumulation of cells in G2 phase. Mean value from three independent 

experiments ±SEM. 

Cell cycle phase durations were calculated from the increases in cell numbers and 

the cell cycle distributions at 24h (figure 3-17). Later time points had to be excluded 

as cell death and endoreduplication (further discussed in 3.6 and 3.7) became so 

pronounced that cell cycle durations would have been overestimated. The cell cycle 

duration is close to 24h for all control samples. ATMi alone increased the doubling 

time with 2-9h, and delayed G1 for all cell lenes. The increase in G2 phase duration 

after PARP inhibition was striking for Reh and U698, but less so for JVM-2 and 

Granta-519 cells. This effect was further increased with additional treatment with 

ATMi. S phase was also prolonged in all cell lines. Especially PARPi increased the 

duration of S phase. There were only small changes in the length of G1 and mitosis.  
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Figure 3-17: Cell cycle durations (h) for Reh, U698, JVM-2 and Granta-519 after 24h PARP 

inhibitor and/or 10µM ATM inhibitor treatment. Mean cell cycle phase durations (h) are 

listed in the table below the column chart of each cell line. The G2 fraction and the 

calculated cell cycle phase durations could have been overestimated for the samples in 

which failed cytokinesis was observed at later treatment times (marked with an asterix). 

Moreover, extensive cell death may lead to overestimation of the lengths of cell cycle 

phases, as dead cells are not part of the growth fraction. Samples with significant increase in 

apoptosis and/or necrosis at 24 hours are marked with a cross. 

3.6 U698 CELLS DIE BY NECROSIS AFTER EXTENSIVE 

ENDOREDUPLICATION 

U698 cells displayed low levels of cell death and apoptosis after 72h (figures 3-2 and 

3-6). However, the highly pronounced effect on cell growth and especially the 

increase in cells with DNA content exceeding 4n (figure 3-15), indicated that U698 
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cells may respond to the treatment in a different manner. To reveal the fate of these 

cells, we extended the treatment of U698 cells to 144h. 

Cell cycle analysis of U698 cells after 144h inhibition of PARP and ATM confirmed 

that endoreduplication was extensive, and 62±6% of the cells had DNA content 

above 4n (figure 3-18; the peak annotations were confirmed by a mixture with 

diploid control cells, see figure S2 in the appendix). Diploid cells only accounted for 

4.5±2.8% of the single non-apoptotic cells. Thus, almost all treated cells eventually 

fail to complete cytokinesis. A cell with DNA content of 4n can represent either a 

tetraploid G2 cell or a binucleated post-mitotic cell. This makes calculation of the 

length of the cell cycle phases at these times more complicated. However, the shift 

in ploidies from 72 to 144h (figure 3-18) in the combined ATM and PARP inhibited 

sample indicated a duration of the endoreduplication cycle of the same magnitude 

as the perturbed cell cycle from 0-24h (figure 3-17). Flow cytometry analysis of the 

sample treated with both inhibitors for 144h revealed pHistone H3 positive cells with 

8n and 16n DNA content, and pHistone H3 positive cells about 15-20µm in size were 

also observed during fluorescence microscopy of this sample (see appendix, figure 

S3). 
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Figure 3-18: DNA histograms of single, non-apoptotic U698 cells treated for 72h or 144h 

with 3μM PARP inhibitor and/or 10μM ATM inhibitor. Fraction of cells with more than 4n 

DNA content (inset in each histogram) is represented in the 144h time point by the mean 

value of two replicate experiments ±range, and for the 72h time point the mean value is 

given by three independent replicates ±SEM. 

The cell numbers did not increase from 72h to 144h in the presence of ATMi/PARPi 

(figure 3-19 A), which is expected if the bulk of the cells endoreduplicate. More than 

60% of the cells had DNA content above 4n at this time (figure 3-19 B). Cell death 

also increased from 17% at 72h to 26% at 144h (figure 3-19 C). Quantification of 

apoptotic cells by the TUNEL-assay in endoreduplicating cells is not straightforward. 

