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Abstract

A symplectic bundle over an algebraic curve has a natural invariant sLag determined by
the maximal degree of its Lagrangian subbundles. This can be viewed as a generalization of
the classical Segre invariants of a vector bundle. We give a sharp upper bound on sLag which
is analogous to the Hirschowitz bound on the classical Segre invariants. Furthermore, we
study the stratifications induced by sLag on moduli spaces of symplectic bundles, and get a
full picture for the case of rank four.

1. Introduction

Let X be a smooth projective curve of genus g � 2 over C. Let G be a connected reductive
algebraic group over C, and P ⊂ G a parabolic subgroup. Given a G-bundle V over X , we
have an associated G/P-bundle π : V/P → X . For a section σ of π , consider the normal
bundle Nσ over σ(X)� X in V/P . We define

s(V ; P) := min
σ

{deg Nσ },
where σ runs through all sections of V/P .

It is easy to show that s(V ; P) > −∞; see Holla–Narasimhan [10, lemma 2·1]. A section
σ is called a minimal section of V if deg Nσ = s(V ; P). According to Ramanathan [20,
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definition 2·13], V is a semistable G-bundle if and only if s(V ; P) � 0 for every maximal
parabolic subgroup P of G. In general, it can be said that the invariant s(V ; P) measures the
degree of stability of V with respect to P . The invariant s(−, P) is a lower semicontinuous
function on any parameter space of G-bundles over X , so defines a stratification on the
moduli space of semistable G-bundles over X .

The geometry of this stratification has been extensively studied in the case G = GLn . To
review some of the results, first note that a topologically trivial GLn-bundle V is nothing but
a vector bundle of rank n and degree zero, which we also denote by V . For each 1 � r �
n − 1, there is a maximal parabolic subgroup Pr of GLn which is unique up to conjugation.
A section σ of the associated Grassmannian bundle V/Pr gives a rank r subbundle E of V ,
and vice versa. Since Nσ = Hom (E, V/E), we get

s(V ; Pr ) = min{−n deg E : E ⊂ V, rk(E) = r}.
This coincides with the well-known invariant sr (V ) of a vector bundle V , sometimes called
the r th Segre invariant. In the literature, a rank r subbundle E is called a maximal subbundle
of V if sr (V ) = −n deg E .

The first result on the invariant sr is the upper bound

sr (V ) � g · r(n − r).

This was obtained by Nagata [17] for n = 2 and by Mukai and Sakai [16] in general. Later,
Hirschowitz obtained the following sharp bound [6, théorème 4·4]; see also [4]:

PROPOSITION 1·1. For a bundle V as above, we have

sr (V ) � r(n − r)(g − 1) + ε,

where 0 � ε < n and r(n − r)(g − 1) + ε ≡ 0 mod n.

Next, let us recall the results on the stratification defined by sr (V ). Let U(n) be the moduli
space of semistable bundles over X of rank n and degree zero. For each integer s divisible
by n, we define

U(n; r, s) := {V ∈ U(n) : sr (V ) � s}.
By Proposition 1·1, we have U(n; r, s) = U(n) if s � r(n − r)(g − 1).

PROPOSITION 1·2. (Brambila–Paz–Lange [3], Russo–Teixidor i Bigas [21]). For each
integer k with 0 < k � k0 := �r(n − r)(g − 1)/n�, the locus U(n; r, kn) is an irreducible
closed subvariety of U(n). Also, for each k � k0, we have

codim U(n; r, kn) = r(n − r)(g − 1) − kn.

Moreover, each variety U(n; r, kn) can be described by using the extension spaces of fixed
type, see [21, theorem 0·1].

On the other hand, not much seems to have been studied on the properties of the invariant
s(V ; P) of a G-bundle V in general, except the following universal upper bound on s(V ; P)

obtained by Holla and Narasimhan [10, theorem 1·1]:

PROPOSITION 1·3. Fix a parabolic subgroup P of G. For every G-bundle V , we have

s(V ; P) � g · dim(G/P). (1·1)
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Note that when G = GLn , this coincides with the Mukai–Sakai bound discussed above,
which is not sharp. As in the vector bundle case, the invariant s(V ; P) induces a stratification
on the moduli space of semistable principal G-bundles over X .

In this paper, we study the geometry of the stratification when G = Sp2n . We write M2n

for the moduli space of semistable principal Sp2n-bundles over X (see Ramanathan [20]). A
vector bundle W will be called symplectic if there exists a nondegenerate bilinear alternating
form ω : W ⊗W → OX . Such a bundle always has even rank 2n. It is easy to see that a vector
bundle of rank 2n is symplectic if and only if the associated principal GL2n-bundle admits
a reduction of structure group to Sp2n . There is a natural map from M2n to the moduli
space SU(2n,OX ) of semistable bundles of rank 2n with trivial determinant, which is an
embedding (Serman [22]). Henceforth, we identify M2n with its image in SU(2n,OX ).

A subbundle E of W is called isotropic if ω|E⊗E = 0. By linear algebra, the rank of an
isotropic subbundle is at most n; an isotropic subbundle of rank n is called a Lagrangian
subbundle. A Lagrangian subbundle E of W corresponds to a section of the associated
Sp2n/P-bundle W/P , where P is the maximal parabolic subgroup of Sp2n preserving a fixed
Lagrangian subspace of C

2n . Let us abbreviate s(W ; P) to sLag(W ), where the subscript in-
dicates “Lagrangian”. Since Sp2n/P is none other than the Lagrangian Grassmannian, the
normal bundle of the section corresponding to E is given by Sym2 E∗. Recall that for any
vector bundle V , we have

deg(Sym2V ) = (rk(V ) + 1) deg(V ),

so

sLag(W ) = min{−(n + 1) deg E : E a Lagrangian subbundle of W }.
According to the bound (1·1), we get

sLag(W ) � n(n + 1)

2
g. (1·2)

In other words, every symplectic bundle W admits a Lagrangian subbundle of degree at least
−(n/2)g.

One may compare this with the Hirschowitz bound on the nth Segre invariant sn , which
says that as a vector bundle, W admits a subbundle of half rank with degree at least
−�(n/2)(g−1)�. We prove that this slightly nicer bound is still valid for symplectic bundles.

THEOREM 1·4. For every symplectic bundle W of rank 2n, we have

sLag(W ) � 1

2
(n(n + 1)(g − 1) + (n + 1)ε) ,

where ε ∈ {0, 1} is such that n(g − 1) + ε is even. This bound is sharp in the sense that the
equality holds for a general bundle W in the moduli space M2n of semistable symplectic
bundles of rank 2n over X.

Next, consider the stratification on M2n given by the invariant sLag. For each k > 0, let

Mk
2n := {W ∈ M2n : sLag(W ) � (n + 1)k}.

By semicontinuity, Mk
2n is a closed subvariety of M2n and sLag induces a stratification on

M2n . In particular when n = 1, since Sp1 is isomorphic to SL2, this reduces to the stratifica-
tion already studied on the moduli space SU(2,OX ) of semistable bundles of rank two with
trivial determinant. We prove the following result on the stratification on the moduli space
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M4 of semistable rank four symplectic bundles over X . Note that Mg−1
4 is the whole space

M4 by Theorem 1·4.

THEOREM 1·5. For each e with 1 � e � g − 1, the locus Me
4 is an irreducible closed

subvariety of M4 of dimension 7(g − 1) + 3e.