Fragmented apoptotic bodies from one cell that died with 8n DNA content is 

undistinguishable from intact apoptotic cells with 4n or 2n DNA content. 

Nevertheless, TUNEL-positive cells with DNA content of 16n were present, indicating 

that at least some of the endoreduplicating U698 cells died by apoptosis, such cells 

were also observed during microscopy (figure S3 in the appendix). Both cell death 

(>25%) and the number of cells endoreduplicating (instead of dividing) explained the 

lack of increase in cell number in U698 after treatment with PARPi and ATMi (figure 

3-19). 
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Figure 3-19: Live cell numbers (A), fraction of single, non-apoptotic U698 cells with DNA 

content above 4n (B) and dead cell fraction of U698 cells during 144h incubation with 3μM 

PARP inhibitor and/or 10 μM ATM inhibitor (C). The time point at 144h is the mean of two 

replicate experiments ±range, for the 0-72h time points the mean value is given by three 

other independent replicates ±SEM. 

Fluorescence microscopy of U698 cells treated for 144h with both PARPi and ATMi 

revealed that they had been going through several aberrant mitoses without 

cytokinesis, as they were mostly multinucleated (figure 3-20). These cells were also 

larger, approximately 20μm, compared to control cells which were about 10µm. 

Some multinucleated cells were also observed in the samples treated with 3µM 

PARPi alone, consistent with the increase of cells with more than 4n DNA content of 

about 20% after 144h. 
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Figure 3-20: Fluorescence and DIC microscopy images of U698 cells treated for 144h with 

PARP inhibitor and 10µM ATM inhibitor. 

A few PARP and ATM inhibited U698 cells died by apoptosis, but the main death 

mechanism, after extensive endoreduplication, was necrosis. The heavily treated 

cells displayed phenotypes typical of mitotic catastrophe: Multiple nuclei and 

micronuclei. 

3.7 JVM-2 CELLS DIE BY NECROSIS AFTER MITOTIC CATASTROPHE  

JVM-2 cells showed significant decreases in cell viability after 72h PARP and ATM 

inhibition (figure 3-2), yet the level of apoptosis could not account for the cell death 

caused by the treatment (figures 3-4 and 3-6). Cell sorting on JVM-2 cells were based 

on the same criteria as when measuring cell death, namely uptake of a non-

permeable dye (in this case, Hoechst 33258). DIC and fluorescence microscopy 

(figure 3-21) was performed on the sorted JVM-2 cells after 48h inhibitor treatment. 

The dead cells had the appearance of necrotic cells. The cytoplasmic and nuclear 

membranes had ruptured, and DNA was no longer confined to the nucleus or even 

the cell. 
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Figure 3-21: Microscopy images of Hoechst 33258 fluorescence and combined fluorescence 

and DIC microscopy of mounted, unfixed JVM-2 cells. After 48h treatment with 3µM PARP 

inhibitor and 10µM ATM inhibitor, live (Hoechst 33258 negative) and dead (Hoechst 33258 

positive) cells were sorted prior to microscopy. 

Immunostaining of the nuclear envelope component Lamin B2 revealed that many of 

the PARP and ATM inhibited JVM-2 cells were multinucleated, compared to the 

untreated control cells (figure 3-22). The increase in number of nuclei and cell size 

were not as extreme as for the endoreduplicating U698 cells (figure 3-20). The 

fraction of cells with DNA content above 4n did not increase with treatment in JVM-

2; they were therefore not able to enter a new S phase after having failed to 

complete cytokinesis. 
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Figure 3-22: Fluorescence microscopy images of JVM-2 cells treated for 48h with 3µM PARP 

inhibitor and/or 10µM ATM inhibitor. Each multinucleated cell is indicated by an arrow. 
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4 DISCUSSION 

The discovery of synthetic lethality3 in cells with homologous recombination repair 

(HRR)-defects after treatment with PARP inhibitors1,2 spurred a rapid 

implementation of PARP inhibitors in cancer treatment. Originally, it was suspected 

that PARP inhibition led to impared repair of SSBs, which were converted into DSBs 

during replication. These DSBs was tought not be repaired by the HRR-deficient cells, 

and thereby cause cell death. However, the  amount of SSBs has not been found  to 

increase in response to PARP inhibition13,14. Hence, the proposed mechanism  of 

synthetic lethality was recently acknowledged to be inaccurate159. In this study we 

have demonstrated some of the phenotypes induced by  combined loss of activity of 

PARP and the HRR-initiating protein ATM. An automated staining procedure for 

combined assesment of γH2AX, DNA content, mitosis and apoptosis by flow 

cytometry was developed. Severe cell death, cell cycle progression delay and dose-

dependent induction of DNA DSBs was observed  during the three day continuous 

exposure to PARP and ATM inhibitors.   

Development of an automatic staining procedure by use of a microplate sample 

processor and microplate washer reduced the sample preparation time by 30-40%. 

The procedure minimized the strenuous and labor-intensive pipetting, supernatant 

removal and relocation of each tube both in and out of the centrifuge.  This 

procedure could possibly reduce occupational injuries (due to pipetting). In addition, 

hands-on time was lowered and the reagent-volumes could be minimized, thereby 

experiment-costs were reduced as well. 

We wanted to investigate PARP inhibition in ATM-deficient lymphoid cancer cells, as 

ATM deficiency is common in both MCLs16  and B-CLLs17. Chemically induced ATM 

deficiency was obtained with the ATM inhibitor KU-55933, and combined with the 

PARP inhibitor olaparib in the cancer cell lines Reh, U698, JVM-2 and Granta-519. 

The Granta 519 cell line was reported to be ATM-deficient179,180. Previous studies 

have shown a lack of functional ATM activity in this cell line based on the ATM 

autophosphorylation site Serine 19814,7,8. However, our immunoblotting of pATM 

(Ser1981) indicated some residual autophosphorylation of ATM in irradiated Granta-
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519 cells, yet less than for the other cell lines (figure 3-1). The phosphorylation of 

ATMs downstream target CHEK2 (Thr68) was consistant with the pATM results. All of 

the Granta-519 dose response curves in the presence of ATM inhibitor are in parallel 

or overlapping with the corresponding control curves (figures 3-3, 3-5, 3-7 and 3-16). 

Thereby, Granta-519 cells deviates from the three ATM proficient cell lines, 

indicating low effect of inhibiting the residual ATM function in Granta-519 cells. 

We anticipated no severe effect  by ATM inhibitor alone on the measured 

parameters in this study, based on our previous work with this inhibitor82. Our 

assumption was valid for cell death, apoptosis and cell cycle distribution in general. 

Cell line specific ATM inhibitor induced changes were observed in γH2AX S phase 

intensity (increased in JVM-2 and U698) and mitotic fraction (increased in U698 and 

Granta-519). Additionally, a marked increase in doubling time after ATM inhibitor 

treatment were seen in all cell lines (figure 3-2). Although, we have previously 

observered the effect of ATM inhibition on progression of mitosis82, our previous 

experiments were not carried out for enough time to observe the growth inhibiting 

effect. Another group have reported that the antiproliferative effect of ATM inhibitor 

was phenocopied by siRNA-mediated knockdown of ATM, suggesting that the effect 

is ATM specific200. ATM has lately been shown to activate Akt in response to insulin-

signalling201, DSBs202 and ionizing radiation201. Akt/PKB is known for inhibition of 

apototisis and promoting cell cycle progression, and Akt1 knockout mice display 

increased apoptosis and cell growth retardation203. The ATM inhibitor KU-55933 

generates the same phenotype in cancer cells204.  This may explain the results in this 

study and the fact that insulin resistance have been reported for 30 years in ataxia 

telangiestacia-patients205,206. Further investigations of the Akt pathway could 

demonstrate whether this is the cause of the growth inhibiting effect of ATM 

inhibition in our study.  