In the case of genus two, this was proven in [9]. The key ingredient of the proof there
was a symplectic version of Lange and Narasimhan’s description [15] of the Segre invariant
using secant varieties (also see [4] for a higher rank version in the case of vector bundles).
In this paper, we generalize the method and results of [9] to the case of arbitrary genus. We
will see an interesting variant of Lange and Narasimhan’s picture in the case of symplectic
bundles: a relation between the invariant sLag and the higher secant varieties of certain fibre
bundles over X .

This paper is organized as follows. In Section 2, we provide the basic setup for our dis-
cussion. In particular, a relation between the higher secant varieties and the Segre invariants
will be established in Theorem 2·12. In Section 3, we prove Theorem 1·4 using this relation
combined with the Terracini Lemma. In Section 4, we study symplectic bundles of rank four
in more detail. We will see that the relation discussed in Section 2 can be improved to yield
a nice picture in this case (Theorem 4·3). This enables us to prove Theorem 1·5. Finally a
remark will be given on the comparison between the two stratifications defined by s2 and
sLag.

A variant of Hirschowitz’s lemma is required in various places. To streamline the argu-
ments, the proof of this lemma is postponed to the appendix.

Throughout this paper, we work over the field C of complex numbers.

2. Symplectic extensions and lifting criteria

In this section, we establish basic results on symplectic extensions.

2·1. Symplectic extensions and symmetric principal parts

Let W → X be a symplectic bundle and E ⊂ W a subbundle. There is a natural short
exact sequence

0 −→ E⊥ −→ W −→ E∗ −→ 0,

where E⊥ is the orthogonal complement of E with respect to the symplectic form on W . If
E is a Lagrangian subbundle of W , then E = E⊥.

Definition 2·1. An extension 0 → E → W → E∗ → 0 will be called symplectic if W
admits a symplectic structure with respect to which the subbundle E is Lagrangian.

A symplectic extension defines a class

δ(W ) ∈ H 1(X, Hom (E∗, E)) = H 1(X, E ⊗ E).

Note that we have the decomposition

H 1(X, E ⊗ E) � H 1(X, Sym2 E) ⊕ H 1(X, ∧2 E).

LEMMA 2·2.
(i) An extension 0 → E → W → E∗ → 0 is symplectic if and only if W is isomorphic

as a vector bundle to an extension with class belonging to H 1(X, Sym2 E).
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(ii) If E is simple, then the extension W is symplectic if and only if δ(W ) itself belongs
to H 1(X, Sym2 E).

Proof. Due to S. Ramanan; see [8, Section 2] for a proof.

2·2. Cohomological criterion for lifting

We recall the notion of a bundle-valued principal part (see Kempf [12] for corresponding
results on line bundles). For any bundle V over X , we have an exact sequence of OX -modules

0 −→ V −→ Rat(V ) −→ Prin(V ) −→ 0 (2·1)

where Rat(V ) is the sheaf of rational sections of V and Prin(V ) the sheaf of principal parts
with values in V . We denote their groups of global sections by Rat(V ) and Prin(V ) respect-
ively. The sheaves Rat(V ) and Prin(V ) are flasque, so we have the cohomology sequence

0 −→ H 0(X, V ) −→ Rat(V ) −→ Prin(V ) −→ H 1(X, V ) −→ 0. (2·2)

We denote by s the principal part of s ∈ Rat(V ), and we write [p] for the class in H 1(X, V )

of p ∈ Prin(V ). Any extension class in H 1(X, V ) is of the form [p] for some p ∈ Prin(V ),
which is far from unique in general.

Now consider an extension of vector bundles

0 −→ E −→ W −→ E∗ −→ 0 (2·3)

and an elementary transformation F of E∗ defined by the sequence

0 −→ F
µ−→ E∗ −→ τ −→ 0

for some torsion sheaf τ . We say that F lifts to W if there is a sheaf injection F → W such
that the composition F → W → E∗ coincides with the elementary transformation µ. We
quote two results from [8]:

LEMMA 2·3 ([8, corollary 3·5 and criterion 3·6]). Suppose that h0(X, Hom (E∗, E)) = 0
and E is simple. Let W be an extension of type (2·3) with class δ(W ) ∈ H 1(X, E ⊗ E).

(i) There is a one-to-one correspondence between principal parts p ∈ Prin(E ⊗ E)

such that [p] = δ(W ), and elementary transformations F of E∗ lifting to W as a
subbundle, given by p ←→ Ker (p : E∗ → Prin(E)).

(ii) Suppose δ(W ) = [p] belongs to H 1(X, Sym2 E), so W is a symplectic extension.
Then the subbundle lifting from Ker (p) is isotropic if and only if t p = p.

It will be convenient to make the following definition:

Definition 2·4. The degree of a principal part p ∈ Prin(E ⊗ E) is defined as the degree
of the torsion sheaf Im(p : E∗ → Prin(E)).

2·3. Subvarieties of the extension spaces

Let V be a vector bundle with h1(X, V ) � 0. We describe a rational map of the scroll
PV into the projective space PH 1(X, V ). Let π : PV → X be the projection. We have the
following sequence of identifications:

H 1(X, V )� H 0(X, K X ⊗ V ∗)∨

� H 0(X, K X ⊗ π∗OPV (1))∨

� H 0(X, π∗ (π∗K X ⊗ OPV (1)))∨

� H 0(PV, π∗K X ⊗ OPV (1))∨.
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Hence via the linear system |π∗K X ⊗ OPV (1)|, we have a map ϕ : PV ��� PH 1(X, V ). For
V = Hom (E∗, E) = E ⊗ E , we get a map

ϕ : P(E ⊗ E) ��� PH 1(X, E ⊗ E).

Definition 2·5. For each x ∈ X , we denote by �|x the projectivization of the set of all
rank one linear maps E∗|x → E |x . The union

� =
⋃
x∈X

(�|x)

is a fibre bundle inside the scroll P(E ⊗ E), which we call the decomposable locus. Note that
� has a fibre subbundle given as the image of the Veronese embedding PE ↪→ P(E ⊗ E);
clearly,

PE = � � PSym2 E .

If v ∈ E is nonzero, we will abuse notation and denote also by v the point of PE corres-
ponding to the vector v. By restricting ϕ to PE ⊂ PSym2 E , we get

ψ : PE ��� PH 1(X, Sym2 E).

Next, we give another way to define ϕ and ψ , which will be convenient in what follows.
This idea was used by Kempf and Schreyer [13, Section 1] to define the canonical map
X → |K X |∨, and generalized in [9, Section 3·3].

For each x ∈ X , we have an exact sequence of sheaves

0 −→ V −→ V (x) −→ V (x)

V
−→ 0,

which is a subsequence of (2·1). Taking global sections, we obtain

0 −→ H 0(X, V ) −→ H 0(X, V (x)) −→ V (x)|x −→ H 1(X, V ) −→ · · · (2·4)

The restriction of the map ϕ : PV ��� PH 1(X, V ) to the fibre PV |x is identified with the
projectivized coboundary map in (2·4). In view of (2·2), it can be identified with the map
taking v ∈ PV to the cohomology class of a V -valued principal part supported at x with
a simple pole in the direction of v. Similarly, the restriction ψ : PE ��� PH 1(X, Sym2 E)

can be identified with the map taking v ∈ E |x to the cohomology class of a Sym2 E-valued
principal part supported at x with a simple pole along v ⊗ v.