The durations og S and G2 was prolonged due to the treatment with PARP inhibitor 

and/or ATM inhibitor (figure 3-17). The stathmokinetic experiment with nocadazole 

(figure 3-14) confirmed that the cells were not arrested. As the length of G1 was 

relatively unchanged, while S phase was delayed by PARP inhibition, a likely cause 

would be an increased number of DNA DSBs caused by the treatment (figure 3-11). 
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Additional loss of ATM activity dramtically prolonged G2, consistant with the 

hypothesis that cells acquire problems repairing these DSBs in the absence of HRR. 

The range of γH2AX intensity in G2 for untreated and treated are more pronounced 

in JVM-2 and Granta-519 (bimodal distributions) than in Reh and U698 cells (figure 

S4 in the appendix). In addition, the most extreme G2 delay was seen in Reh and 

U698 cells (figure 3-16). The coinciding results of delay and γH2AX distribution in G2 

may reflect differences in the repair kinetics of these cell lines. While Granta-519 and 

JVM-2 cells may repair the damage rapidly, U698 and Reh cells may require more 

time to resolve the same amount of DNA damage. Thus, Granta-519 and JVM-2 

spend a larger fraction of their G2 phase in a γH2AX-negative state. Reh and U698, on 

the other hand, spend more time on repairing DNA and may be released into mitosis 

almost immediately after becoming γH2AX negative. The lack of focal γH2AX staining 

in PARP inhibited mitotic cells was treament independent (figure 3-10), supporting 

the view  that the cells must repair the damage associated with γH2AX foci in G2 

before mitotic entry. ATM and DNA-PK function redundantly to phosphorylate H2AX 

(Ser139) in response to DNA damage207. Non-damage related γH2AX induction in 

mitosis have previously been proposed to be ATM dependent as ATM-reconstituting 

a A-T cell line caused mitotic γH2AX expression, while DNA-PK-deficient cells 

displayed normal mitotic γH2AX-phenotype199. In contrast, our data showed high 

γH2AX levels in mitosis independent of ATM inhibition (figure 3-12). This 

inconsistency may be clarified by dual inhibition of DNA-PK and ATM in our cell lines. 

In this study, Reh and Granta-519 cells were found to die by apoptosis after PARP 

inhibition (figures 3-2 and 3-6). We have previously shown that U698 cells are 

resistant to irradiation-induced apoptosis, while Reh cells are not208. However, U698 

cells become apoptotic in response to being nutrient depleted in dense growing 

culture and to prolonged nocodazole treatment208. Thus, U698 cells have intact 

apoptotic machinery and the error must be in the upstream apoptosis-inducing part 

of the DDR signaling. Both the untreated and irradiated TP53-deficient U698 cells 

have elevated expression of anti-apoptotic protein MCL1209, and several studies 

show that apoptosis is avoided in TP53-deficient cells because of failure to degrade 

MCL1210,211. Our results of induction of apoptosis after PARP inhibition in Granta-519 
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cells are in agreement with studies by Williamson et al. (TUNEL , Annexin V and 

Western blots)4,9. Weston et al.7 reported negative results of Annexin V-staining and 

proposed mitotic catastrophe as main death mechanism of PARP inhibited Granta-

519 cells. Weston et al. argued that a mitotic catastrophe was pHistone H3 negative 

cells with loss of nuclear membrane integrity with Lamin B1-staining and multiple 

nuclei. 