LEMMA 2·6. Suppose g � 2.
(i) If E is general in U(n, d) with µ(E) < −1, then ϕ : P(E ⊗ E) ��� PH 1(X, E ⊗ E)

is an embedding.
(ii) If E is general in U(n, d) with µ(E) � −1/2, then ϕ is base-point free.

(iii) If g � 3 and E is general in U(2, d), d < 0, then ψ : PE ��� PH 1(X, Sym2 E) is
an embedding.

Proof. (i) For any divisor D on X , write V (D) for the bundle V ⊗ OX (D). One can
easily see that the map ϕ : PV ��� PH 1(X, V ) is base point free if H 0(X, V (x)) = 0 for
all x ∈ X , and an embedding if H 0(X, V (D)) = 0 for all effective divisors D of degree 2.

Since E is stable, E ⊗ E(D) is semistable. If µ(E) < −1, then E ⊗ E(D) has negative
degree for every D ∈ Sym2 X , and so H 0(X, E ⊗ E(D)) = 0.



Lagrangian subbundles of symplectic bundles 199

(ii) An argument similar to that in (i) shows that if µ(E) � −1/2 and E is general, then
H 0(X, E ⊗ E(x)) = 0 for all x ∈ X .

(iii) By (i), ϕ is an embedding for d � −2. Now suppose d = −1. By (ii), we know that
ϕ is base-point free, and hence so is ψ .

To show that ψ is an embedding it suffices to show that, for any x, y ∈ X :

(i) no two principal parts of the form

e ⊗ e

z
and

f ⊗ f

w

are identified in H 1(X, Sym2 E) for any nonzero e ∈ E |x and f ∈ E |y , where z and w

are local coordinates at x and y respectively, and
(ii) the principal part

e ⊗ e

z2

is not cohomologically zero for any local section e nonzero at x .

The first statement is equivalent to saying that there does not exist a symmetric map

α : E∗ −→ E(x + y)

with principal part equal to
e ⊗ e

z
− f ⊗ f

w
.

Suppose there exists such an α. First, assume that α is generically injective. Note that any
such α has rank one at x and y. Hence the non-zero section det(α) of the line bundle

Hom (det E∗, det E(2x + 2y))� (det E)2(2x + 2y)

vanishes at x and y. Thus (det E)2(x + y) is trivial, so (det E)−2 is effective. But if g � 3, a
general E ∈ U(2, −1) does not have this property.

Next, assume that α is of generic rank 1. Then α factorizes as

E∗ −→ M −→ E(x + y)

for some rank 1 sheaf M of degree m. The surjection E∗ → M and the injection M →
E(x + y) imply that E admits a line subbundle of degree at least

max{deg M∗, deg M(−x − y)} = max{−m, m − 2} � −1.

This shows that E is not general in U(2, −1) for g � 3 by a known property of the Segre
invariant of E , which is analogous to Proposition 1·1: for a rank 2 bundle E of degree d,
define

s1(E) := min{d − 2 deg L}
where L runs through all the line subbundles of E . Then by Lange–Narasimhan [15, pro-
position 3·1], we have

g − 1 � s1(E) � g (2·5)

for a general E ∈ U(2, d). This shows in particular that for g � 3, a general E ∈ U(2, −1)

does not admit a line subbundle of degree � −1.
Hence we conclude that there is no such symmetric map α. This proves the first statement.

The second statement can be proven by a similar argument with x = y.
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2·4. Irreducibility of symmetric principal parts

In this subsection, we prove a technical result on spaces of symmetric principal parts. This
will be used later when we discuss relations between principal parts, symplectic extensions
and secant varieties.

LEMMA 2·7. For a fixed vector bundle E over X and for each k > 0, the space of sym-
metric principal parts in Prin(E ⊗ E) of degree k is irreducible.

Proof. A principal part of degree k is called general if it is supported at k distinct points
of X . It is clear that the general symmetric principal parts in Prin(E ⊗ E) of degree k
are parameterized by a (quasi-projective) irreducible variety. Thus the irreducibility of all
symmetric principal parts will follow once we show the following:

Every symmetric principal part p ∈ Prin(E ⊗ E) of degree k is a limit (in the analytic
topology) of a sequence of general symmetric principal parts of degree k.

To show this, it suffices to consider the case where p is supported at a single point x ∈ X .
In this case, we define the order of p at x to be the smallest integer m such that Im(p) is
contained in E(mx)/E . Let z be a local coordinate at x and let e1, e2, . . . , en be a frame for
E near x . Then p is locally expressed as

p = 1

zm

(
ψm + z · ψm−1 + · · · + zm−1ψ1

)
,

where ψ1, ψ2, . . . , ψm are symmetric tensors in e1, e2, . . . , en .
We claim that after a suitable change of the local frame, every symmetric principal part p

of degree k and order m can be expressed as

p =
r∑

i=1

pi with pi = ei ⊗ ei

zmi
,

where m = m1 � m2 � · · · � mr � 0 and
∑r

i=1 mi = k.
Once we have this expression, it is easy to see that p is a limit of a sequence of gen-

eral symmetric principal parts of degree k: for each i , choose mi distinct complex numbers
c1, c2, . . . , cmi and consider the one-parameter family of principal parts

pi (t) = ei ⊗ ei

(z − c1t)(z − c2t) · · · (z − cmi t)
.

For t � 0, the sum
∑r

i=1 pi (t) is a general principal part of degree
∑r

i=1 mi = k, and∑r
i=1 pi (0) = p. Thus p is the limit of a sequence of general symmetric principal parts of

degree k.
Now we prove the claim by invoking a diagonalization process of matrices. In local co-

ordinates, p appears as

p = 1

zm
S

for an n × n symmetric matrix S over C[z]. However, since we are concerned with the prin-
cipal parts only, the entries of S can be regarded as the elements of the ring R = C[z]/(zm).

In this context, the claim will be proven if we show that S is congruent in Mn(R) to a diag-
onal matrix. More precisely, it suffices to show that there exists a matrix P ∈ Mn(R) which
is nonsingular in the sense that det P is a unit in R, such that

t P S P = diag(zd1, zd2, . . . , zdr ), where 0 = d1 � d2 � · · · � dr .
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This can be shown by the Gram–Schmidt process. The standard process provides a way to
diagonalize symmetric matrices with entries in C, but the same process can be applied to
our situation because

(i) an element in R given by a0 + a1z + · · · + am−1zm−1 has an inverse in R if and only if
a0 � 0, and

(ii) every unit has a square root in R.
(For related discussion, we refer the reader to [1, corollary (2·44)].) Thus after applying the
Gram–Schmidt process to S, we get a diagonal matrix whose diagonal entries are powers
of z.

2·5. Geometric criterion for lifting

Firstly we adapt some ideas from [4, Section 3] to the present situation.

Definition 2·8. Let V → X be a vector bundle. Then an elementary transformation

0 −→ Ṽ −→ V −→ τ −→ 0

is called general if τ �
⊕k

i=1 Cxi for distinct points x1, . . . , xk of X .

The word “general” is justified as follows. As in [4, Section 3], one can consider a para-
meter space Qk(V ) of elementary transformations of V of degree deg(V ) − k and observe
that the locus of general elementary transformations is open and dense in Qk(V ).

Definition 2·9. Let Y be a closed subvariety of a projective space P
N . The kth secant

variety of Y , denoted by SeckY , is the Zariski closure of the union of all the k-secants to Y ,
that is, all the projective subspaces of P

N spanned by k distinct points of Y .

Now we will consider a bundle E → X of rank n which satisfies either condition (i) or
condition (iii) in Lemma 2·6 so that either

ϕ : P(E ⊗ E) → PH 1(X, E ⊗ E) or ψ : PE −→ PH 1(X, Sym2 E)

is an embedding. Consider the following diagram:

� −−−−→ P(E ⊗ E) −−−−→
ϕ

PH 1(X, E ⊗ E)�⏐⏐
�⏐⏐

�⏐⏐
PE −−−−→ P(Sym2 E) −−−−→ PH 1(X, Sym2 E),

where the composition of the two maps on the bottom row is ψ . If ψ is an embedding, these
two maps are inclusions, whereas if ϕ is an embedding, all the arrows are inclusions.

LEMMA 2·10. Consider a bundle W fitting into a nontrivial symplectic extension of E∗

by E with class δ(W ) ∈ PH 1(X, Sym2 E).
(i) If the class δ(W ) corresponds to a general point of Seck

PE, then W admits an iso-
tropic lifting of a general elementary transformation F of E∗ with deg(E∗/F) � k.

(ii) If W admits an isotropic lifting of an elementary transformation F of E∗ with
deg(E∗/F) � k, then δ(W ) belongs to Seck

PE.

Remark 2·11. An analogous lifting condition for the map ϕ was considered in [4, the-
orem 4·4], where a criterion on the lifting of an elementary transformation of E∗ without
the isotropy condition, was given in terms of the higher secant variety of the scroll � ⊂
PH 1(X, E ⊗ E) instead of PE ⊂ PH 1(X, Sym2 E).
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Proof. Basically we follow the same idea underlying the proof of [4, theorem 4·4], except
that we use the language of principal parts here.

To show (i), suppose δ(W ) lies on a secant plane spanned by k general points of PE .
This means that δ(W ) can be defined by a linear combination p = ∑

λi pi of at most k
symmetric principal parts pi supported at distinct points, where pi ∈ PE |xi . By Lemma 2·3
(ii), the kernel of p : E∗ → Prin(E) lifts to W isotropically. Also, Ker (p) is a general
elementary transformation of E∗ whose degree is � deg E∗ − k.

As for (ii): By Lemma 2·3 (ii), an elementary transformation F of E∗ lifts to W isotrop-
ically if and only if δ(W ) = [p] for some symmetric principal part p such that

F ⊆ Ker
(

p : E∗ −→ Prin(E)
)
.

First assume that F is a general elementary transformation so that p is a linear combination
of k symmetric principal parts p1, . . . , pk supported at distinct points x1, . . . , xk , with

pi ∈ �|xi ⊆ (E ⊗ E)|xi �
(E ⊗ E) (xi)

(E ⊗ E)
(2·6)

for each i . Since p is symmetric, each pi belongs to �|xi � PSym2 E |xi = PE |xi . By our
alternative definition of ϕ : � → PH 1(X, E ⊗ E) immediately before Lemma 2·6, the point
δ(W ) = [p] lies on the secant plane spanned by k distinct points of PE . In particular,
δ(W ) ∈ Seck(PE).

The proof of (ii) is completed by passing to the limit, using Lemma 2·7.

From the above discussion, we obtain:

THEOREM 2·12. Let E and W be as above. If δ(W ) ∈ Seck
PE, then we have sLag(W ) �

(n + 1)(k + deg E).

Proof. By Lemma 2·10 (i), if δ(W ) is a general point of Seck
PE , then there is some

elementary transformation F ⊂ E∗ lifting to W isotropically such that deg(F) � deg E∗−k.
Hence by definition, sLag(W ) � (n + 1)(k + deg E). By the semicontinuity of the invariant
sLag, this inequality still holds for any W with δ(W ) ∈ Seck

PE .

Remark 2·13. (1) In [4, theorem 4·4], it was proven that if δ(W ) ∈ Seck� then we have
sn(W ) � 2n(k +deg E), that is, W contains a rank n subsheaf of degree deg(E∗)−k, which
is not necessarily isotropic. We will return to this phenomenon in Section 4·3.

(2) One can ask if the converse holds in Theorem 2·12. This is a subtle question. Certainly
the condition sLag(W ) � (n + 1)(k + deg E) implies that W admits an isotropic subbundle
F of rank n and degree � deg E∗ − k. But in general F need not come from an elementary
transformation of E∗, due to the possible existence of a diagram of the form

0 −−−−→ E −−−−→ W −−−−→ E∗ −−−−→ 0�⏐⏐ �⏐⏐ �⏐⏐
0 −−−−→ G −−−−→ F −−−−→ H −−−−→ 0

(2·7)

where rk(G) � 1. In other words, for n > 1, it can happen that a maximal Lagrangian
subbundle of W may intersect E in a nonzero subsheaf. But in Section 4·1, we will show
that this kind of diagram appears only in a restricted way for n = 2.
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3. Upper bound on sLag

One can easily see that the invariant sLag has no lower bound by considering, for instance,
a decomposable bundle E ⊕ E∗ where E is a bundle of arbitrarily large degree. In this
section, we prove Theorem 1·4 which gives us the sharp upper bound on sLag.

In [4], the Hirschowitz bound in Proposition 1·1 was reproved using the relation between
the invariant sr and the geometry of the higher secant varieties of the ruled varieties in the
extension spaces. We would like to adapt the same idea to the case of symplectic bundles by
applying the results in the previous section. We begin with the following observations.

PROPOSITION 3·1. A general symplectic bundle is stable as a vector bundle.

Proof. By essentially the argument of Ramanan [19, Section 4] (see [7] for details), a
stable principal Sp2n-bundle W corresponds to an orthogonal direct sum of subbundles Wi

which are mutually nonisomorphic, with each Wi a symplectic bundle which is stable as a
vector bundle. Hence the dimension of the sublocus in M2n of symplectic bundles which are
strictly semistable vector bundles, is bounded by dimM2n−2 + dimM2. Near W ∈ M2n ,
the moduli space looks like the quotient of H 1(X, Sym2W ) by the finite group of symplectic
automorphisms of W . Since h0(X, Sym2W ) = 0,

dimM2n = −χ(X, Sym2W ) = n(2n + 1)(g − 1).

This is greater than

dimM2n−2 + dimM2 = (n − 1)(2n − 1)(g − 1) + 3(g − 1) = (2n2 − 3n + 4)(g − 1)

if n � 2. Thus a general bundle in M2n is stable as a vector bundle.

LEMMA 3·2. A general symplectic bundle W ∈ M2n has a Lagrangian subbundle E of
degree � −n(g − 1)/2 which is general as a vector bundle.

Proof. First we show that every symplectic bundle W has a Lagrangian subbundle. Let
U ⊂ X be an open set over which W is trivial. Any Lagrangian subspace of C

2n yields a
Lagrangian subbundle of W |U . This corresponds to a rational reduction of structure group
of the associated Sp2n-bundle of W to the maximal parabolic subgroup preserving a fixed
Lagrangian subspace. Since X has dimension one, this can be extended to a reduction of
structure group over the whole of X , giving a Lagrangian subbundle of W (cf. Hartshorne
[5, proposition I·6·8]).