Continuous ATM and PARP inhibition for 144h in U698 cells revealed that over 60% 

of the cells were multinucleated (figure 3-19) and  endoreduplicating, while only 

about 4% were in diploid G1 (figure 3-18). Microscopy of PARP and ATM inhibited 

JVM-2 cells revealed that they were largely multinucleated (figure 3-22), but they did 

not endoreduplicate (figure 3-15). Mitotic catastrophe followed by necrosis was the 

main death mechanism in U698 and JVM-2, as the number of apoptotic cells (figure 

3-6) was clearly outnumbered by dead cells (figure 3-2). Even though some of the 

multinucleated U698 and JVM-2 cells still were viable at the end of the experiments, 

they did not seem able to resume proliferation (i.e. they are not potentially 

malignant).  

In contrast to U698 cells, JVM-2 cells do not endoreduplicate in response to PARP 

and ATM inhibition. We have previously shown that U698 cells lack a functional G1/S 

checkpoint in response to IR208, and proposed that this is caused by loss of TP53. The 

role of TP53 in prevention of polyploidy and endoreduplication has previously been 

reported90. JVM-2 cells have wildtype TP53212 and RB1213 and are assumed to have 

retained the integrity of the G1/S checkpoint. Checkpoint activation after a mitotic 

catastrophe may inhibit new rounds of DNA replication. Endoreduplication have 

previously been shown in staurosporine treated U698 cells, but this treatment 

abolished mitosis and resulted in mononucleated cells214. Hence, another 

mechanism is the cause of PARP inhibitor induced endoreduplication with failed 

cytokinesis after mitosis. The possibility of uncoupling the order of cell cycle phases 

has been seen in normal, although specialized cells, like hepatocytes215 and during 

meiosis. Interestingly, PARPs is known to interact at centrosomes216-218 and 

PARylation of several important spindle assembly checkpoint-proteins such as 

AURKB has been reported76. In addition, PARP inhibitor PJ34 has recently been 
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shown to kill cancer cells with supernumerary centrosomes selectively by 

declustering of the centrosomes during mitosis219. The mitotic aberrations of JVM-2 

and U698 cells might therefore be used as a model system in further studies of the 

role of PARP in the spindle assembly checkpoint. 

The principle of drug-induced synthetic lethality is based the enhancement of the 

effect(s) of one drug by another drug, which itself has no effect. As the ATM inhibitor 

alone had impact on growth rates, drug synergy must in principle be determined by 

using three different concentrations of this drug as well. However, an additive effect 

can be predicted if the dose response curves of the PARP inhibitor are in parallel 

with and without ATM inhibitor (assuming non-mutual interactions of these 

inhibitors). This was the case for Granta-519 (figure 3-5), which may indicate that the 

presence of ATM inhibitor is not related to the DNA repair functions of ATM 

(discussed above). In contrast, the three other cell lines had diverging dose response 

curves, and U698 cells showed the most pronounced deviation from additivity. 

Concerning PARP inhibitor induced cell death (JVM-2 and U698) and apoptosis (Reh), 

there was a clear enhancement of the effect after additionally inhibiting ATM (ATM 

inhibitor had no effect alone). Apoptosis was somewhat higher in Granta-519 cells 

treated with ATM inhibitor alone, but the dose response curves (figure 3-7) were in 

parallel, indicating additive effect of ATM inhibition combined with PARP inhibition 

on apoptosis as well. 

The induced increase in DSBs during S phase (figure 3-11) does not distinguish 

between the “PARP trapping-model”, “replication restart model” 159 or “Balance of 

DSB repair mechanisms” model (figure 1-5). Yet one could speculate that the 

proposed inability to restart stalled replication forks would cause failure to complete 

DNA replication, and possibly death from S phase. This is not in agreement with our 

data, as the cells acquire tetraploid DNA content and G2 delay is more severe than S 

phase delay. Farmer et al. revealed complex rearrangements and chromatid breaks 

by chromosome analysis after PARP inhibition of BRCA1 /2-deficient cells1. Thus, the 

repair of DSBs in these cells has probably not been homology-dependent. The 

mitotic catastrophe phenotype in U698 and JVM-2 indicates failure of the mitotic 
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machinery or chromosome segregation-trouble due to possible complex 

chromosomal rearrangements. This may be due to aberrant repair of multiple DSBs 

by NHEJ, in agreement with the “Balance of DSB repair mechanisms model”.  