Now let W0 be a general symplectic bundle. Since W0 admits a Lagrangian subbundle,
say E0, we may present W0 as an extension

0 −→ E0 −→ W0 −→ E∗
0 −→ 0

with class δ(W0) ∈ H 1(X, Sym2 E0). Now it is well known that there is a versal deformation
E → S × X of E0 parameterized by an irreducible variety S, whose general member is a
general stable bundle. Consider the direct image R1q∗(Sym2E), where q : S × X → S is the
projection. This sheaf is locally free over the open subset S◦ of S consisting of the bundles E
with h0(X, Sym2 E) = 0. We claim that E0 belongs to S◦: Indeed, a nonzero map E∗

0 → E0

would induce an endomorphism of W0 given by composition W0 → E∗
0 → E0 → W0. This

is clearly nonzero and nilpotent. But this contradicts the stability of W0.
The associated projective bundle P(R1q∗(Sym2E)|S◦) over S◦ will be denoted by π : P →

S◦. By Lange [14, corollary 4·5], there is an exact sequence of bundles over P × X :

0 −→ (π × IdX )∗E ⊗ p∗OP(1) −→ W −→ (π × IdX )∗E∗ −→ 0,
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where p : P × X → P is the projection, with the property that for each δ in the fibre
π−1([E]) in P , the restriction W|{δ}×X is isomorphic to the symplectic extension of E∗ by E
defined by δ. From the construction of S◦, a general point of P corresponds to a symplectic
bundle admitting a Lagrangian subbundle which is general as a vector bundle.

Finally we check that deg(E) =: −e � −n(g − 1)/2. From the above argument, the
dimension of the space of symplectic bundles admitting a Lagrangian subbundle of degree
−e is bounded above by

dimU(n, −e) + h1(X, Sym2 E) − 1 = n2(g − 1) + 1 + (n + 1)e + 1

2
n(n + 1)(g − 1) − 1.

Since this should be at least dimM2n = n(2n + 1)(g − 1), we obtain e � n(g − 1)/2.

To prove Theorem 1·4, it suffices to show that a general W ∈ M2n has a Lagrangian
subbundle of degree at least �n(g−1)/2�. By Lemma 3·2, we know that W has a Lagrangian
subbundle E which is general in U(n, −e) for some e.

If e � �n(g−1)/2� then we are done. Otherwise, µ(E) < −(g−1)/2, and by Lemma 2·6
(i), we may assume the map ϕ : P(E ⊗ E) → PH 1(X, E ⊗ E) is an embedding. Consider
its restriction ψ : PE → P := PH 1(X, Sym2 E). By Theorem 2·12, if the class δ(W ) ∈ P

belongs to the subvariety Seck
PE , then W has a Lagrangian subbundle of degree at least

e − k. For the moment, suppose that PE has no secant defect in P, so that for each k � 1,
we have

dim Seck
PE = min{k dim PE + k − 1, dim P}

= min

{
k(n + 1), (n + 1)e + 1

2
n(n + 1)(g − 1)

}
− 1.

By straightforward computation, Seck
PE = P if k � k0 := e + �n(g − 1)/2�. This implies

that W has a Lagrangian subbundle of degree at least if k � k0 := e + �n(g − 1)/2�, as was
desired.

Hence the proof will be completed once we show the following.

PROPOSITION 3·3. For a general bundle E ∈ U(n, −e), e � 0, the subvariety PE of
P := PH 1(X, Sym2 E) has no secant defect.

The rest of this section is devoted to the proof of Proposition 3·3. First we recall the Terracini
Lemma [23]:

LEMMA 3·4. Let Z ⊂ P
N be a projective variety and let z1, . . . , zk be general points of

Z. Then dim Seck Z = dim〈Tz1 Z , . . . , Tzk Z〉, where Tzi Z is the embedded tangent space to
Z in P

N at zi .

To apply the Terracini Lemma, let us find a description of the embedded tangent spaces
of PE ⊂ P. Let v be a nonzero vector of E |x , and consider the elementary transformation
0 → E → Ê → Cx → 0 such that the kernel of E |x → Ê |x is spanned by v. Consider the
induced elementary transformation

0 −→ Sym2 E −→ Sym2 Ê −→ τ −→ 0

where τ is a torsion sheaf of degree (n + 1).

LEMMA 3·5. For a general bundle E ∈ U(n, −e), with e � 0, the embedded tangent
space Tv(PE) to PE at v in P is given by

Tv(PE) = P Ker (H 1(X, Sym2 E) −→ H 1(X, Sym2 Ê)).



Lagrangian subbundles of symplectic bundles 205

Proof. Recall that � is the subvariety of P(E ⊗ E) ⊂ PH 1(X, E ⊗ E) consisting of
decomposable vectors. We have the commutative diagram

H 1(X, E ⊗ E)
f−−−−→ H 1(X, Ê ⊗ Ê) −−−−→ 0�⏐⏐

�⏐⏐
H 1(X, Sym2 E)

g−−−−→ H 1(X, Sym2 Ê) −−−−→ 0,

(3·1)

where the vertical arrows are inclusions. By [4, lemma 5·3], the embedded tangent space of
� at v ⊗ v in PH 1(X, E ⊗ E) is given by Tv⊗v� = P(Ker f ). From the inclusion PE ⊂ �

and the above diagram (3·1), we get

TvPE ⊆ Tv⊗v� � PH 1(X, Sym2 E) = P Ker ( f ) � PH 1(X, Sym2 E) = P Ker (g).

Thus it suffices to show that P Ker (g) has dimension n = dim PE . Since E is general, we
may assume Ê is stable. Then Sym2 E and Sym2 Ê are semistable of negative degree, so they
have no nonzero sections. Thus Ker (g) has dimension

h1(X, Sym2 E) − h1(X, Sym2 Ê) = deg(Sym2 Ê) − deg(Sym2 E) = n + 1,

as desired.

Proof of Proposition 3·3. Let F be the general elementary transformation of E associated
to the points v1, . . . , vk ∈ PE . The bundle F fits into an exact sequence

0 −→ E −→ F −→
k⊕

i=1

Cxi −→ 0, (3·2)

for k distinct points x1, . . . , xk such that vi lies over xi . For each i , let Ei be the intermediate
sheaf (E ⊂ Ei ⊂ F) defined by the elementary transformation associated to the vi :

0 −→ E −→ Ei −→ Cxi −→ 0.

By the Terracini Lemma and Lemma 3·5, the dimension of Seck
PE ⊂ P is equal to the

dimension of the linear span of the union of

P Ker
(
H 1(X, Sym2 E) −→ H 1(X, Sym2 Ei )

)
(3·3)

for 1 � i � k. Since F∗ is precisely the intersection of all the E∗
i inside E∗, the linear span

of the spaces (3·3) coincides with

P Ker
(
H 1(X, Sym2 E) −→ H 1(X, Sym2 F)

)
.

Thus now it remains to show

dim Ker
(
H 1(X, Sym2 E) −→ H 1(X, Sym2 F)

)
= min

{
k(n + 1), (n + 1)e + 1

2
n(n + 1)(g − 1)

}
.

From the vanishing of H 0(X, Sym2 E), one checks that the left-hand side equals k(n + 1) −
h0(X, Sym2 F). Since F is obtained from a general elementary transformation of a general
bundle E , it is a general element of U(n, −e + k).