From our current data, we cannot establish whether Reh and Granta-519 died from 

G2 or mitosis. DNA fragmentation is a late event in apoptosis and pHistone H3 

(Ser10) positive cells was not observed to be additionally TUNEL-positive. TUNEL may 

not be a valid assay of apoptosis from mitosis at such a late stage in apoptosis. 

Further studies of possible chromosomal rearrangements in all cell lines and 

determination of which cell cycle phase Granta-519 and Reh die from are required. 

This may determine whether PARP and ATM inhibition causes chromosomal 

rearrangements, leading to mitotic catastrophe in U698 and JVM-2. Additionally, the 

duration-dependent increase of PARP inhibitor treatment (figures 3-2, 3-4 and 3-6) 

suggest that damage not associated with γH2AX may accumulate with increasing 

numbers of cell cycles. The possibility of using PARP inhibitors over a long period of 

time further emphasizes the importance of this finding, as the effect would be more 

and more severe throughout the treatment course. 

The underlying background for this study was the attractive possibility of using PARP 

inhibitors in treatment of ATM-deficient cancers. A recent study by Williamson et al.9 

suggested that the ATM inhibitor KU-55933 could be used in combination with PARP 

inhibitor olaparib in treatment of TP53-deficient malignancies. Our data does not 

support this proposition, as ATM and PARP inhibited TP53-proficient cell lines 

(Granta-519, Reh and JVM-2) reveals the substantial amount of damage to the 

normal tissue this would induce (figure 3-2). However, the perspective of additional 

sensitization to PARP inhibitors in tumors with both ATM and TP53 loss, which is 

reported in 10% of all MCLs21, is in agreement with our results. The TP53 negative 

cell line (U698) was the most sensitive to combined PARP and ATM inhibition and 

interestingly the least sensitive to PARP inhibitor alone (figures 3-4, 3-5, 3-15, 3-16 

and 3-19). This is in agreement with the reported lack of PARP inhibitor response in 

TP53 deficient cells9. Although TP53 loss might contribute to PARP inhibitor and HRR-

defective synthetic lethality, it is not by itself a synthetic lethal combination with 

PARP inhibitor.  
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Our results are in agreement with previous studies, stating that the synthetic 

lethality of PARP inhibition and loss of ATM function1,4,7,8,220  is less pronounced than 

the effect of PARP inhibition in BRCA1/2-defective cell in vitro1,2. Since BRCA1 and 2 

are essential for HRR221,222 and ATM is involved in the upstream signalling of HRR77, 

this is not surprising. Yet the possibility of providing patients with ATM-deficient 

malignancies (e.g. aggressive MCL) with a low side effect-treatment option, such as 

PARP inhibitors141,142,  is still attractive. Although the PARP inhibitors did not have 

the desired kill efficiency as a single agent, it is still a possibillity to enhance 

treatment effect of current DSB inducing-chemotherapy and/or irradiation with 

PARP inhibitors. Such studies are presently being performed145,223-225 . 

5 CONCLUSION 

The findings of this study show that PARP and ATM inhibition will generate DSBs 

during DNA replication. The DSBs are subsequently repaired/attempted to be 

repaired during G2, causing a DNA damage-induced G2 delay. Cells without fully 

repaired DNA are not allowed to enter mitosis, and could die by apoptosis directly 

from G2 (Granta-519 and Reh). The cumulative nature of the effect of PARP and ATM 

inhibition suggests that low fidelity DNA repair takes place. The high frequency of 

failed cytokinesis (mitotic catastrophe) is possibly due to difficulty in separating 

structurally abnormal chromosomes (JVM-2 and U698). Cell cycle progression is 

slowed through S and G2 in response to the DNA damage, but the treatment do not 

cause cells to stop cycling. Thus, the continuous exposure to the inhibitors ensures 

that each cycle is likely to cause new DNA damage and erroneous repair. The 

repeated process will inevitably lead to cell death, as the genome becomes 

increasingly damaged (figure 5-1). The cell line specific differences in treatment 

induced phenotypes and cell death mode may be due to other aberrations in the 

DNA damage response system. E.g., the difference between endoreduplication 

(U698) and post-mitotic arrest (JVM-2) could be attributed to the impaired G1/S 

checkpoint in U698 (TP53 loss). 



 

Fu
tu

re
 p

er
sp

e
ct

iv
es

 

84 

 

 

Figure 5-1: Proposed cumulative cycle of damage, repair and eventually synthetic lethality 

caused by PARP inhibition while ATM activity is suppressed. 

6 FUTURE PERSPECTIVES 

As this study was time limited, we still have several ideas that we wish to pursue in 

our further study of the phenotypes induced by PARP and ATM inhibition in 

lymphoid cells. 

The apoptotic cells (measured by DNA fragmentation) in this study was mostly 

pHistone H3 negative. This could indicate that apoptosis occurred from G2. However, 

we must first ensure that this phospho-epitope is not lost before the DNA 

fragmentation stage of apoptosis. We plan to induce apoptosis from mitotically 

arrested cells, by long term (24h) nocodazole treatment, as we have previously done 

in U698 and Reh208. Then we will co-stain for both pHistone H3 and DNA-

fragmentation (TUNEL-assay). If these apoptotic cells retain pHistone H3, we will be 

able to conclude that Granta-519 and Reh became apoptotic from G2.  

Secondly, we will perform karyotyping of PARP and ATM inhibited cells. This could 

determine whether the mitotic abnormalities observed in JVM-2 and U698 cells are 

caused by structural chromosome damage such as ring-chromosomes, dicentric 

chromosomes or other complex rearrangements, which is bound to cause failed or 

catastrophic cytokinesis.  
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In this study we have not addressed whether PARP inhibition just causes an increase 

in DNA damage (PARP trapping-model and replication restart model in figure 1-5 B 

and C)159, or if it is the switch to improper and/or inefficient DNA repair that causes 

synthetic lethality in HRR-deficient cells (Balance of repair mechanisms-model in 

figure 1-5 D). To test the latter model, we are going to employ a specific inhibitor 

against DNA-PK (NU-7026). DNA-PK inhibition is reported to rescue cells from 

synthetic lethality of PARP and ATM inhibition9. We wish to further evaluate the 

phenotypes of DNA damage, proliferation and cell cycle specific delay, after this 

proposed rescue. NHEJ is suggested to be 53BP1-dependent171. Thus, we would like 

to stain for 53BP1-associated DSB foci in PARP and ATM inhibited cells, as this might 

reveal whether a shift towards NHEJ is the cause of synthetic lethality. Expression 

profiling by microarray of DNA-PK, PARP and ATM inhibited cells, compared to all 

dual inhibitor combinations and single agents, is also something we plan to perform. 

This might shed more light on the unknown mechanisms of synthetic lethality in DNA 

repair. 

There are conflicting results after PARP knockdown in the literature1,2,12. If the 

correct mechanism of PARP inhibition is the PARP trapping-model, the phenotypes 

induced by PARP knockdown should be less severe than the PARP inhibition induced 

phenotypes. We will also elucidate whether this is the mechanism behind synthetic 

lethality in HRR-defective cells by comparing double knockdown of PARP1 and PARP2 

to PARP inhibition. 

We wish to confirm that TP53 is responsible for the post-mitotic arrest in JVM-2 cells 

by shRNA-mediated knockdown of TP53 in JVM-2, by investigating the possible 

induction of endoreduplication after PARP and ATM inhibition.  