Hence the required equality follows from the result on dim H 0(X, Sym2 F) which will be
discussed in Lemma A·1 and Corollary A·3 in the appendix.
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Remark 3·6 (Hirschowitz bound for Gp2n-bundles).
The statement of Theorem 1·4 is easily generalized to principal Gp2n-bundles. Recall that

the group Gp2n of conformally symplectic transformations is the image of the multiplication
map Sp2n × C

∗ → GL2n . A principal Gp2n-bundle corresponds to a vector bundle of rank
2n carrying a symplectic form with values in a line bundle L which may be different from
OX ; equivalently, admitting an antisymmetric isomorphism W

∼−→ W ∗ ⊗ L . Such W has
determinant Ln and hence deg W = n deg(L). (See Biswas–Gomez [2] for more details on
Gp2n-bundles.)

If E ⊂ W is a Lagrangian subbundle then, by [8, criterion 2·1], we get an extension

0 −→ E −→ W −→ Hom (E, L) −→ 0

with class δ(W ) ∈ H 1(X, L−1 ⊗ Sym2 E), and conversely. Arguing as above, one can show
that W admits a Lagrangian subbundle of degree at least −�n(g − 1 − deg(L))/2�.

4. Geometry of the strata in rank four

In this section, we prove Theorem 1·5 on the geometry of the strata on M4. For the case
of genus 2, it has already been proven in [9]. Throughout this section, we assume g � 3.

4·1. Symplectic extensions of rank four

First we study more details on symplectic extensions of rank four. The goal is to prove
the converse of the statement in Theorem 2·12 in the case of rank four. As was mentioned in
Remark 2·13(2), we need to know how often diagrams of the form (2·7) appear.

For e ∈ {1, 2, . . . , g − 1}, let E → X be a vector bundle of rank two and degree −e.
Assume that E is general, so g − 1 � s1(E) � g as was remarked in (2·5). Equivalently,
assume that any line subbundle of E has degree at most (−e − g + 1)/2.

LEMMA 4·1. Let E be as above and consider an extension 0 → E → W → E∗ → 0
(not necessarily symplectic). Let F be a rank two subbundle of W such that the intersection
of E and F is generically of rank one. Then:

(i) deg F � −(g − 1);
(ii) If deg E = deg F = −(g − 1), then the intersection of E and F is a line subbundle

of W of degree −(g − 1).

Proof. (i) Let L be the line subbundle of W associated to the intersection of E and F . By
the assumptions, we have a diagram

0 −−−−→ E −−−−→ W −−−−→ E∗ −−−−→ 0�⏐⏐
�⏐⏐

�⏐⏐
0 −−−−→ L −−−−→ F −−−−→ M −−−−→ 0

where M is a subsheaf of E∗. Since E is general,

deg(L) � 1

2
(−e − g + 1) and deg(M) � 1

2
(e − g + 1).

Hence deg(F) = deg(L) + deg(M) � −(g − 1).

(ii) By the above inequalities, the condition deg E = deg F = −(g − 1) implies that
deg L = −(g − 1) and deg M = 0. If the quotient sheaf E∗/M had nonzero torsion, then
E∗ would admit a quotient line bundle of degree < g − 1, contradicting the generality of
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E . Hence M must be a line subbundle of E∗, which shows that the intersection of E and F
coincides with L .

The following is an immediate consequence of Lemma 4·1 (i).

COROLLARY 4·2. Let E be a general rank two bundle of degree −e with g−1 � s1(E) �
g. Consider a symplectic extension 0 → E → W → E∗ → 0 corresponding to a general
point δ(W ) of PH 1(X, Sym2 E).

(i) If 1 � e � g − 2, then any Lagrangian subbundle of W other than E itself, of degree
� −e, comes from an elementary transformation of E∗.

(ii) If e = g − 1, then any Lagrangian subbundle of W of degree > −e comes from an
elementary transformation of E∗.

From this, we get a nice geometric criterion on lifting which improves Theorem 2·12
in the case of rank 4. Recall the embedding criteria on ψ of Lemma 2·6 (iii), confirming
that for g � 3 and for a general bundle E ∈ U(2, −e) with e > 0, the map ψ : PE →
PH 1(X, Sym2 E) is an embedding. Hence in this case, we get a surface ψ(PE)�PE inside
PH 1(X, Sym2 E).

THEOREM 4·3. Assume g � 3 and 1 � e � g − 1. Let E be a general bundle in
U(2, −e), and consider a nontrivial symplectic extension W of E∗ by E. For each k with
1 � k � 2e − 1, the following conditions are equivalent:

(i) W admits an isotropic lifting of an elementary transformation F of E∗ with deg F �
e − k;

(ii) δ(W ) ∈ Seck
PE in PH 1(X, Sym2 E);

(iii) sLag(W ) � (n + 1)(k − e).

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) were already shown in Lemma 2·10 (ii)
and Theorem 2·12 respectively. The implication (iii) ⇒ (i) can be readily seen as follows.

The condition sLag(W ) � (n + 1)(k − e) implies that W admits a Lagrangian subbundle
F of degree at least e − k. By Corollary 4·2, if deg E = −e < e − k � deg F , then F comes
from an elementary transformation of E∗.

4·2. Stratification on M4

For any positive integer e, let U(2, −e)s be the moduli space of stable bundles over X of
rank 2 and degree −e. According to Narasimhan and Ramanan [18, proposition 2·4], there
exist a finite étale cover πe : Ũe → U(2, −e)s and a bundle Ee → Ũe × X with the property
that Ee|{E}×X �πe(E) for all E ∈ Ũe (for odd e, we can take πe to be the identity map since
U(2, −e) is a fine moduli space).

Now by Riemann-Roch and semistability, for each E ∈ U(2, −e)s , we have

dim H 1(X, Sym2 E) = 3e + 3(g − 1).

Therefore, the sheaf R1 p∗Sym2(Ee) is locally free of rank 3(e + g − 1) on Ũe. Consider its
projectivization µ : Pe → Ũe.
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Now we have a diagram

Pe

µ

��

Pe × X

µ×IdX

��

r��

Ũe × X
p

����
��

��
��

�
q

����
��

��
��

�

Ũe X.

(4·1)

We write r : Pe × X → Pe for the projection. By Lange [14, corollary 4·5], there is an exact
sequence of vector bundles

0 −→ (µ × IdX )∗Ee ⊗ r∗OPe(1) −→ We −→ (µ × IdX )∗E∗
e −→ 0

over Pe×X , with the property that for δ ∈ Pe with µ(δ) = E , the restriction of We to {δ}×X
is isomorphic to the symplectic extension of E∗ by E defined by δ ∈ PH 1(X, Sym2 E).

There arises a basic question regarding these extension spaces: Is a bundle W correspond-
ing to a general point δ ∈ PH 1(X, Sym2 E) stable, if E is taken to be general? (The same
question for the vector bundles was answered affirmatively by Brambila–Paz and Lange [3],
and Russo and Teixidor i Bigas [21].) The machinery obtained in the previous subsection
enables us to answer this question.

LEMMA 4·4. Let E ∈ U(2, −e), 1 � e � g − 1, be a general bundle such that g − 1 �
s1(E) � g. Then a general point of PH 1(X, Sym2 E) corresponds to a stable symplectic
bundle.

Proof. By Theorem 1·4, a general symplectic bundle W in M4 satisfies sLag(W ) =
3(g − 1). This shows the above statement for e = g − 1.

Now assume 1 � e < g − 1. Let W be a symplectic bundle corresponding to a general
point of PH 1(X, Sym2 E). Consider any line subbundle L of W . If L is contained in the
subbundle E , then deg(L) < 0 by the stability of E . Otherwise L would yield an invertible
subsheaf of E∗ via the composition L → W → E∗. From the condition on s1(E) = s1(E∗),
we have

deg L � e − g + 1

2
< 0

by generality of E . Therefore, any line subbundle of W has negative degree. Since sym-
plectic bundles are self-dual, the same holds for subbundles of rank three.

Finally we consider the Lagrangian subbundles of W . By Theorem 4·3, we have
sLag(W ) � 0 if and only if δ(W ) ∈ Sece

PE . But

dim Sece
PE � 2e + (e − 1) = 3e − 1,

while dim PH 1(X, Sym2 E) = 3e + 3g − 4. Therefore, the bundles with sLag(W ) � 0 form
a proper subset in PH 1(X, Sym2 E).

Now we go back to the diagram (4·1). There is a classifying map γe : Pe ��� M4 induced
by the bundle We → Pe × X . By Lemma 4·4, this map γe is defined over a nonempty dense
subset of Pe.
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Recall the definition of the stratification on M4 given by the invariant sLag: for each e > 0,
consider the subvarieties of M4 defined by

Me
4 := {W ∈ M4 : sLag(W ) � 3e}.

Now we can show the following result which implies Theorem 1·5.

THEOREM 4·5.
(i) For each e with 1 � e � g − 1, the map γe is generically finite and its image is dense

in Me
4.

(ii) For each e with 1 � e � g−1, the locus Me
4 is irreducible of dimension 7(g−1)+3e.

(iii) For e � g − 2, a general point of Me
4 corresponds to a symplectic bundle which has

a unique maximal Lagrangian subbundle. In particular for odd e � g − 2, the locus
Me

4 is birationally equivalent to the fibration Pe over U(2, −e)s .

Proof. First consider the case e = g − 1. From the bound on sLag given in Theorem 1·4,
we have M4 = Mg−1

4 . In particular, Mg−1
4 is irreducible of dimension 10(g−1). Moreover,

the fact that a general symplectic bundle W satisfies sLag(W ) = 3(g − 1) implies that γg−1 :
Pg−1 ��� M4 is dominant. But dim Pg−1 = 10(g − 1), so γg−1 must be generically finite.

In general, it is clear that the image of γe lands on the stratum Me
4. Since the source Pe

is irreducible, so is the image of γe. Now we show that it is dense in Me
4. Any W in Me

4

is fitted into a symplectic extension of E∗ by E for some E of degree −e which might be
unstable. But every such E is contained in an irreducible family of bundles whose general
member is a stable bundle in U(2, −e). This shows that Me

4 is the closure of the image of
γe. In particular, Me

4 is irreducible for each e.
Now assume 1 � e � g − 2 and consider a general point of Pe; precisely, a symplectic

extension

0 −→ E −→ W −→ E∗ −→ 0

where E ∈ U(2, −e)s is general, so s1(E) � g − 1. Suppose that W admits a Lagrangian
subbundle F of degree � −e other than E . Then by Corollary 4·2 (i), such an F is an
elementary transformation of E∗ which lifts to W . By Lemma 2·10 (ii) we have δ(W ) ∈
Sec2e(PE). But

dim Sec2e(PE) � 6e − 1 < 3e + 3g − 4 = dim PH 1(X, Sym2 E).

Thus an extension represented by a general point of Pe|E contains no Lagrangian subbundle
of degree � −e apart from E itself. This implies that a general symplectic bundle in Me

4

has a unique maximal Lagrangian subbundle. In other words, W is represented only in the
fibres of Pe → Ũe over the finite subset π−1

e (E) for the étale cover πe : Ũe → U(2, −e)s .
Moreover, there is only one extension class in PH 1(X, Sym2 E) whose associated bundle is
isomorphic to W .

This shows that γe is generically finite onto its image, of degree equal to that of πe. In
particular, for odd e � g − 2, γe is generically injective since πe is the identity map, and so
Me

4 is birationally equivalent to the fibration Pe over U(2, −e)s . Also, for all e we obtain
dimMe

4 = dim Pe = 7(g − 1) + 3e.

4·3. Nonisotropic maximal subbundles

By Serman [22], for n > 1 the forgetful map taking a symplectic bundle to the equival-
ence class of the underlying vector bundle gives an embedding of M2n in the moduli space



210 INSONG CHOE AND GEORGE H. HITCHING

SU(2n,OX ) of semistable bundles of rank 2n with trivial determinant. Thus it is interesting
to compare the two stratifications on M2n given by sn and sLag. We will focus on the rank
four case.

Suppose X has genus g � 4. Let F1 and F2 be a pair of mutually nonisomorphic stable
bundles of rank two and trivial determinant. The direct sum W := F1 ⊕ F2 is a symplectic
bundle with s2(W ) = 0 and sLag(W ) > 0. We will now use Lemma 2·10 and Remark 2·11
to illuminate this phenomenon.

Let E be a general bundle of rank two and determinant OX (−x) for some point x ∈ X .
The constant function 1 defines a global rational section α of det(E) which has a simple pole
at x and is elsewhere regular. Since E has rank two, for any linearly independent v, w ∈ E |x

we have, up to a constant,

α = v ∧ w

z
= v ⊗ w

z
− w ⊗ v

z
. (4·2)

Thus the cohomology class [
v ⊗ w

z

]
=

[
w ⊗ v

z

]

in H 1(X, E ⊗ E) defines a symplectic extension of E∗ by E .
Write p = v ⊗ w/z. By Lemma 2·6 (ii), the map ϕ : � → PH 1(X, E ⊗ E) is base point

free. Since [p] = ϕ(v ⊗ w), it is a nontrivial cohomology class.
By Lemma 2·3, the kernel F of p : E∗ → Prin(E) lifts to a nonisotropic subbundle of W .

This subbundle is an elementary transformation 0 → F → E∗ → Cx → 0, so has trivial
determinant (as it must, since h0(X, ∧2 F∗) > 0).

This behaviour can be explained geometrically as follows. Since[
v ⊗ w

z

]
=

[
w ⊗ v

z

]
(4·3)

for any linearly independent v and w, the map ϕ : �|x → PH 1(X, E ⊗ E) is not an embed-
ding. In fact it is a double cover

�|x �P
1 × P

1 −→ PSym2 E |x �P
2

ramified over the plane conic PE |x . (In particular, it factorizes via PH 1(X, Sym2 E).) By
(4·3), any extension class lying in this P

2 lies on (a 1-secant to) the quadric bundle �,
but a general such class does not lie on (a 1-secant to) the conic bundle PE . Therefore, by
Lemma 2·10, an elementary transformation of degree deg(E∗)−1 = 0 lifts to a nonisotropic
subbundle of W , but W has no Lagrangian subbundle of degree zero.

Remark 4·6. In fact W admits a pair of nonisotropic subbundles of trivial determinant
given by Ker (p) and Ker (t p). It is not hard to see that these are of the form F and F⊥.
Furthermore, the bundle W splits as the direct sum F ⊕ F⊥, by [7, theorem 2·3].