It seems likely that the cells entering G2 phase have γH2AX foci and are positive for 

γH2AX by flow cytometry. After repair of the DSBs, they may enter a γH2AX negative 

compartment in G2 before entry into mitosis (see JVM-2 and Granta-519 in figure S4 

in the appendix). This will be tested by BrdU pulse labeling of cells (followed by pulse 

chasing) for directly determining the order of γH2AX compartments in G2. 
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Appendix 

1 MATERIALS 

Table S1: List of materials used, ordered alphabetically by product. N/A = Not applicable 
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SOLUTIONS 

BD Cell Viability kit: 

The kit was allowed to reach room temperature before use. 

Per ml sample:  

- 1 μl Propidium iodide (4.3 mM) 

- 2 μl Thiazole Orange (42 μM) 

Each sample was added thoroughly mixed 50 μl BD Liquid Counting Beads, using the reverse 

pipetting technique for better accuracy.  

TUNEL-assay:  

The Recombinant Terminal Transferase kit, Biotin-16-dUTPs and DTT solution was allowed to 

reach room temperature before use. 

Table S2:  One sample recipe for a TUNEL reaction, optimized for minimal reagent use. 
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Western Blotting 

2x Loading buffer: 

- 4.0 ml 10% (w/v) SDS      

- 2.0 ml Glycerol 

- 0.1% (w/v) Bromophenol Blue 

- 2.5 ml Tris-HCl (0.5M) pH 6.8  

- 0.5 ml DTT (0.1M) 

- 2 ml ddH2O for a total volume of 10 ml  

10x Blotting salts: 

- 30.0 g Trizma Hydrochloride 

- 144.0 g Glycine 

- Dissolved in ddH2O for a total volume of 1000 ml 

Transfer buffer: 

- 1:10 10x Blotting salts 

- 2:10 Methanol 

- 7:10 ddH2O 
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PRIMARY ANTIBODIES 

Table S3: List of primary antibody specifications, dilution and secondary antibody used for 

immunofluorescence (IF), or Western blotting (WB). Immunoflourescence methods used 

were flow cytometry analysis and sorting and fluorescense microscopy. For IF all 

antibodies were diluted in PBS containing 5%(w/v) dry milk. Antibodies used for WB were 

diluted in TBS-T with 5% dry milk. Primary antibody = 1°Ab, secondary antibody = 2°Ab. 

*For optimalized phospho-ATM signal the amount of antibody-solution used during 

incubation was twice the normal volume. 
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SECONDARY ANTIBODIES 

Table S4: Specifications of the secondary antibodies used in immunofluorescense or 

Western blotting. 
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2 CALCULATIONS 

 

Figure S1: SPSS output after linear regression of dead cells as a function of apoptotic cells. 

 

 

 

 

 

 



Appendix 

8 
 

3 SUPPLEMENTARY MATERIAL 

 

144 HOUR TREATMENT OF U698 CELLS 

As there were only a few % diploid G1 cells after 144h treatment with 10µM ATMi and 3 µM 

PARPi, a 50:50 mixture with the 144h control sample was analyzed using flow cytometry 

(figure 2). The persistant 8n and 16n populations prove that the treatment causes 

endoreduplication in U698 cells. 

 

Figure S2: U698 cells after 144h treatment. Mixed sample-control of the mock-treated 

sample and sample treated with 3µM PARPi and 10µM ATMi. 
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MITOTIC AND APOPTOTIC CELLS DURING ENDOREDUPLICATION IN THE U698 

CELL LINE 

 

Figure S3: Fluorescence microscopy images of U698 cells after 144h treatment with PARPi 

(olaparib) and 10µM ATMi (KU-55933). 
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γH2AX INTENSITY DURING G1, S AND G2  

 

Figure S4: Flow cytometry analysis of γH2AX intensity relative to DNA content (doublets, 

mitotic and apoptotic cells are excluded) after 48h treatment with PARP inhibitor 

(olaparib). Dot plots and corresponding contour plots are shown for all cell lines. 