Building upon this idea, one can show the following:

Suppose g � 4. For any e and f with 0 � f < e and f + 2e − 1 � 2(g − 2)/3, there
exists a stable rank four symplectic bundle W with s2(W ) = 4 f and sLag(W ) = 3e. In other
words, W has a maximal subbundle of degree − f which is nonisotropic, and a maximal
Lagrangian subbundle of degree −e < − f .
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The principle is as above: for certain E of degree −e and special determinant, one can
construct a class δ in H 1(X, Sym2 E) lying on Sece+ f � \ Sec2e−1

PE . By Lemma 2·10, the
extension 0 → E → W → E∗ → 0 defined by δ will have a nonisotropic subbundle
of rank two and degree − f , but no Lagrangian subbundle of degree greater than −e. The
details are tedious, so we omit the calculation. We mention only that the condition f + 2e −
1 � 2(g − 2)/3 comes from Hwang–Ramanan [11, proposition 3·2], which guarantees the
vanishing of H 0(X, adE(D)) for certain effective divisors D.

Appendix A. A variant of Hirschowitz’ lemma

Hirschowitz’ lemma [6, 4·6] assures us that the tensor product of two general bundles
is nonspecial (see also Russo–Teixidor i Bigas [21, theorem 1·2]). This is useful in many
situations; for instance the proof [4, p. 12] of Hirschowitz’ bound on the Segre invariants.
Here we will prove a variant of Hirschowitz’ lemma.

LEMMA A·1. Let F be a general stable bundle of rank n and degree d. If d � n(g−1)/2,
then h0(X, F ⊗ F) = 0.

Proof. The proof will be completed in three steps.
Step 1. Let F be a deformation of F given by a nonzero class δ ∈ H 1(X, End(F)). For a
given nonzero symmetric map α : F∗ → F , we want to know when there exists an extension
α̃ : F

∗ → F inducing the following commutative diagram:

0 −−−−→ F −−−−→ F −−−−→ F −−−−→ 0�⏐⏐α

�⏐⏐α̃

�⏐⏐α

0 −−−−→ F∗ −−−−→ F
∗ −−−−→ F∗ −−−−→ 0.

(A 1)

We have induced maps

α� : H 1(X, End(F∗)) −→ H 1(X, Hom (F∗, F))

and α� : H 1(X, End(F)) −→ H 1(X, Hom (F∗, F)).

Note that the class of the dual deformation F
∗ is given by −tδ ∈ H 1(X, End(F∗)). By

straightforward computation, we can check that the maps α on the outer terms in the diagram
(A 1) extend to a map α̃ : F

∗ → F if and only if −α�
tδ = α�δ in H 1(X, Hom (F∗, F)).

Now since α is symmetric, we have

−α�
tδ = − (tα)�

tδ = −t(α�δ).

Thus we obtain:

LEMMA A·2. A nonzero symmetric map α : F∗ → F extends to α̃ if and only if α�δ

belongs to the subspace H 1(X, ∧2 F) ⊆ H 1(X, Hom (F∗, F)).

Step 2. Rank 2 case: It suffices to consider the boundary case when deg F = g − 1. Let F
be a general bundle in U(2, g − 1). Since ∧2 F = det F is general in Picg−1(X), we have
H 0(X, ∧2 F) = 0. Thus it suffices to show the vanishing of H 0(X, Sym2 F).

First we show that there is no nonzero map F∗ → F whose image is of rank 1: since
s1(F) = g − 1, every line subbundle of F has degree � 0. Furthermore, by [15, corollary
3·2], F has only finitely many maximal line subbundles (of degree 0). Thus if there were a
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nonzero map α : F∗ → F with image M of rank 1, then deg M = 0 and F should have both
M and M∗ as its maximal subbundles. This implies either M � M∗ or there is a sequence

0 −→ M ⊕ M∗ −→ F −→ τ −→ 0

for some torsion sheaf τ of degree g − 1. By dimension counting, one can check that neither
of these conditions is satisfied by a general F ∈ U(2, g − 1).

Next we show that if Sym2 F has a nonzero section α, then it does not extend to every
deformation of F . We have seen that α : F∗ → F must be generically surjective. Hence the
induced cohomology map

α� : H 1(X, End(F)) −→ H 1(X, Hom (F∗, F))

is surjective. By the assumptions h0(X, Sym2 F) > 0 and χ(Sym2 F) = 0, we see that
h1(X, Sym2 F) > 0. This implies that the image of α� is not contained in H 1(X, ∧2 F). By
Lemma A·2, α does not extend to α̃ for some deformation F of F . Therefore, H 0(X, F ⊗ F)

vanishes for a general F ∈ U(2, g − 1).

Step 3. Induction for higher rank cases: Now we consider bundles of rank n � 3. Firstly,
suppose n is even. By semicontinuity, it suffices to find a bundle F0 ∈ U(n, n(g − 1)/2)

such that H 0(X, F0 ⊗ F0) = 0. We let F0 = F1 ⊕ F2 where F1 is general in U(2, g − 1)

and F2 is general in U(n − 2, (n − 2)(g − 1)/2), so that F0 is a polystable bundle of rank n
and degree n(g − 1)/2. From the generality condition and the induction hypothesis, F1 ⊗ F1

and F2 ⊗ F2 have no nonzero sections. Also h0(X, F1 ⊗ F2) = 0 by Hirschowitz’ lemma [6,
4·6], [21, theorem 1·2]. Therefore, F0 ⊗ F0 has no nonzero sections.

Next suppose both n and g are odd. Let F0 = F1 ⊕ F2 for a general line bundle F1 of
degree (g − 1)/2 and a general F2 ⊂ U(n − 1, (n − 1)(g − 1)/2). By the same argument as
above, we see that h0(X, F0 ⊗ F0) = 0.

Finally suppose that n is odd and g is even. In this case, it suffices to find a bundle F0 ∈
U(n, (n(g − 1) − 1)/2) such that H 0(X, F0 ⊗ F0) = 0. Let F0 be a general extension

0 −→ F1 −→ F0 −→ F2 −→ 0

for a general line bundle F1 of degree (g − 2)/2 and a general F2 ∈ U(n − 1, (n − 1)(g −
1)/2). From the stability of F1 and F2, it is easy to check that F0 is also stable. Again by the
above argument, we see that h0(X, F0 ⊗ F0) = 0.

COROLLARY A·3. If F is a general bundle of rank n and degree d � n(g − 1)/2, then

h0(X, Sym2 F) = (n + 1)d − 1

2
n(n + 1)(g − 1).

Proof. For a theta characteristic κ of X , we have

h1(X, Sym2 F) � h0(X, K X ⊗ Sym2 F∗)
= h0(X, Sym2(κ ⊗ F∗)).

Since deg(κ ⊗ F∗) = n(g − 1) − d � n(g − 1)/2, we can apply Lemma A·1 to get the van-
ishing of H 1(X, Sym2 F). By Riemann-Roch, we get the wanted result on h0(X, Sym2 F).

Remark A·4. In the case when either n is even or g is odd, the assignment F �→ F ⊗ F
defines a morphism

U
(

n,
1

2
n(g − 1)

)
−→ U(n2, n2(g − 1)),
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since a tensor product of semistable bundles is semistable. The target moduli space has a gen-
eralized theta divisor, whose support consists of semistable bundles with nonzero sections.
Lemma A·1 implies that the image of this morphism is not contained in the generalized theta
divisor.
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[23] A. TERRACINI. Sulle Vk per cui la varietà degli Sh (h + 1)-seganti ha dimensione minore
dell’ordinario. Rend. Circ. Mat. Palermo 31 (1911), 392–396.


